// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include "bench/utils.h" #ifndef XNN_NO_QU8_OPERATORS static void global_average_pooling_qu8(benchmark::State& state) { const size_t batch_size = state.range(0); const size_t input_height = state.range(1); const size_t input_width = state.range(2); const size_t channels = state.range(3); std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), std::ref(rng)); std::vector input(batch_size * input_height * input_width * channels); std::generate(input.begin(), input.end(), std::ref(u8rng)); std::vector output(batch_size * channels); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); } xnn_operator_t global_pooling_op = nullptr; status = xnn_create_global_average_pooling_nwc_qu8( channels, channels /* input stride */, channels /* output stride */, 127 /* input zero point */, 0.75f /* input scale */, 127 /* output zero point */, 1.25f /* output scale */, 0, 255, 0 /* flags */, &global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to create Global Average Pooling operator"); } status = xnn_setup_global_average_pooling_nwc_qu8( global_pooling_op, batch_size, input_height * input_width, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup Global Average Pooling operator"); } for (auto _ : state) { xnn_run_operator(global_pooling_op, nullptr /* thread pool */); } status = xnn_delete_operator(global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete Global Average Pooling operator"); } global_pooling_op = nullptr; const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * batch_size * (input_height * input_width + 1) * channels * sizeof(uint8_t), benchmark::Counter::kIsRate); } #endif // XNN_NO_QU8_OPERATORS #ifndef XNN_NO_QS8_OPERATORS static void global_average_pooling_qs8(benchmark::State& state) { const size_t batch_size = state.range(0); const size_t input_height = state.range(1); const size_t input_width = state.range(2); const size_t channels = state.range(3); std::random_device random_device; auto rng = std::mt19937(random_device()); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), std::ref(rng)); std::vector input(batch_size * input_height * input_width * channels); std::generate(input.begin(), input.end(), std::ref(i8rng)); std::vector output(batch_size * channels); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); } xnn_operator_t global_pooling_op = nullptr; status = xnn_create_global_average_pooling_nwc_qs8( channels, channels /* input stride */, channels /* output stride */, -1 /* input zero point */, 0.75f /* input scale */, -1 /* output zero point */, 1.25f /* output scale */, -128, 127, 0 /* flags */, &global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to create Global Average Pooling operator"); } status = xnn_setup_global_average_pooling_nwc_qs8( global_pooling_op, batch_size, input_height * input_width, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup Global Average Pooling operator"); } for (auto _ : state) { xnn_run_operator(global_pooling_op, nullptr /* thread pool */); } status = xnn_delete_operator(global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete Global Average Pooling operator"); } global_pooling_op = nullptr; const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * batch_size * (input_height * input_width + 1) * channels * sizeof(int8_t), benchmark::Counter::kIsRate); } #endif // XNN_NO_QS8_OPERATORS #ifndef XNN_NO_F16_OPERATORS static void global_average_pooling_f16(benchmark::State& state) { if (!benchmark::utils::CheckNEONFP16ARITH(state)) { return; } const size_t batch_size = state.range(0); const size_t input_height = state.range(1); const size_t input_width = state.range(2); const size_t channels = state.range(3); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector input(batch_size * input_height * input_width * channels); std::generate(input.begin(), input.end(), std::ref(f16rng)); std::vector output(batch_size * channels); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); } xnn_operator_t global_pooling_op = nullptr; status = xnn_create_global_average_pooling_nwc_f16( channels, channels /* input stride */, channels /* output stride */, -std::numeric_limits::infinity(), +std::numeric_limits::infinity(), 0 /* flags */, &global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to create Global Average Pooling operator"); } status = xnn_setup_global_average_pooling_nwc_f16( global_pooling_op, batch_size, input_height * input_width, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup Global Average Pooling operator"); } for (auto _ : state) { xnn_run_operator(global_pooling_op, nullptr /* thread pool */); } status = xnn_delete_operator(global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete Global Average Pooling operator"); } global_pooling_op = nullptr; const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * batch_size * (input_height * input_width + 1) * channels * sizeof(uint16_t), benchmark::Counter::kIsRate); } #endif // XNN_NO_F16_OPERATORS static void global_average_pooling_f32(benchmark::State& state) { const size_t batch_size = state.range(0); const size_t input_height = state.range(1); const size_t input_width = state.range(2); const size_t channels = state.range(3); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), std::ref(rng)); std::vector input(batch_size * input_height * input_width * channels); std::generate(input.begin(), input.end(), std::ref(f32rng)); std::vector output(batch_size * channels); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); } xnn_operator_t global_pooling_op = nullptr; status = xnn_create_global_average_pooling_nwc_f32( channels, channels /* input stride */, channels /* output stride */, -std::numeric_limits::infinity(), +std::numeric_limits::infinity(), 0 /* flags */, &global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to create Global Average Pooling operator"); } status = xnn_setup_global_average_pooling_nwc_f32( global_pooling_op, batch_size, input_height * input_width, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup Global Average Pooling operator"); } for (auto _ : state) { xnn_run_operator(global_pooling_op, nullptr /* thread pool */); } status = xnn_delete_operator(global_pooling_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete Global Average Pooling operator"); } global_pooling_op = nullptr; const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } state.counters["bytes"] = benchmark::Counter( uint64_t(state.iterations()) * batch_size * (input_height * input_width + 1) * channels * sizeof(float), benchmark::Counter::kIsRate); } static void ImageNetArguments(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "H", "W", "C"}); /* N IH IW C */ b->Args({1, 7, 7, 1000}); b->Args({1, 13, 13, 1000}); } #ifndef XNN_NO_QU8_OPERATORS BENCHMARK(global_average_pooling_qu8)->Apply(ImageNetArguments)->UseRealTime(); #endif // XNN_NO_QU8_OPERATORS #ifndef XNN_NO_QS8_OPERATORS BENCHMARK(global_average_pooling_qs8)->Apply(ImageNetArguments)->UseRealTime(); #endif // XNN_NO_QS8_OPERATORS #ifndef XNN_NO_F16_OPERATORS BENCHMARK(global_average_pooling_f16)->Apply(ImageNetArguments)->UseRealTime(); #endif // XNN_NO_F16_OPERATORS BENCHMARK(global_average_pooling_f32)->Apply(ImageNetArguments)->UseRealTime(); #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif