/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instrumentation.h" #include #include #include #include #include "arch/context.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/atomic.h" #include "base/callee_save_type.h" #include "class_linker.h" #include "debugger.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_types.h" #include "dex/dex_instruction-inl.h" #include "entrypoints/quick/quick_alloc_entrypoints.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/runtime_entrypoints_list.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc_root-inl.h" #include "interpreter/interpreter.h" #include "interpreter/interpreter_common.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jvalue-inl.h" #include "jvalue.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "nterp_helpers.h" #include "nth_caller_visitor.h" #include "oat/oat_file_manager.h" #include "oat/oat_quick_method_header.h" #include "runtime-inl.h" #include "thread.h" #include "thread_list.h" namespace art HIDDEN { namespace instrumentation { constexpr bool kVerboseInstrumentation = false; void InstrumentationListener::MethodExited( Thread* thread, ArtMethod* method, OptionalFrame frame, MutableHandle& return_value) { DCHECK_EQ(method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetReturnTypePrimitive(), Primitive::kPrimNot); const void* original_ret = return_value.Get(); JValue v; v.SetL(return_value.Get()); MethodExited(thread, method, frame, v); DCHECK(original_ret == v.GetL()) << "Return value changed"; } void InstrumentationListener::FieldWritten(Thread* thread, Handle this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field, Handle field_value) { DCHECK(!field->IsPrimitiveType()); JValue v; v.SetL(field_value.Get()); FieldWritten(thread, this_object, method, dex_pc, field, v); } // Instrumentation works on non-inlined frames by updating returned PCs // of compiled frames. static constexpr StackVisitor::StackWalkKind kInstrumentationStackWalk = StackVisitor::StackWalkKind::kSkipInlinedFrames; class InstallStubsClassVisitor : public ClassVisitor { public: explicit InstallStubsClassVisitor(Instrumentation* instrumentation) : instrumentation_(instrumentation) {} bool operator()(ObjPtr klass) override REQUIRES(Locks::mutator_lock_) { instrumentation_->InstallStubsForClass(klass.Ptr()); return true; // we visit all classes. } private: Instrumentation* const instrumentation_; }; Instrumentation::Instrumentation() : run_exit_hooks_(false), instrumentation_level_(InstrumentationLevel::kInstrumentNothing), forced_interpret_only_(false), have_method_entry_listeners_(0), have_method_exit_listeners_(0), have_method_unwind_listeners_(false), have_dex_pc_listeners_(false), have_field_read_listeners_(false), have_field_write_listeners_(false), have_exception_thrown_listeners_(false), have_watched_frame_pop_listeners_(false), have_branch_listeners_(false), have_exception_handled_listeners_(false), quick_alloc_entry_points_instrumentation_counter_(0), alloc_entrypoints_instrumented_(false) {} bool Instrumentation::ProcessMethodUnwindCallbacks(Thread* self, std::queue& methods, MutableHandle& exception) { DCHECK(!self->IsExceptionPending()); if (!HasMethodUnwindListeners()) { return true; } if (kVerboseInstrumentation) { LOG(INFO) << "Popping frames for exception " << exception->Dump(); } // The instrumentation events expect the exception to be set. self->SetException(exception.Get()); bool new_exception_thrown = false; // Process callbacks for all methods that would be unwound until a new exception is thrown. while (!methods.empty()) { ArtMethod* method = methods.front(); methods.pop(); if (kVerboseInstrumentation) { LOG(INFO) << "Popping for unwind " << method->PrettyMethod(); } if (method->IsRuntimeMethod()) { continue; } // Notify listeners of method unwind. // TODO: improve the dex_pc information here. uint32_t dex_pc = dex::kDexNoIndex; MethodUnwindEvent(self, method, dex_pc); new_exception_thrown = self->GetException() != exception.Get(); if (new_exception_thrown) { break; } } exception.Assign(self->GetException()); self->ClearException(); if (kVerboseInstrumentation && new_exception_thrown) { LOG(INFO) << "Did partial pop of frames due to new exception"; } return !new_exception_thrown; } void Instrumentation::InstallStubsForClass(ObjPtr klass) { if (!klass->IsResolved()) { // We need the class to be resolved to install/uninstall stubs. Otherwise its methods // could not be initialized or linked with regards to class inheritance. } else if (klass->IsErroneousResolved()) { // We can't execute code in a erroneous class: do nothing. } else { for (ArtMethod& method : klass->GetMethods(kRuntimePointerSize)) { InstallStubsForMethod(&method); } } } static bool CanHandleInitializationCheck(const void* code) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); return class_linker->IsQuickResolutionStub(code) || class_linker->IsQuickToInterpreterBridge(code) || class_linker->IsQuickGenericJniStub(code) || (code == interpreter::GetNterpWithClinitEntryPoint()); } static bool IsProxyInit(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { // Annoyingly this can be called before we have actually initialized WellKnownClasses so therefore // we also need to check this based on the declaring-class descriptor. The check is valid because // Proxy only has a single constructor. ArtMethod* well_known_proxy_init = WellKnownClasses::java_lang_reflect_Proxy_init; if (well_known_proxy_init == method) { return true; } if (well_known_proxy_init != nullptr) { return false; } return method->IsConstructor() && !method->IsStatic() && method->GetDeclaringClass()->DescriptorEquals("Ljava/lang/reflect/Proxy;"); } // Returns true if we need entry exit stub to call entry hooks. JITed code // directly call entry / exit hooks and don't need the stub. static bool CodeSupportsEntryExitHooks(const void* entry_point, ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { // Proxy.init should always run with the switch interpreter where entry / exit hooks are // supported. if (IsProxyInit(method)) { return true; } // In some tests runtime isn't setup fully and hence the entry points could be nullptr. // just be conservative and return false here. if (entry_point == nullptr) { return false; } ClassLinker* linker = Runtime::Current()->GetClassLinker(); // Interpreter supports entry / exit hooks. Resolution stubs fetch code that supports entry / exit // hooks when required. So return true for both cases. if (linker->IsQuickToInterpreterBridge(entry_point) || linker->IsQuickResolutionStub(entry_point)) { return true; } // When jiting code for debuggable runtimes / instrumentation is active we generate the code to // call method entry / exit hooks when required. jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && jit->GetCodeCache()->ContainsPc(entry_point)) { // If JITed code was compiled with instrumentation support we support entry / exit hooks. OatQuickMethodHeader* header = OatQuickMethodHeader::FromEntryPoint(entry_point); return CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr()); } // GenericJni