// Auto-generated file. Do not edit! // Template: src/qu8-igemm/c4-neondot.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include void xnn_qu8_igemm_minmax_fp32_ukernel_1x16c4__neondot( size_t mr, size_t nc, size_t kc, size_t ks, const uint8_t** restrict a, const void* restrict w, uint8_t* restrict c, size_t cm_stride, size_t cn_stride, size_t a_offset, const uint8_t* zero, const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(mr != 0); assert(mr <= 1); assert(nc != 0); assert(kc != 0); assert(ks != 0); assert(ks % (1 * sizeof(void*)) == 0); assert(a_offset % sizeof(uint8_t) == 0); assert(a != NULL); assert(w != NULL); assert(c != NULL); kc = round_up_po2(kc, 4 * sizeof(uint8_t)); uint8_t* c0 = c; const uint8x8_t va_zero_point = vld1_dup_u8(¶ms->fp32_neonv8.kernel_zero_point[0]); do { // Initialize accumulators with bias. 16 bias values are loaded from the // weight matrix, at the start of the group of 16 columns. uint32x4_t vpacc0x0123 = vld1q_u32(w); w = (const void*) ((const uint32_t*) w + 4); uint32x4_t vpacc0x4567 = vld1q_u32(w); w = (const void*) ((const uint32_t*) w + 4); uint32x4_t vpacc0x89AB = vld1q_u32(w); w = (const void*) ((const uint32_t*) w + 4); uint32x4_t vpacc0xCDEF = vld1q_u32(w); w = (const void*) ((const uint32_t*) w + 4); uint32x2_t vnacc0 = vmov_n_u32(0); size_t p = ks; do { const uint8_t* restrict a0 = a[0]; if XNN_UNPREDICTABLE(a0 != zero) { a0 = (const uint8_t*) ((uintptr_t) a0 + a_offset); } a += 1; // Inner accumulation loop along the 16 columns. size_t k = kc; // 2x partial unrolled loop to load 8 bytes at a time. while (k >= 8 * sizeof(uint8_t)) { // Load a 1x8 block of activations. const uint8x8_t va0x01234567 = vld1_u8(a0); a0 += 8; // Load a 8x16 block of weights. const uint8x16_t vb0123x0123 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123x4567 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123x89AB = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123xCDEF = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb4567x0123 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb4567x4567 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb4567x89AB = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb4567xCDEF = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); // Multiply-accumulate: 1x8 * 8x16 --> 1x16. vnacc0 = vdot_u32(vnacc0, va_zero_point, va0x01234567); vpacc0x0123 = vdotq_lane_u32(vpacc0x0123, vb0123x0123, va0x01234567, 0); vpacc0x4567 = vdotq_lane_u32(vpacc0x4567, vb0123x4567, va0x01234567, 0); vpacc0x89AB = vdotq_lane_u32(vpacc0x89AB, vb0123x89AB, va0x01234567, 0); vpacc0xCDEF = vdotq_lane_u32(vpacc0xCDEF, vb0123xCDEF, va0x01234567, 0); vpacc0x0123 = vdotq_lane_u32(vpacc0x0123, vb4567x0123, va0x01234567, 1); vpacc0x4567 = vdotq_lane_u32(vpacc0x4567, vb4567x4567, va0x01234567, 1); vpacc0x89AB = vdotq_lane_u32(vpacc0x89AB, vb4567x89AB, va0x01234567, 1); vpacc0xCDEF = vdotq_lane_u32(vpacc0xCDEF, vb4567xCDEF, va0x01234567, 1); k -= 8 * sizeof(uint8_t); } // Handle up to 4 final positions of `k` if XNN_UNLIKELY(k != 0) { // Load a 1x4 block of activations. const uint8x8_t va0x01234567 = vreinterpret_u8_u32(vld1_lane_u32((const void*) a0, vmov_n_u32(0), 0)); a0 += 4; // Load a 4x16 block of weights. const uint8x16_t vb0123x0123 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123x4567 = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123x89AB = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); const uint8x16_t vb0123xCDEF = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); // Multiply-accumulate: 1x4 * 4x16 --> 1x16. vnacc0 = vdot_u32(vnacc0, va_zero_point, va0x01234567); vpacc0x0123 = vdotq_lane_u32(vpacc0x0123, vb0123x0123, va0x01234567, 0); vpacc0x4567 = vdotq_lane_u32(vpacc0x4567, vb0123x4567, va0x01234567, 0); vpacc0x89AB = vdotq_lane_u32(vpacc0x89AB, vb0123x89AB, va0x01234567, 0); vpacc0xCDEF = vdotq_lane_u32(vpacc0xCDEF, vb0123xCDEF, va0x01234567, 0); } p -= 1 * sizeof(void*); } while (p != 0); // Subtract zero point from accumulators. vnacc0 = vpadd_u32(vnacc0, vnacc0); const uint32x4_t vnacc0x0123 = vcombine_u32(vnacc0, vnacc0); int32x4_t vacc0x0123 = vreinterpretq_s32_u32(vsubq_u32(vpacc0x0123, vnacc0x0123)); int32x4_t vacc0x4567 = vreinterpretq_s32_u32(vsubq_u32(vpacc0x4567, vnacc0x0123)); int32x4_t vacc0x89AB = vreinterpretq_s32_u32(vsubq_u32(vpacc0x89AB, vnacc0x0123)); int32x4_t vacc0xCDEF = vreinterpretq_s32_u32(vsubq_u32(vpacc0xCDEF, vnacc0x0123)); float32x4_t vfpacc0x0123 = vcvtq_f32_s32(vacc0x0123); float32x4_t vfpacc0x4567 = vcvtq_f32_s32(vacc0x4567); float32x4_t vfpacc0x89AB = vcvtq_f32_s32(vacc0x89AB); float32x4_t vfpacc0xCDEF = vcvtq_f32_s32(vacc0xCDEF); const float32x4_t vscale = vld1q_dup_f32(¶ms->fp32_neonv8.scale); vfpacc0x0123 = vmulq_f32(vfpacc0x0123, vscale); vfpacc0x4567 = vmulq_f32(vfpacc0x4567, vscale); vfpacc0x89AB = vmulq_f32(vfpacc0x89AB, vscale); vfpacc0xCDEF = vmulq_f32(vfpacc0xCDEF, vscale); vacc0x0123 = vcvtnq_s32_f32(vfpacc0x0123); vacc0x4567 = vcvtnq_s32_f32(vfpacc0x4567); vacc0x89AB = vcvtnq_s32_f32(vfpacc0x89AB); vacc0xCDEF = vcvtnq_s32_f32(vfpacc0xCDEF); const int16x8_t voutput_zero_point = vld1q_dup_s16(¶ms->fp32_neonv8.output_zero_point); #if XNN_ARCH_ARM64 const int16x8_t vacc0x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x0123), vacc0x4567), voutput_zero_point); const int16x8_t vacc0x89ABCDEF = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x89AB), vacc0xCDEF), voutput_zero_point); uint8x16_t vout0x0123456789ABCDEF = vqmovun_high_s16(vqmovun_s16(vacc0x01234567), vacc0x89ABCDEF); #else const int16x8_t vacc0x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x0123), vqmovn_s32(vacc0x4567)), voutput_zero_point); const int16x8_t vacc0x89ABCDEF = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x89AB), vqmovn_s32(vacc0xCDEF)), voutput_zero_point); uint8x16_t vout0x0123456789ABCDEF = vcombine_u8(vqmovun_s16(vacc0x01234567), vqmovun_s16(vacc0x89ABCDEF)); #endif const uint8x16_t voutput_min = vld1q_dup_u8(¶ms->fp32_neonv8.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(¶ms->fp32_neonv8.output_max); vout0x0123456789ABCDEF = vmaxq_u8(vout0x0123456789ABCDEF, voutput_min); vout0x0123456789ABCDEF = vminq_u8(vout0x0123456789ABCDEF, voutput_max); if (nc >= 16) { vst1q_u8(c0 + 0, vout0x0123456789ABCDEF); c0 = (uint8_t*) ((uintptr_t) c0 + cn_stride); a = (const uint8_t**restrict) ((uintptr_t) a - ks); nc -= 16; } else { uint8x8_t vout0x01234567 = vget_low_u8(vout0x0123456789ABCDEF); if (nc & 8) { vst1_u8(c0, vout0x01234567); c0 += 8; // This line vout0x01234567 = vget_high_u8(vout0x0123456789ABCDEF); } if (nc & 4) { vst1_lane_u32((void*) c0, vreinterpret_u32_u8(vout0x01234567), 0); c0 += 4; vout0x01234567 = vext_u8(vout0x01234567, vout0x01234567, 4); } if (nc & 2) { vst1_lane_u16((void*) c0, vreinterpret_u16_u8(vout0x01234567), 0); c0 += 2; vout0x01234567 = vext_u8(vout0x01234567, vout0x01234567, 2); } if (nc & 1) { vst1_lane_u8(c0, vout0x01234567, 0); } nc = 0; } } while (nc != 0); }