// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static enum xnn_status create_resize_bilinear2d_nhwc( size_t channels, size_t input_pixel_stride, size_t output_pixel_stride, uint32_t flags, uint32_t datatype_init_flags, enum xnn_operator_type operator_type, xnn_operator_t* resize_op_out) { xnn_operator_t resize_op = NULL; enum xnn_status status = xnn_status_uninitialized; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to create %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(operator_type)); goto error; } status = xnn_status_unsupported_hardware; if ((xnn_params.init_flags & datatype_init_flags) != datatype_init_flags) { xnn_log_error("failed to create %s operator: operations on data type are not supported", xnn_operator_type_to_string(operator_type)); goto error; } status = xnn_status_invalid_parameter; if (channels == 0) { xnn_log_error( "failed to create %s operator with %zu channels: number of channels must be non-zero", xnn_operator_type_to_string(operator_type), channels); goto error; } if (input_pixel_stride < channels) { xnn_log_error( "failed to create %s operator with input pixel stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(operator_type), input_pixel_stride, channels); goto error; } if (output_pixel_stride < channels) { xnn_log_error( "failed to create %s operator with output pixel stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(operator_type), output_pixel_stride, channels); goto error; } status = xnn_status_out_of_memory; resize_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); if (resize_op == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator descriptor", sizeof(struct xnn_operator), xnn_operator_type_to_string(operator_type)); goto error; } resize_op->channels = channels; resize_op->input_pixel_stride = input_pixel_stride; resize_op->output_pixel_stride = output_pixel_stride; resize_op->type = operator_type; resize_op->flags = flags; resize_op->state = xnn_run_state_invalid; *resize_op_out = resize_op; return xnn_status_success; error: xnn_delete_operator(resize_op); return status; } enum xnn_status xnn_create_resize_bilinear2d_nhwc_f16( size_t channels, size_t input_pixel_stride, size_t output_pixel_stride, uint32_t flags, xnn_operator_t* resize_op_out) { return create_resize_bilinear2d_nhwc( channels, input_pixel_stride, output_pixel_stride, flags, XNN_INIT_FLAG_F16, xnn_operator_type_resize_bilinear_nhwc_f16, resize_op_out); } enum xnn_status xnn_create_resize_bilinear2d_nhwc_f32( size_t channels, size_t input_pixel_stride, size_t output_pixel_stride, uint32_t flags, xnn_operator_t* resize_op_out) { return create_resize_bilinear2d_nhwc( channels, input_pixel_stride, output_pixel_stride, flags, XNN_INIT_FLAG_F32, xnn_operator_type_resize_bilinear_nhwc_f32, resize_op_out); } enum xnn_status xnn_create_resize_bilinear2d_nhwc_s8( size_t channels, size_t input_pixel_stride, size_t output_pixel_stride, uint32_t flags, xnn_operator_t* resize_op_out) { return create_resize_bilinear2d_nhwc( channels, input_pixel_stride, output_pixel_stride, flags, XNN_INIT_FLAG_S8, xnn_operator_type_resize_bilinear_nhwc_s8, resize_op_out); } enum xnn_status xnn_create_resize_bilinear2d_nhwc_u8( size_t channels, size_t input_pixel_stride, size_t output_pixel_stride, uint32_t flags, xnn_operator_t* resize_op_out) { return create_resize_bilinear2d_nhwc( channels, input_pixel_stride, output_pixel_stride, flags, XNN_INIT_FLAG_U8, xnn_operator_type_resize_bilinear_nhwc_u8, resize_op_out); } static enum xnn_status setup_resize_bilinear2d_nhwc( xnn_operator_t resize_op, enum xnn_operator_type expected_operator_type, size_t batch_size, size_t input_height, size_t input_width, size_t output_height, size_t output_width, const void* input, void* output, uint32_t log2_element_size, uint32_t log2_weight_element_size, xnn_indirection_init_resize_bilinear2d_hwc_fn indirection_init, const struct ibilinear_parameters ibilinear[restrict XNN_MIN_ELEMENTS(1)], size_t num_threads) { if (resize_op->type != expected_operator_type) { xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)", xnn_operator_type_to_string(expected_operator_type), xnn_operator_type_to_string(resize_op->type)); return xnn_status_invalid_parameter; } resize_op->state = xnn_run_state_invalid; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to setup %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(resize_op->type)); return xnn_status_uninitialized; } if (input_width == 0 || input_height == 0) { xnn_log_error( "failed to setup %s operator with %zux%zu input: input dimensions must be non-zero", xnn_operator_type_to_string(resize_op->type), input_width, input_height); return xnn_status_invalid_parameter; } if (max(input_width, input_height) >= 16777216) { xnn_log_error( "failed to setup %s operator with %zux%zu input: input dimensions must be below 2**24", xnn_operator_type_to_string(resize_op->type), input_width, input_height); return xnn_status_unsupported_parameter; } if (output_width == 0 || output_height == 0) { xnn_log_error( "failed to setup %s operator with %zux%zu output: output dimensions must be non-zero", xnn_operator_type_to_string(resize_op->type), output_width, output_height); return xnn_status_invalid_parameter; } if (max(output_width, output_height) >= 16777216) { xnn_log_error( "failed to setup %s operator with %zux%zu output: output dimensions must be below 2**24", xnn_operator_type_to_string(resize_op->type), output_width, output_height); return xnn_status_unsupported_parameter; } if (batch_size == 0) { resize_op->state = xnn_run_state_skip; return xnn_status_success; } if (output_height * output_width != resize_op->last_output_height * resize_op->last_output_width) { const size_t indirection_buffer_size = sizeof(void*) * (output_height * output_width * 4); const size_t packed_weights_size = (output_height * output_width * 2) << log2_weight_element_size; const void** indirection_buffer = (const void**) xnn_reallocate_memory(resize_op->indirection_buffer, indirection_buffer_size); if (indirection_buffer == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator indirection buffer", indirection_buffer_size, xnn_operator_type_to_string(resize_op->type)); return xnn_status_out_of_memory; } resize_op->indirection_buffer = indirection_buffer; // Note: packed weights must be SIMD-aligned, so we can't use xnn_reallocate_memory xnn_release_simd_memory(resize_op->packed_weights.pointer); resize_op->packed_weights.pointer = xnn_allocate_simd_memory(packed_weights_size); if (resize_op->packed_weights.pointer == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator packed weights", packed_weights_size, xnn_operator_type_to_string(resize_op->type)); return xnn_status_out_of_memory; } } const size_t input_pixel_stride_in_bytes = resize_op->input_pixel_stride << log2_element_size; if (input_height != resize_op->last_input_height || input_width != resize_op->last_input_width || output_height != resize_op->last_output_height || output_width != resize_op->last_output_width) { const uint32_t flags = resize_op->flags; indirection_init( input_pixel_stride_in_bytes, input_height, input_width, output_height, output_width, input, resize_op->indirection_buffer, resize_op->packed_weights.pointer, !!(flags & XNN_FLAG_ALIGN_CORNERS), !!(flags & XNN_FLAG_TENSORFLOW_LEGACY_MODE)); resize_op->last_input = input; resize_op->last_input_height = input_height; resize_op->last_input_width = input_width; resize_op->last_output_height = output_height; resize_op->last_output_width = output_width; } const size_t output_pixel_stride_in_bytes = resize_op->output_pixel_stride << log2_element_size; // Resize bilinear packed weights can change when the operator is resized, we will not use weights cache. assert(resize_op->weights_cache == NULL); resize_op->context.resize_bilinear = (struct resize_bilinear_context) { .scaled_channels = resize_op->channels << log2_element_size, .indirect_input = resize_op->indirection_buffer, .input_offset = (size_t) ((uintptr_t) input - (uintptr_t) resize_op->last_input), .input_batch_stride = input_pixel_stride_in_bytes * input_height * input_width, .packed_weights = resize_op->packed_weights.pointer, .output = output, .output_pixel_stride = output_pixel_stride_in_bytes, .output_batch_stride = output_pixel_stride_in_bytes * output_height * output_width, .log2_wsize = 1 + log2_weight_element_size /* log2(2 * sizeof(weight)) */, .ukernel = ibilinear->ukernel, }; const size_t output_size = output_height * output_width; #if XNN_TEST_MODE const size_t output_size_tile = ibilinear->pixel_tile; #else size_t output_size_tile = output_size; if (num_threads > 1) { const size_t target_tiles_per_thread = 5; const size_t max_output_size_tile = divide_round_up(output_size, num_threads * target_tiles_per_thread); if (max_output_size_tile < output_size_tile) { const uint32_t output_size_subtile = ibilinear->pixel_tile; output_size_tile = min(output_size_tile, divide_round_up(output_size_tile, max_output_size_tile * output_size_subtile) * output_size_subtile); } } #endif resize_op->compute.type = xnn_parallelization_type_2d_tile_1d; resize_op->compute.task_2d_tile_1d = (pthreadpool_task_2d_tile_1d_t) xnn_compute_resize_bilinear; resize_op->compute.range[0] = batch_size; resize_op->compute.range[1] = output_size; resize_op->compute.tile[0] = output_size_tile; resize_op->state = xnn_run_state_ready; return xnn_status_success; } enum xnn_status xnn_setup_resize_bilinear2d_nhwc_f16( xnn_operator_t resize_op, size_t batch_size, size_t input_height, size_t input_width, size_t output_height, size_t output_width, const void* input, void* output, pthreadpool_t threadpool) { return setup_resize_bilinear2d_nhwc( resize_op, xnn_operator_type_resize_bilinear_nhwc_f16, batch_size, input_height, input_width, output_height, output_width, input, output, 1 /* log2(element size) == log2(sizeof(uint16_t)) */, 1 /* log2(weight element size) == log2(sizeof(uint16_t)) */, (xnn_indirection_init_resize_bilinear2d_hwc_fn) xnn_indirection_init_resize_bilinear2d_hwc_f16, &xnn_params.f16.ibilinear, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_resize_bilinear2d_nhwc_f32( xnn_operator_t resize_op, size_t batch_size, size_t input_height, size_t input_width, size_t output_height, size_t output_width, const float* input, float* output, pthreadpool_t threadpool) { return setup_resize_bilinear2d_nhwc( resize_op, xnn_operator_type_resize_bilinear_nhwc_f32, batch_size, input_height, input_width, output_height, output_width, input, output, 2 /* log2(element size) == log2(sizeof(float)) */, 2 /* log2(weight element size) == log2(sizeof(float)) */, (xnn_indirection_init_resize_bilinear2d_hwc_fn) xnn_indirection_init_resize_bilinear2d_hwc_f32, &xnn_params.f32.ibilinear, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_resize_bilinear2d_nhwc_s8( xnn_operator_t resize_op, size_t batch_size, size_t input_height, size_t input_width, size_t output_height, size_t output_width, const int8_t* input, int8_t* output, pthreadpool_t threadpool) { return setup_resize_bilinear2d_nhwc( resize_op, xnn_operator_type_resize_bilinear_nhwc_s8, batch_size, input_height, input_width, output_height, output_width, input, output, 0 /* log2(element size) == log2(sizeof(int8_t)) */, 1 /* log2(weight element size) == log2(sizeof(int16_t)) */, (xnn_indirection_init_resize_bilinear2d_hwc_fn) xnn_indirection_init_resize_bilinear2d_hwc_q11, &xnn_params.s8.ibilinear, pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_resize_bilinear2d_nhwc_u8( xnn_operator_t resize_op, size_t batch_size, size_t input_height, size_t input_width, size_t output_height, size_t output_width, const uint8_t* input, uint8_t* output, pthreadpool_t threadpool) { return setup_resize_bilinear2d_nhwc( resize_op, xnn_operator_type_resize_bilinear_nhwc_u8, batch_size, input_height, input_width, output_height, output_width, input, output, 0 /* log2(element size) == log2(sizeof(uint8_t)) */, 1 /* log2(weight element size) == log2(sizeof(int16_t)) */, (xnn_indirection_init_resize_bilinear2d_hwc_fn) xnn_indirection_init_resize_bilinear2d_hwc_q11, &xnn_params.u8.ibilinear, pthreadpool_get_threads_count(threadpool)); }