trampoline can handle entry / exit hooks. if (linker->IsQuickGenericJniStub(entry_point)) { return true; } // The remaining cases are nterp / oat code / JIT code that isn't compiled with instrumentation // support. return false; } template bool CompareExchange(uintptr_t ptr, uintptr_t old_value, uintptr_t new_value) { std::atomic* atomic_addr = reinterpret_cast*>(ptr); T cast_old_value = dchecked_integral_cast(old_value); return atomic_addr->compare_exchange_strong(cast_old_value, dchecked_integral_cast(new_value), std::memory_order_relaxed); } static void UpdateEntryPoints(ArtMethod* method, const void* new_code) REQUIRES_SHARED(Locks::mutator_lock_) { if (kIsDebugBuild) { if (method->StillNeedsClinitCheckMayBeDead()) { CHECK(CanHandleInitializationCheck(new_code)); } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && jit->GetCodeCache()->ContainsPc(new_code)) { // Ensure we always have the thumb entrypoint for JIT on arm32. if (kRuntimeQuickCodeISA == InstructionSet::kArm) { CHECK_EQ(reinterpret_cast(new_code) & 1, 1u); } } const Instrumentation* instr = Runtime::Current()->GetInstrumentation(); if (instr->EntryExitStubsInstalled()) { CHECK(CodeSupportsEntryExitHooks(new_code, method)); } if (instr->InterpreterStubsInstalled() && !method->IsNative()) { CHECK_EQ(new_code, GetQuickToInterpreterBridge()); } } const void* current_entry_point = method->GetEntryPointFromQuickCompiledCode(); if (current_entry_point == new_code) { // If the method is from a boot image, don't dirty it if the entrypoint // doesn't change. return; } // Do an atomic exchange to avoid potentially unregistering JIT code twice. MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRuntimePointerSize); uintptr_t old_value = reinterpret_cast(current_entry_point); uintptr_t new_value = reinterpret_cast(new_code); uintptr_t ptr = reinterpret_cast(method) + offset.Uint32Value(); bool success = (kRuntimePointerSize == PointerSize::k32) ? CompareExchange(ptr, old_value, new_value) : CompareExchange(ptr, old_value, new_value); // If we successfully updated the entrypoint and the old entrypoint is JITted // code, register the old entrypoint as zombie. jit::Jit* jit = Runtime::Current()->GetJit(); if (success && jit != nullptr && jit->GetCodeCache()->ContainsPc(current_entry_point)) { jit->GetCodeCache()->AddZombieCode(method, current_entry_point); } } bool Instrumentation::NeedsDexPcEvents(ArtMethod* method, Thread* thread) { return (InterpretOnly(method) || thread->IsForceInterpreter()) && HasDexPcListeners(); } bool Instrumentation::InterpretOnly(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { if (method->IsNative()) { return false; } return InterpretOnly() || IsDeoptimized(method); } static bool CanUseAotCode(const void* quick_code) REQUIRES_SHARED(Locks::mutator_lock_) { if (quick_code == nullptr) { return false; } Runtime* runtime = Runtime::Current(); // For simplicity, we never use AOT code for debuggable. if (runtime->IsJavaDebuggable()) { return false; } if (runtime->IsNativeDebuggable()) { DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse()); // If we are doing native debugging, ignore application's AOT code, // since we want to JIT it (at first use) with extra stackmaps for native // debugging. We keep however all AOT code from the boot image, // since the JIT-at-first-use is blocking and would result in non-negligible // startup performance impact. return runtime->GetHeap()->IsInBootImageOatFile(quick_code); } return true; } static bool CanUseNterp(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { return interpreter::CanRuntimeUseNterp() && CanMethodUseNterp(method) && method->IsDeclaringClassVerifiedMayBeDead(); } static const void* GetOptimizedCodeFor(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!Runtime::Current()->GetInstrumentation()->InterpretOnly(method)); CHECK(method->IsInvokable()) << method->PrettyMethod(); if (method->IsProxyMethod()) { return GetQuickProxyInvokeHandler(); } // In debuggable mode, we can only use AOT code for native methods. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const void* aot_code = method->GetOatMethodQuickCode(class_linker->GetImagePointerSize()); if (CanUseAotCode(aot_code)) { return aot_code; } // If the method has been precompiled, there can be a JIT version. jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr) { const void* code = jit->GetCodeCache()->GetSavedEntryPointOfPreCompiledMethod(method); if (code != nullptr) { return code; } } // We need to check if the class has been verified for setting up nterp, as // the verifier could punt the method to the switch interpreter in case we // need to do lock counting. if (CanUseNterp(method)) { return interpreter::GetNterpEntryPoint(); } return method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge(); } void Instrumentation::InitializeMethodsCode(ArtMethod* method, const void* aot_code) REQUIRES_SHARED(Locks::mutator_lock_) { if (!method->IsInvokable()) { DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr || Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge( method->GetEntryPointFromQuickCompiledCode())); UpdateEntryPoints(method, GetQuickToInterpreterBridge()); return; } // Use instrumentation entrypoints if instrumentation is installed. if (UNLIKELY(EntryExitStubsInstalled() || IsForcedInterpretOnly() || IsDeoptimized(method))) { UpdateEntryPoints( method, method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); return; } // Special case if we need an initialization check. // The method and its declaring class may be dead when starting JIT GC during managed heap GC. if (method->StillNeedsClinitCheckMayBeDead()) { // If we have code but the method needs a class initialization check before calling // that code, install the resolution stub that will perform the check. // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines // after initializing class (see ClassLinker::InitializeClass method). // Note: this mimics the logic in image_writer.cc that installs the resolution // stub only if we have compiled code or we can execute nterp, and the method needs a class // initialization check. if (aot_code != nullptr || method->IsNative() || CanUseNterp(method)) { if (kIsDebugBuild && CanUseNterp(method)) { // Adds some test coverage for the nterp clinit entrypoint. UpdateEntryPoints(method, interpreter::GetNterpWithClinitEntryPoint()); } else { UpdateEntryPoints(method, GetQuickResolutionStub()); } } else { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); } return; } // Use the provided AOT code if possible. if (CanUseAotCode(aot_code)) { UpdateEntryPoints(method, aot_code); return; } // We check if the class is verified as we need the slow interpreter for lock verification. // If the class is not verified, This will be updated in // ClassLinker::UpdateClassAfterVerification. if (CanUseNterp(method)) { UpdateEntryPoints(method, interpreter::GetNterpEntryPoint()); return; } // Use default entrypoints. UpdateEntryPoints( method, method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); } void