// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static inline size_t compute_output_dimension( size_t padded_input_dimension, size_t kernel_dimension) { return padded_input_dimension / kernel_dimension; } static const struct argmaxpool_parameters* select_ukernel( size_t pooling_size, const struct argmaxpool_parameters* ukernel) { while (ukernel->qr == 0 && ukernel->mr < pooling_size) { ukernel++; } return ukernel; } enum xnn_status xnn_create_argmax_pooling2d_nhwc_f32( uint32_t input_padding_top, uint32_t input_padding_right, uint32_t input_padding_bottom, uint32_t input_padding_left, uint32_t pooling_height, uint32_t pooling_width, size_t channels, size_t input_pixel_stride, size_t output_pixel_stride, uint32_t flags, xnn_operator_t* argmax_pooling_op_out) { xnn_operator_t argmax_pooling_op = NULL; enum xnn_status status = xnn_status_uninitialized; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to create %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32)); goto error; } status = xnn_status_invalid_parameter; const uint32_t pooling_size = pooling_height * pooling_width; if (pooling_size == 0) { xnn_log_error( "failed to create %s operator with %" PRIu32 "x%" PRIu32 " pooling size: " "pooling size dimensions must be non-zero", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), pooling_width, pooling_height); goto error; } if (pooling_size == 1) { xnn_log_error( "failed to create %s operator with 1 pooling element: 1x1 pooling is meaningless", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32)); goto error; } if (channels == 0) { xnn_log_error( "failed to create %s operator with %zu channels: number of channels must be non-zero", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), channels); goto error; } if (input_pixel_stride < channels) { xnn_log_error( "failed to create %s operator with input pixel stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), input_pixel_stride, channels); goto error; } if (output_pixel_stride < channels) { xnn_log_error( "failed to create %s operator with output pixel stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), output_pixel_stride, channels); goto error; } const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0; if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) { if (any_padding) { xnn_log_error( "failed to create %s operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: " "TensorFlow SAME padding can't be combined with explicit padding specification", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), input_padding_top, input_padding_left, input_padding_bottom, input_padding_right); goto error; } } status = xnn_status_out_of_memory; argmax_pooling_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); if (argmax_pooling_op == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator descriptor", sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32)); goto error; } argmax_pooling_op->padding_top = input_padding_top; argmax_pooling_op->padding_right = input_padding_right; argmax_pooling_op->padding_bottom = input_padding_bottom; argmax_pooling_op->padding_left = input_padding_left; argmax_pooling_op->kernel_height = pooling_height; argmax_pooling_op->kernel_width = pooling_width; argmax_pooling_op->stride_height = pooling_height; argmax_pooling_op->stride_width = pooling_width; argmax_pooling_op->dilation_height = 1; argmax_pooling_op->dilation_width = 1; argmax_pooling_op->channels = channels; argmax_pooling_op->input_pixel_stride = input_pixel_stride; argmax_pooling_op->output_pixel_stride = output_pixel_stride; argmax_pooling_op->type = xnn_operator_type_argmax_pooling_nhwc_f32; argmax_pooling_op->flags = flags; argmax_pooling_op->state = xnn_run_state_invalid; *argmax_pooling_op_out = argmax_pooling_op; return xnn_status_success; error: xnn_delete_operator(argmax_pooling_op); return status; } enum xnn_status xnn_setup_argmax_pooling2d_nhwc_f32( xnn_operator_t argmax_pooling_op, size_t batch_size, size_t input_height, size_t input_width, const float* input, float* output, uint32_t* index, pthreadpool_t threadpool) { if (argmax_pooling_op->type != xnn_operator_type_argmax_pooling_nhwc_f32) { xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), xnn_operator_type_to_string(argmax_pooling_op->type)); return xnn_status_invalid_parameter; } argmax_pooling_op->state = xnn_run_state_invalid; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to setup %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32)); return xnn_status_uninitialized; } if (input_width == 0 || input_height == 0) { xnn_log_error( "failed to setup %s operator with %zux%zu input: input dimensions must be non-zero", xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32), input_width, input_height); return xnn_status_invalid_parameter; } if (batch_size == 0) { argmax_pooling_op->state = xnn_run_state_skip; return xnn_status_success; } argmax_pooling_op->batch_size = batch_size; argmax_pooling_op->input_height = input_height; argmax_pooling_op->input_width = input_width; argmax_pooling_op->input = input; const size_t pooling_height = argmax_pooling_op->kernel_height; const size_t pooling_width = argmax_pooling_op->kernel_width; if (argmax_pooling_op->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) { argmax_pooling_op->output_height = divide_round_up(input_height, pooling_height); argmax_pooling_op->output_width = divide_round_up(input_width, pooling_width); const uint32_t padding_height = argmax_pooling_op->output_height * pooling_height - input_height; const uint32_t padding_width = argmax_pooling_op->output_width * pooling_width - input_width; argmax_pooling_op->padding_top = padding_height / 2; argmax_pooling_op->padding_left = padding_width / 2; argmax_pooling_op->padding_bottom = padding_height - argmax_pooling_op->padding_top; argmax_pooling_op->padding_right = padding_width - argmax_pooling_op->padding_left; } else { argmax_pooling_op->output_height = compute_output_dimension( argmax_pooling_op->padding_top + input_height + argmax_pooling_op->padding_bottom, argmax_pooling_op->kernel_height); argmax_pooling_op->output_width = compute_output_dimension( argmax_pooling_op->padding_left + input_width + argmax_pooling_op->padding_right, argmax_pooling_op->kernel_width); } const size_t pooling_size = pooling_height * pooling_width; const size_t output_height = argmax_pooling_op->output_height; const size_t output_width = argmax_pooling_op->output_width; const struct argmaxpool_parameters* ukernel = select_ukernel(pooling_size, xnn_params.f32.argmaxpool); const uint32_t mr = ukernel->mr; const size_t step_width = pooling_width; const size_t step_height = pooling_size + (output_width - 1) * step_width * pooling_height; if (input_height != argmax_pooling_op->last_input_height || input_width != argmax_pooling_op->last_input_width) { // Micro-kernel may read up to (mr - 1) elements after the end of indirection buffer. const size_t indirection_buffer_size = sizeof(void*) * ((mr - 1) + output_height * step_height); const void** indirection_buffer = (const void**) xnn_reallocate_memory(argmax_pooling_op->indirection_buffer, indirection_buffer_size); if (indirection_buffer == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator indirection buffer", indirection_buffer_size, xnn_operator_type_to_string(xnn_operator_type_argmax_pooling_nhwc_f32)); return xnn_status_out_of_memory; } argmax_pooling_op->indirection_buffer = indirection_buffer; xnn_indirection_init_maxpool2d(argmax_pooling_op, step_height, step_width, 2 /* log2(sizeof(float)) */); argmax_pooling_op->last_input = input; argmax_pooling_op->last_input_height = input_height; argmax_pooling_op->last_input_width = input_width; } const size_t channels = argmax_pooling_op->channels; const size_t indirect_input_height_stride = step_height * sizeof(void*); const size_t output_width_stride = argmax_pooling_op->output_pixel_stride * sizeof(float); const size_t output_height_stride = output_width * output_width_stride; const size_t index_height_stride = output_width * channels * sizeof(uint32_t); const uint32_t qr = ukernel->qr; const size_t multipass_adjustment = qr == 0 ? 0 : round_up(pooling_size - mr, qr) + mr - qr; argmax_pooling_op->context.argmax_pooling = (struct argmax_pooling_context) { .indirect_input = argmax_pooling_op->indirection_buffer, .indirect_input_height_stride = indirect_input_height_stride, .input_offset = (size_t) ((uintptr_t) input - (uintptr_t) argmax_pooling_op->last_input), .input_batch_stride = input_height * input_width * argmax_pooling_op->input_pixel_stride * sizeof(float), .output = output, .output_batch_stride = output_height * output_height_stride, .output_height_stride = output_height_stride, .output_width = output_width, .index = index, .index_batch_stride = output_height * index_height_stride, .index_height_stride = index_height_stride, .pooling_size = pooling_size, .channels = channels, .input_increment = (pooling_height * step_width - multipass_adjustment) * sizeof(void*), .output_increment = output_width_stride - channels * sizeof(float), }; argmax_pooling_op->compute.type = xnn_parallelization_type_2d; argmax_pooling_op->compute.range[0] = batch_size; argmax_pooling_op->compute.range[1] = output_height; if (pooling_size <= mr) { argmax_pooling_op->context.argmax_pooling.unipass_ukernel = ukernel->up; argmax_pooling_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_argmax_pooling_unipass; } else { argmax_pooling_op->context.argmax_pooling.multipass_ukernel = ukernel->mp; argmax_pooling_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_argmax_pooling_multipass; } argmax_pooling_op->state = xnn_run_state_ready; return xnn_status_success; }