Instrumentation::InstallStubsForMethod(ArtMethod* method) { if (!method->IsInvokable() || method->IsProxyMethod()) { // Do not change stubs for these methods. return; } // Don't stub Proxy.. Note that the Proxy class itself is not a proxy class. // TODO We should remove the need for this since it means we cannot always correctly detect calls // to Proxy. if (IsProxyInit(method)) { return; } // If the instrumentation needs to go through the interpreter, just update the // entrypoint to interpreter. if (InterpretOnly(method)) { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); return; } if (EntryExitStubsInstalled()) { // Install interpreter bridge / GenericJni stub if the existing code doesn't support // entry / exit hooks. if (!CodeSupportsEntryExitHooks(method->GetEntryPointFromQuickCompiledCode(), method)) { UpdateEntryPoints( method, method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge()); } return; } // We're being asked to restore the entrypoints after instrumentation. CHECK_EQ(instrumentation_level_, InstrumentationLevel::kInstrumentNothing); // We need to have the resolution stub still if the class is not initialized. if (method->StillNeedsClinitCheck()) { UpdateEntryPoints(method, GetQuickResolutionStub()); return; } UpdateEntryPoints(method, GetOptimizedCodeFor(method)); } void Instrumentation::UpdateEntrypointsForDebuggable() { Runtime* runtime = Runtime::Current(); // If we are transitioning from non-debuggable to debuggable, we patch // entry points of methods to remove any aot / JITed entry points. InstallStubsClassVisitor visitor(this); runtime->GetClassLinker()->VisitClasses(&visitor); } bool Instrumentation::MethodSupportsExitEvents(ArtMethod* method, const OatQuickMethodHeader* header) { if (header == nullptr) { // Header can be a nullptr for runtime / proxy methods that doesn't support method exit hooks // or for native methods that use generic jni stubs. Generic jni stubs support method exit // hooks. return method->IsNative(); } if (header->IsNterpMethodHeader()) { // Nterp doesn't support method exit events return false; } DCHECK(header->IsOptimized()); if (CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr())) { // For optimized code, we only support method entry / exit hooks if they are compiled as // debuggable. return true; } return false; } // Updates on stack frames to support any changes related to instrumentation. // For JITed frames, DeoptimizeFlag is updated to enable deoptimization of // methods when necessary. Shadow frames are updated if dex pc event // notification has changed. When force_deopt is true then DeoptimizationFlag is // updated to force a deoptimization. void InstrumentationInstallStack(Thread* thread, bool deopt_all_frames) REQUIRES(Locks::mutator_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); struct InstallStackVisitor final : public StackVisitor { InstallStackVisitor(Thread* thread_in, Context* context, bool deopt_all_frames) : StackVisitor(thread_in, context, kInstrumentationStackWalk), deopt_all_frames_(deopt_all_frames), runtime_methods_need_deopt_check_(false) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = GetMethod(); if (m == nullptr || m->IsRuntimeMethod()) { if (kVerboseInstrumentation) { LOG(INFO) << " Skipping upcall / runtime method. Frame " << GetFrameId(); } return true; // Ignore upcalls and runtime methods. } bool is_shadow_frame = GetCurrentQuickFrame() == nullptr; if (kVerboseInstrumentation) { LOG(INFO) << "Processing frame: method: " << m->PrettyMethod() << " is_shadow_frame: " << is_shadow_frame; } // Handle interpreter frame. if (is_shadow_frame) { // Since we are updating the instrumentation related information we have to recalculate // NeedsDexPcEvents. For example, when a new method or thread is deoptimized / interpreter // stubs are installed the NeedsDexPcEvents could change for the shadow frames on the stack. // If we don't update it here we would miss reporting dex pc events which is incorrect. ShadowFrame* shadow_frame = GetCurrentShadowFrame(); DCHECK(shadow_frame != nullptr); shadow_frame->SetNotifyDexPcMoveEvents( Runtime::Current()->GetInstrumentation()->NeedsDexPcEvents(GetMethod(), GetThread())); return true; // Continue. } DCHECK(!m->IsRuntimeMethod()); const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); // If it is a JITed frame then just set the deopt bit if required otherwise continue. // We need kForceDeoptForRedefinition to ensure we don't use any JITed code after a // redefinition. We support redefinition only if the runtime has started off as a // debuggable runtime which makes sure we don't use any AOT or Nterp code. // The CheckCallerForDeopt is an optimization which we only do for non-native JITed code for // now. We can extend it to native methods but that needs reserving an additional stack slot. // We don't do it currently since that wasn't important for debugger performance. if (method_header != nullptr && method_header->HasShouldDeoptimizeFlag()) { if (deopt_all_frames_) { runtime_methods_need_deopt_check_ = true; SetShouldDeoptimizeFlag(DeoptimizeFlagValue::kForceDeoptForRedefinition); } SetShouldDeoptimizeFlag(DeoptimizeFlagValue::kCheckCallerForDeopt); } return true; // Continue. } bool deopt_all_frames_; bool runtime_methods_need_deopt_check_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Installing exit stubs in " << thread_name; } std::unique_ptr context(Context::Create()); InstallStackVisitor visitor(thread, context.get(), deopt_all_frames); visitor.WalkStack(true); if (visitor.runtime_methods_need_deopt_check_) { thread->SetDeoptCheckRequired(true); } thread->VerifyStack(); } void UpdateNeedsDexPcEventsOnStack(Thread* thread) REQUIRES(Locks::mutator_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); struct InstallStackVisitor final : public StackVisitor { InstallStackVisitor(Thread* thread_in, Context* context) : StackVisitor(thread_in, context, kInstrumentationStackWalk) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { ShadowFrame* shadow_frame = GetCurrentShadowFrame(); if (shadow_frame != nullptr) { shadow_frame->SetNotifyDexPcMoveEvents( Runtime::Current()->GetInstrumentation()->NeedsDexPcEvents(GetMethod(), GetThread())); } return true; } }; std::unique_ptr context(Context::Create()); InstallStackVisitor visitor(thread, context.get()); visitor.WalkStack(true); } void ReportMethodEntryForOnStackMethods(InstrumentationListener* listener, Thread* thread) REQUIRES(Locks::mutator_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); struct InstallStackVisitor final : public StackVisitor { InstallStackVisitor(Thread* thread_in, Context* context) : StackVisitor(thread_in, context, kInstrumentationStackWalk) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = GetMethod(); if (m == nullptr || m->IsRuntimeMethod()) { // Skip upcall / runtime methods return true; } if (GetCurrentShadowFrame() != nullptr) { stack_methods_.push_back(m); } else { const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); if (Runtime::Current()->GetInstrumentation()->MethodSupportsExitEvents(m, method_header)) { // It is unexpected to see a method enter event but not a method exit event so record // stack methods only for frames that support method exit events. Even if we deoptimize we // make sure that we only call method exit event if the frame supported it in the first // place. For ex: deoptimizing from JITed code with debug support calls a method exit hook // but deoptimizing from nterp doesn't. stack_methods_.push_back(m); } } return true; } std::vector stack_methods_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Updating DexPcMoveEvents on shadow frames on stack " << thread_name; } std::unique_ptr context(Context::Create()); InstallStackVisitor visitor(thread, context.get()); visitor.WalkStack(true); // Create method enter events for all methods currently on the thread's stack. for (auto smi = visitor.stack_methods_.rbegin(); smi != visitor.stack_methods_.rend(); smi++) { listener->MethodEntered(thread, *smi); } } void Instrumentation::InstrumentThreadStack(Thread* thread, bool force_deopt) { run_exit_hooks_ = true; InstrumentationInstallStack(thread, force_deopt); } void Instrumentation::InstrumentAllThreadStacks(bool force_deopt) { run_exit_hooks_ = true; MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { InstrumentThreadStack(thread, force_deopt); } } static void InstrumentationRestoreStack(Thread* thread) REQUIRES(Locks::mutator_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); struct RestoreStackVisitor final : public StackVisitor { RestoreStackVisitor(Thread* thread) : StackVisitor(thread, nullptr, kInstrumentationStackWalk), thread_(thread) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { if (GetCurrentQuickFrame() == nullptr) { return true; } const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); if (method_header != nullptr && method_header->HasShouldDeoptimizeFlag()) { // We shouldn't restore stack if any of the frames need a force deopt DCHECK(!ShouldForceDeoptForRedefinition()); UnsetShouldDeoptimizeFlag(DeoptimizeFlagValue::kCheckCallerForDeopt); } return true; // Continue. } Thread* const thread_; }; if (kVerboseInstrumentation) { std::string thread_name; thread->GetThreadName(thread_name); LOG(INFO) << "Restoring stack for " << thread_name; } DCHECK(!thread->IsDeoptCheckRequired()); RestoreStackVisitor visitor(thread); visitor.WalkStack(true); } static bool HasFramesNeedingForceDeopt(Thread* thread) REQUIRES(Locks::mutator_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); struct CheckForForceDeoptStackVisitor final : public StackVisitor { CheckForForceDeoptStackVisitor(Thread* thread) : StackVisitor(thread, nullptr, kInstrumentationStackWalk), thread_(thread), force_deopt_check_needed_(false) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { if (GetCurrentQuickFrame() == nullptr) { return true; } const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); if (method_header != nullptr && method_header->HasShouldDeoptimizeFlag()) { if (ShouldForceDeoptForRedefinition()) { force_deopt_check_needed_ = true; return false; } } return true; // Continue. } Thread* const thread_; bool force_deopt_check_needed_; }; CheckForForceDeoptStackVisitor visitor(thread); visitor.WalkStack(true); // If there is a frame that requires a force deopt we should have set the IsDeoptCheckRequired // bit. We don't check if the bit needs to be reset on every method exit / deoptimization. We // only check when we no longer need instrumentation support. So it is possible that the bit is // set but we don't find any frames that need a force deopt on the stack so reverse implication // doesn't hold. DCHECK_IMPLIES(visitor.force_deopt_check_needed_, thread->IsDeoptCheckRequired()); return visitor.force_deopt_check_needed_; } void Instrumentation::DeoptimizeAllThreadFrames() { InstrumentAllThreadStacks(/* force_deopt= */ true); } static bool HasEvent(Instrumentation::InstrumentationEvent expected, uint32_t events) { return (events & expected) != 0; } static bool PotentiallyAddListenerTo(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (!HasEvent(event, events)) { return false; } // If there is a free slot in the list, we insert the listener in that slot. // Otherwise we add it to the end of the list. auto it = std::find(list.begin(), list.end(), nullptr); if (it != list.end()) { *it = listener; } else { list.push_back(listener); } return true; } static void PotentiallyAddListenerTo(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener, bool* has_listener) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { if (PotentiallyAddListenerTo(event, events, list, listener)) { *has_listener = true; } } static void PotentiallyAddListenerTo(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener, uint8_t* has_listener, uint8_t flag) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { if (PotentiallyAddListenerTo(event, events, list, listener)) { *has_listener = *has_listener | flag; } } void Instrumentation::AddListener(InstrumentationListener* listener, uint32_t events, bool is_trace_listener) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (is_trace_listener) { PotentiallyAddListenerTo(kMethodEntered, events, method_entry_fast_trace_listeners_, listener, &have_method_entry_listeners_, kFastTraceListeners); } else { PotentiallyAddListenerTo(kMethodEntered, events, method_entry_slow_listeners_, listener, &have_method_entry_listeners_, kSlowMethodEntryExitListeners); } if (is_trace_listener) { PotentiallyAddListenerTo(kMethodExited, events, method_exit_fast_trace_listeners_, listener, &have_method_exit_listeners_, kFastTraceListeners); } else { PotentiallyAddListenerTo(kMethodExited, events, method_exit_slow_listeners_, listener, &have_method_exit_listeners_, kSlowMethodEntryExitListeners); } PotentiallyAddListenerTo(kMethodUnwind, events, method_unwind_listeners_, listener, &have_method_unwind_listeners_); PotentiallyAddListenerTo(kBranch, events, branch_listeners_, listener, &have_branch_listeners_); PotentiallyAddListenerTo(kDexPcMoved, events, dex_pc_listeners_, listener, &have_dex_pc_listeners_); PotentiallyAddListenerTo(kFieldRead, events, field_read_listeners_, listener, &have_field_read_listeners_); PotentiallyAddListenerTo(kFieldWritten, events, field_write_listeners_, listener, &have_field_write_listeners_); PotentiallyAddListenerTo(kExceptionThrown, events, exception_thrown_listeners_, listener, &have_exception_thrown_listeners_); PotentiallyAddListenerTo(kWatchedFramePop, events, watched_frame_pop_listeners_, listener, &have_watched_frame_pop_listeners_); PotentiallyAddListenerTo(kExceptionHandled, events, exception_handled_listeners_, listener, &have_exception_handled_listeners_); if (HasEvent(kDexPcMoved, events)) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { UpdateNeedsDexPcEventsOnStack(thread); } } } static bool PotentiallyRemoveListenerFrom(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (!HasEvent(event, events)) { return false; } auto it = std::find(list.begin(), list.end(), listener); if (it != list.end()) { // Just update the entry, do not remove from the list. Removing entries in the list // is unsafe when mutators are iterating over it. *it = nullptr; } // Check if the list contains any non-null listener. for (InstrumentationListener* l : list) { if (l != nullptr) { return false; } } return true; } static void PotentiallyRemoveListenerFrom(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener, bool* has_listener) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { if (PotentiallyRemoveListenerFrom(event, events, list, listener)) { *has_listener = false; } } static void PotentiallyRemoveListenerFrom(Instrumentation::InstrumentationEvent event, uint32_t events, std::list& list, InstrumentationListener* listener, uint8_t* has_listener, uint8_t flag) REQUIRES(Locks::mutator_lock_, !Locks::thread_list_lock_, !Locks::classlinker_classes_lock_) { if (PotentiallyRemoveListenerFrom(event, events, list, listener)) { *has_listener = *has_listener & ~flag; } } void Instrumentation::RemoveListener(InstrumentationListener* listener, uint32_t events, bool is_trace_listener) { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); if (is_trace_listener) { PotentiallyRemoveListenerFrom(kMethodEntered, events, method_entry_fast_trace_listeners_, listener, &have_method_entry_listeners_, kFastTraceListeners); } else { PotentiallyRemoveListenerFrom(kMethodEntered, events, method_entry_slow_listeners_, listener, &have_method_entry_listeners_, kSlowMethodEntryExitListeners); } if (is_trace_listener) { PotentiallyRemoveListenerFrom(kMethodExited, events, method_exit_fast_trace_listeners_, listener, &have_method_exit_listeners_, kFastTraceListeners); } else { PotentiallyRemoveListenerFrom(kMethodExited, events, method_exit_slow_listeners_, listener, &have_method_exit_listeners_, kSlowMethodEntryExitListeners); } PotentiallyRemoveListenerFrom(kMethodUnwind, events, method_unwind_listeners_, listener, &have_method_unwind_listeners_); PotentiallyRemoveListenerFrom(kBranch, events, branch_listeners_, listener, &have_branch_listeners_); PotentiallyRemoveListenerFrom(kDexPcMoved, events, dex_pc_listeners_, listener, &have_dex_pc_listeners_); PotentiallyRemoveListenerFrom(kFieldRead, events, field_read_listeners_, listener, &have_field_read_listeners_); PotentiallyRemoveListenerFrom(kFieldWritten, events, field_write_listeners_, listener, &have_field_write_listeners_); PotentiallyRemoveListenerFrom(kExceptionThrown, events, exception_thrown_listeners_, listener, &have_exception_thrown_listeners_); PotentiallyRemoveListenerFrom(kWatchedFramePop, events, watched_frame_pop_listeners_, listener, &have_watched_frame_pop_listeners_); PotentiallyRemoveListenerFrom(kExceptionHandled, events, exception_handled_listeners_, listener, &have_exception_handled_listeners_); if (HasEvent(kDexPcMoved, events)) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { UpdateNeedsDexPcEventsOnStack(thread); } } } Instrumentation::InstrumentationLevel Instrumentation::GetCurrentInstrumentationLevel() const { return instrumentation_level_; } void Instrumentation::ConfigureStubs(const char* key, InstrumentationLevel desired_level, bool try_switch_to_non_debuggable) { // Store the instrumentation level for this key or remove it. if (desired_level == InstrumentationLevel::kInstrumentNothing) { // The client no longer needs instrumentation. requested_instrumentation_levels_.erase(key); } else { // The client needs instrumentation. requested_instrumentation_levels_.Overwrite(key, desired_level); } UpdateStubs(try_switch_to_non_debuggable); } void Instrumentation::UpdateInstrumentationLevel(InstrumentationLevel requested_level) { instrumentation_level_ = requested_level; } void Instrumentation::EnableEntryExitHooks(const char* key) { DCHECK(Runtime::Current()->IsJavaDebuggable()); ConfigureStubs(key, InstrumentationLevel::kInstrumentWithEntryExitHooks, /*try_switch_to_non_debuggable=*/false); } void Instrumentation::MaybeRestoreInstrumentationStack() { // Restore stack only if there is no method currently deoptimized. if (!IsDeoptimizedMethodsEmpty()) { return; } Thread* self = Thread::Current(); MutexLock mu(self, *Locks::thread_list_lock_); bool no_remaining_deopts = true; // Check that there are no other forced deoptimizations. Do it here so we only need to lock // thread_list_lock once. // The compiler gets confused on the thread annotations, so use // NO_THREAD_SAFETY_ANALYSIS. Note that we hold the mutator lock // exclusively at this point. Locks::mutator_lock_->AssertExclusiveHeld(self); Runtime::Current()->GetThreadList()->ForEach([&](Thread* t) NO_THREAD_SAFETY_ANALYSIS { bool has_force_deopt_frames = HasFramesNeedingForceDeopt(t); if (!has_force_deopt_frames) { // We no longer have any frames that require a force deopt check. If the bit was true then we // had some frames earlier but they already got deoptimized and are no longer on stack. t->SetDeoptCheckRequired(false); } no_remaining_deopts = no_remaining_deopts && !t->IsForceInterpreter() && !t->HasDebuggerShadowFrames() && !has_force_deopt_frames; }); if (no_remaining_deopts) { Runtime::Current()->GetThreadList()->ForEach(InstrumentationRestoreStack); run_exit_hooks_ = false; } } void Instrumentation::UpdateStubs(bool try_switch_to_non_debuggable) { // Look for the highest required instrumentation level. InstrumentationLevel requested_level = InstrumentationLevel::kInstrumentNothing; for (const auto& v : requested_instrumentation_levels_) { requested_level = std::max(requested_level, v.second); } if (GetCurrentInstrumentationLevel() == requested_level) { // We're already set. return; } Thread* const self = Thread::Current(); Runtime* runtime = Runtime::Current(); Locks::mutator_lock_->AssertExclusiveHeld(self); Locks::thread_list_lock_->AssertNotHeld(self); // The following needs to happen in the same order. // 1. Update the instrumentation level // 2. Switch the runtime to non-debuggable if requested. We switch to non-debuggable only when // the instrumentation level is set to kInstrumentNothing. So this needs to happen only after // updating the instrumentation level. // 3. Update the entry points. We use AOT code only if we aren't debuggable runtime. So update // entrypoints after switching the instrumentation level. UpdateInstrumentationLevel(requested_level); if (try_switch_to_non_debuggable) { MaybeSwitchRuntimeDebugState(self); } InstallStubsClassVisitor visitor(this); runtime->GetClassLinker()->VisitClasses(&visitor); if (requested_level > InstrumentationLevel::kInstrumentNothing) { InstrumentAllThreadStacks(/* force_deopt= */ false); } else { MaybeRestoreInstrumentationStack(); } } static void ResetQuickAllocEntryPointsForThread(Thread* thread, [[maybe_unused]] void* arg) { thread->ResetQuickAllocEntryPointsForThread(); } void Instrumentation::SetEntrypointsInstrumented(bool instrumented) { Thread* self = Thread::Current(); Runtime* runtime = Runtime::Current(); Locks::mutator_lock_->AssertNotHeld(self); Locks::instrument_entrypoints_lock_->AssertHeld(self); if (runtime->IsStarted()) { ScopedSuspendAll ssa(__FUNCTION__); MutexLock mu(self, *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsInstrumented(instrumented); ResetQuickAllocEntryPoints(); alloc_entrypoints_instrumented_ = instrumented; } else { MutexLock mu(self, *Locks::runtime_shutdown_lock_); SetQuickAllocEntryPointsInstrumented(instrumented); // Note: ResetQuickAllocEntryPoints only works when the runtime is started. Manually run the // update for just this thread. // Note: self may be null. One of those paths is setting instrumentation in the Heap // constructor for gcstress mode. if (self != nullptr) { ResetQuickAllocEntryPointsForThread(self, nullptr); } alloc_entrypoints_instrumented_ = instrumented; } } void Instrumentation::InstrumentQuickAllocEntryPoints() { MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); InstrumentQuickAllocEntryPointsLocked(); } void Instrumentation::UninstrumentQuickAllocEntryPoints() { MutexLock mu(Thread::Current(), *Locks::instrument_entrypoints_lock_); UninstrumentQuickAllocEntryPointsLocked(); } void Instrumentation::InstrumentQuickAllocEntryPointsLocked() { Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); if (quick_alloc_entry_points_instrumentation_counter_ == 0) { SetEntrypointsInstrumented(true); } ++quick_alloc_entry_points_instrumentation_counter_; } void Instrumentation::UninstrumentQuickAllocEntryPointsLocked() { Locks::instrument_entrypoints_lock_->AssertHeld(Thread::Current()); CHECK_GT(quick_alloc_entry_points_instrumentation_counter_, 0U); --quick_alloc_entry_points_instrumentation_counter_; if (quick_alloc_entry_points_instrumentation_counter_ == 0) { SetEntrypointsInstrumented(false); } } void Instrumentation::ResetQuickAllocEntryPoints() { Runtime* runtime = Runtime::Current(); if (runtime->IsStarted()) { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); runtime->GetThreadList()->ForEach(ResetQuickAllocEntryPointsForThread, nullptr); } } std::string Instrumentation::EntryPointString(const void* code) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); jit::Jit* jit = Runtime::Current()->GetJit(); if (class_linker->IsQuickToInterpreterBridge(code)) { return "interpreter"; } else if (class_linker->IsQuickResolutionStub(code)) { return "resolution"; } else if (jit != nullptr && jit->GetCodeCache()->ContainsPc(code)) { return "jit"; } else if (code == GetInvokeObsoleteMethodStub()) { return "obsolete"; } else if (code == interpreter::GetNterpEntryPoint()) { return "nterp"; } else if (code == interpreter::GetNterpWithClinitEntryPoint()) { return "nterp with clinit"; } else if (class_linker->IsQuickGenericJniStub(code)) { return "generic jni"; } else if (Runtime::Current()->GetOatFileManager().ContainsPc(code)) { return "oat"; } else if (OatQuickMethodHeader::IsStub(reinterpret_cast(code)).value_or(false)) { return "stub"; } return "unknown"; } void Instrumentation::UpdateMethodsCodeImpl(ArtMethod* method, const void* new_code) { if (!EntryExitStubsInstalled()) { // Fast path: no instrumentation. DCHECK(!IsDeoptimized(method)); UpdateEntryPoints(method, new_code); return; } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (class_linker->IsQuickToInterpreterBridge(new_code)) { // It's always OK to update to the interpreter. UpdateEntryPoints(method, new_code); return; } if (InterpretOnly(method)) { DCHECK(class_linker->IsQuickToInterpreterBridge(method->GetEntryPointFromQuickCompiledCode())) << EntryPointString(method->GetEntryPointFromQuickCompiledCode()); // Don't update, stay deoptimized. return; } if (EntryExitStubsInstalled() && !CodeSupportsEntryExitHooks(new_code, method)) { DCHECK(CodeSupportsEntryExitHooks(method->GetEntryPointFromQuickCompiledCode(), method)) << EntryPointString(method->GetEntryPointFromQuickCompiledCode()) << " " << method->PrettyMethod(); // If we need entry / exit stubs but the new_code doesn't support entry / exit hooks just skip. return; } // At this point, we can update as asked. UpdateEntryPoints(method, new_code); } void Instrumentation::UpdateNativeMethodsCodeToJitCode(ArtMethod* method, const void* new_code) { // We don't do any read barrier on `method`'s declaring class in this code, as the JIT might // enter here on a soon-to-be deleted ArtMethod. Updating the entrypoint is OK though, as // the ArtMethod is still in memory. if (EntryExitStubsInstalled() && !CodeSupportsEntryExitHooks(new_code, method)) { // If the new code doesn't support entry exit hooks but we need them don't update with the new // code. return; } UpdateEntryPoints(method, new_code); } void Instrumentation::UpdateMethodsCode(ArtMethod* method, const void* new_code) { DCHECK(method->GetDeclaringClass()->IsResolved()); UpdateMethodsCodeImpl(method, new_code); } bool Instrumentation::AddDeoptimizedMethod(ArtMethod* method) { if (IsDeoptimizedMethod(method)) { // Already in the map. Return. return false; } // Not found. Add it. deoptimized_methods_.insert(method); return true; } bool Instrumentation::IsDeoptimizedMethod(ArtMethod* method) { return deoptimized_methods_.find(method) != deoptimized_methods_.end(); } bool Instrumentation::RemoveDeoptimizedMethod(ArtMethod* method) { auto it = deoptimized_methods_.find(method); if (it == deoptimized_methods_.end()) { return false; } deoptimized_methods_.erase(it); return true; } void Instrumentation::Deoptimize(ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(method->IsInvokable()); { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); bool has_not_been_deoptimized = AddDeoptimizedMethod(method); CHECK(has_not_been_deoptimized) << "Method " << ArtMethod::PrettyMethod(method) << " is already deoptimized"; } if (method->IsObsolete()) { // If method was marked as obsolete it should have `GetInvokeObsoleteMethodStub` // as its quick entry point CHECK_EQ(method->GetEntryPointFromQuickCompiledCode(), GetInvokeObsoleteMethodStub()); return; } if (!InterpreterStubsInstalled()) { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); // Instrument thread stacks to request a check if the caller needs a deoptimization. // This isn't a strong deopt. We deopt this method if it is still in the deopt methods list. // If by the time we hit this frame we no longer need a deopt it is safe to continue. InstrumentAllThreadStacks(/* force_deopt= */ false); } CHECK_EQ(method->GetEntryPointFromQuickCompiledCode(), GetQuickToInterpreterBridge()); } void Instrumentation::Undeoptimize(ArtMethod* method) { CHECK(!method->IsNative()); CHECK(!method->IsProxyMethod()); CHECK(method->IsInvokable()); { Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); bool found_and_erased = RemoveDeoptimizedMethod(method); CHECK(found_and_erased) << "Method " << ArtMethod::PrettyMethod(method) << " is not deoptimized"; } // If interpreter stubs are still needed nothing to do. if (InterpreterStubsInstalled()) { return; } if (method->IsObsolete()) { // Don't update entry points for obsolete methods. The entrypoint should // have been set to InvokeObsoleteMethoStub. DCHECK_EQ(method->GetEntryPointFromQuickCompiledCodePtrSize(kRuntimePointerSize), GetInvokeObsoleteMethodStub()); return; } // We are not using interpreter stubs for deoptimization. Restore the code of the method. // We still retain interpreter bridge if we need it for other reasons. if (InterpretOnly(method)) { UpdateEntryPoints(method, GetQuickToInterpreterBridge()); } else if (method->StillNeedsClinitCheck()) { UpdateEntryPoints(method, GetQuickResolutionStub()); } else { UpdateEntryPoints(method, GetMaybeInstrumentedCodeForInvoke(method)); } // If there is no deoptimized method left, we can restore the stack of each thread. if (!EntryExitStubsInstalled()) { MaybeRestoreInstrumentationStack(); } } bool Instrumentation::IsDeoptimizedMethodsEmpty() const { return deoptimized_methods_.empty(); } bool Instrumentation::IsDeoptimized(ArtMethod* method) { DCHECK(method != nullptr); return IsDeoptimizedMethod(method); } void Instrumentation::DisableDeoptimization(const char* key, bool try_switch_to_non_debuggable) { // Remove any instrumentation support added for deoptimization. ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing, try_switch_to_non_debuggable); Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); // Undeoptimized selected methods. while (true) { ArtMethod* method; { if (deoptimized_methods_.empty()) { break; } method = *deoptimized_methods_.begin(); CHECK(method != nullptr); } Undeoptimize(method); } } void Instrumentation::MaybeSwitchRuntimeDebugState(Thread* self) { Runtime* runtime = Runtime::Current(); // Return early if runtime is shutting down. if (runtime->IsShuttingDown(self)) { return; } // Don't switch the state if we started off as JavaDebuggable or if we still need entry / exit // hooks for other reasons. if (EntryExitStubsInstalled() || runtime->IsJavaDebuggableAtInit()) { return; } art::jit::Jit* jit = runtime->GetJit(); if (jit != nullptr) { jit->GetCodeCache()->InvalidateAllCompiledCode(); jit->GetJitCompiler()->SetDebuggableCompilerOption(false); } runtime->SetRuntimeDebugState(art::Runtime::RuntimeDebugState::kNonJavaDebuggable); } void Instrumentation::DeoptimizeEverything(const char* key) { // We want to switch to non-debuggable only when the debugger / profile tools are detaching. // This call is used for supporting debug related features (ex: single stepping across all // threads) while the debugger is still connected. ConfigureStubs(key, InstrumentationLevel::kInstrumentWithInterpreter, /*try_switch_to_non_debuggable=*/false); } void Instrumentation::UndeoptimizeEverything(const char* key) { CHECK(InterpreterStubsInstalled()); // We want to switch to non-debuggable only when the debugger / profile tools are detaching. // This is used when we no longer need to run in interpreter. The debugger is still connected // so don't switch the runtime. We use "DisableDeoptimization" when detaching the debugger. ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing, /*try_switch_to_non_debuggable=*/false); } void Instrumentation::EnableMethodTracing(const char* key, InstrumentationListener* listener, bool needs_interpreter) { InstrumentationLevel level; if (needs_interpreter) { level = InstrumentationLevel::kInstrumentWithInterpreter; } else { level = InstrumentationLevel::kInstrumentWithEntryExitHooks; } // We are enabling method tracing here and need to stay in debuggable. ConfigureStubs(key, level, /*try_switch_to_non_debuggable=*/false); MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); for (Thread* thread : Runtime::Current()->GetThreadList()->GetList()) { ReportMethodEntryForOnStackMethods(listener, thread); } } void Instrumentation::DisableMethodTracing(const char* key) { // We no longer need to be in debuggable runtime since we are stopping method tracing. If no // other debugger / profiling tools are active switch back to non-debuggable. ConfigureStubs(key, InstrumentationLevel::kInstrumentNothing, /*try_switch_to_non_debuggable=*/true); } const void* Instrumentation::GetCodeForInvoke(ArtMethod* method) { // This is called by instrumentation and resolution trampolines // and that should never be getting proxy methods. DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const void* code = method->GetEntryPointFromQuickCompiledCodePtrSize(kRuntimePointerSize); // If we don't have the instrumentation, the resolution stub, or the // interpreter, just return the current entrypoint, // assuming it's the most optimized. if (!class_linker->IsQuickResolutionStub(code) && !class_linker->IsQuickToInterpreterBridge(code)) { return code; } if (InterpretOnly(method)) { // If we're forced into interpreter just use it. return GetQuickToInterpreterBridge(); } return GetOptimizedCodeFor(method); } const void* Instrumentation::GetMaybeInstrumentedCodeForInvoke(ArtMethod* method) { // This is called by resolution trampolines and that should never be getting proxy methods. DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); const void* code = GetCodeForInvoke(method); if (EntryExitStubsInstalled() && !CodeSupportsEntryExitHooks(code, method)) { return method->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge(); } return code; } void Instrumentation::MethodEnterEventImpl(Thread* thread, ArtMethod* method) const { DCHECK(!method->IsRuntimeMethod()); if (HasMethodEntryListeners()) { for (InstrumentationListener* listener : method_entry_slow_listeners_) { if (listener != nullptr) { listener->MethodEntered(thread, method); } } for (InstrumentationListener* listener : method_entry_fast_trace_listeners_) { if (listener != nullptr) { listener->MethodEntered(thread, method); } } } } template <> void Instrumentation::MethodExitEventImpl(Thread* thread, ArtMethod* method, OptionalFrame frame, MutableHandle& return_value) const { if (HasMethodExitListeners()) { for (InstrumentationListener* listener : method_exit_slow_listeners_) { if (listener != nullptr) { listener->MethodExited(thread, method, frame, return_value); } } for (InstrumentationListener* listener : method_exit_fast_trace_listeners_) { if (listener != nullptr) { listener->MethodExited(thread, method, frame, return_value); } } } } template<> void Instrumentation::MethodExitEventImpl(Thread* thread, ArtMethod* method, OptionalFrame frame, JValue& return_value) const { if (HasMethodExitListeners()) { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); if (method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetReturnTypePrimitive() != Primitive::kPrimNot) { for (InstrumentationListener* listener : method_exit_slow_listeners_) { if (listener != nullptr) { listener->MethodExited(thread, method, frame, return_value); } } for (InstrumentationListener* listener : method_exit_fast_trace_listeners_) { if (listener != nullptr) { listener->MethodExited(thread, method, frame, return_value); } } } else { MutableHandle ret(hs.NewHandle(return_value.GetL())); MethodExitEventImpl(thread, method, frame, ret); return_value.SetL(ret.Get()); } } } void Instrumentation::MethodUnwindEvent(Thread* thread, ArtMethod* method, uint32_t dex_pc) const { if (HasMethodUnwindListeners()) { for (InstrumentationListener* listener : method_unwind_listeners_) { if (listener != nullptr) { listener->MethodUnwind(thread, method, dex_pc); } } } } void Instrumentation::DexPcMovedEventImpl(Thread* thread, ObjPtr this_object, ArtMethod* method, uint32_t dex_pc) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle thiz(hs.NewHandle(this_object)); for (InstrumentationListener* listener : dex_pc_listeners_) { if (listener != nullptr) { listener->DexPcMoved(thread, thiz, method, dex_pc); } } } void Instrumentation::BranchImpl(Thread* thread, ArtMethod* method, uint32_t dex_pc, int32_t offset) const { for (InstrumentationListener* listener : branch_listeners_) { if (listener != nullptr) { listener->Branch(thread, method, dex_pc, offset); } } } void Instrumentation::WatchedFramePopImpl(Thread* thread, const ShadowFrame& frame) const { for (InstrumentationListener* listener : watched_frame_pop_listeners_) { if (listener != nullptr) { listener->WatchedFramePop(thread, frame); } } } void Instrumentation::FieldReadEventImpl(Thread* thread, ObjPtr this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle thiz(hs.NewHandle(this_object)); for (InstrumentationListener* listener : field_read_listeners_) { if (listener != nullptr) { listener->FieldRead(thread, thiz, method, dex_pc, field); } } } void Instrumentation::FieldWriteEventImpl(Thread* thread, ObjPtr this_object, ArtMethod* method, uint32_t dex_pc, ArtField* field, const JValue& field_value) const { Thread* self = Thread::Current(); StackHandleScope<2> hs(self); Handle thiz(hs.NewHandle(this_object)); if (field->IsPrimitiveType()) { for (InstrumentationListener* listener : field_write_listeners_) { if (listener != nullptr) { listener->FieldWritten(thread, thiz, method, dex_pc, field, field_value); } } } else { Handle val(hs.NewHandle(field_value.GetL())); for (InstrumentationListener* listener : field_write_listeners_) { if (listener != nullptr) { listener->FieldWritten(thread, thiz, method, dex_pc, field, val); } } } } void Instrumentation::ExceptionThrownEvent(Thread* thread, ObjPtr exception_object) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle h_exception(hs.NewHandle(exception_object)); if (HasExceptionThrownListeners()) { DCHECK_EQ(thread->GetException(), h_exception.Get()); thread->ClearException(); for (InstrumentationListener* listener : exception_thrown_listeners_) { if (listener != nullptr) { listener->ExceptionThrown(thread, h_exception); } } // See b/65049545 for discussion about this behavior. thread->AssertNoPendingException(); thread->SetException(h_exception.Get()); } } void Instrumentation::ExceptionHandledEvent(Thread* thread, ObjPtr exception_object) const { Thread* self = Thread::Current(); StackHandleScope<1> hs(self); Handle h_exception(hs.NewHandle(exception_object)); if (HasExceptionHandledListeners()) { // We should have cleared the exception so that callers can detect a new one. DCHECK(thread->GetException() == nullptr); for (InstrumentationListener* listener : exception_handled_listeners_) { if (listener != nullptr) { listener->ExceptionHandled(thread, h_exception); } } } } DeoptimizationMethodType Instrumentation::GetDeoptimizationMethodType(ArtMethod* method) { if (method->IsRuntimeMethod()) { // Certain methods have strict requirement on whether the dex instruction // should be re-executed upon deoptimization. if (method == Runtime::Current()->GetCalleeSaveMethod( CalleeSaveType::kSaveEverythingForClinit)) { return DeoptimizationMethodType::kKeepDexPc; } if (method == Runtime::Current()->GetCalleeSaveMethod( CalleeSaveType::kSaveEverythingForSuspendCheck)) { return DeoptimizationMethodType::kKeepDexPc; } } return DeoptimizationMethodType::kDefault; } JValue Instrumentation::GetReturnValue(ArtMethod* method, bool* is_ref, uint64_t* gpr_result, uint64_t* fpr_result) { uint32_t length; const PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); // Runtime method does not call into MethodExitEvent() so there should not be // suspension point below. ScopedAssertNoThreadSuspension ants(__FUNCTION__, method->IsRuntimeMethod()); DCHECK(!method->IsRuntimeMethod()); char return_shorty = method->GetInterfaceMethodIfProxy(pointer_size)->GetShorty(&length)[0]; *is_ref = return_shorty == '[' || return_shorty == 'L'; JValue return_value; if (return_shorty == 'V') { return_value.SetJ(0); } else if (return_shorty == 'F' || return_shorty == 'D') { return_value.SetJ(*fpr_result); } else { return_value.SetJ(*gpr_result); } return return_value; } bool Instrumentation::PushDeoptContextIfNeeded(Thread* self, DeoptimizationMethodType deopt_type, bool is_ref, const JValue& return_value) REQUIRES_SHARED(Locks::mutator_lock_) { if (self->IsExceptionPending()) { return false; } ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame(); DCHECK(sp != nullptr && (*sp)->IsRuntimeMethod()); if (!ShouldDeoptimizeCaller(self, sp)) { return false; } // TODO(mythria): The current deopt behaviour is we just re-execute the // alloc instruction so we don't need the return value. For instrumentation // related deopts, we actually don't need to and can use the result we got // here. Since this is a debug only feature it is not very important but // consider reusing the result in future. self->PushDeoptimizationContext( return_value, is_ref, nullptr, /* from_code= */ false, deopt_type); self->SetException(Thread::GetDeoptimizationException()); return true; } std::unique_ptr Instrumentation::DeoptimizeIfNeeded(Thread* self, ArtMethod** sp, DeoptimizationMethodType type, JValue return_value, bool is_reference) { if (self->IsAsyncExceptionPending() || ShouldDeoptimizeCaller(self, sp)) { self->PushDeoptimizationContext(return_value, is_reference, nullptr, /* from_code= */ false, type); // This is requested from suspend points or when returning from runtime methods so exit // callbacks wouldn't be run yet. So don't skip method callbacks. return self->Deoptimize(DeoptimizationKind::kFullFrame, /* single_frame= */ false, /* skip_method_exit_callbacks= */ false); } // No exception or deoptimization. return nullptr; } bool Instrumentation::NeedsSlowInterpreterForMethod(Thread* self, ArtMethod* method) { return (method != nullptr) && (InterpreterStubsInstalled() || IsDeoptimized(method) || self->IsForceInterpreter() || // NB Since structurally obsolete compiled methods might have the offsets of // methods/fields compiled in we need to go back to interpreter whenever we hit // them. method->GetDeclaringClass()->IsObsoleteObject() || Dbg::IsForcedInterpreterNeededForUpcall(self, method)); } bool Instrumentation::ShouldDeoptimizeCaller(Thread* self, ArtMethod** sp) { // When exit stubs aren't called we don't need to check for any instrumentation related // deoptimizations. if (!RunExitHooks()) { return false; } ArtMethod* runtime_method = *sp; DCHECK(runtime_method->IsRuntimeMethod()); QuickMethodFrameInfo frame_info = Runtime::Current()->GetRuntimeMethodFrameInfo(runtime_method); return ShouldDeoptimizeCaller(self, sp, frame_info.FrameSizeInBytes()); } bool Instrumentation::ShouldDeoptimizeCaller(Thread* self, ArtMethod** sp, size_t frame_size) { uintptr_t caller_sp = reinterpret_cast(sp) + frame_size; ArtMethod* caller = *(reinterpret_cast(caller_sp)); uintptr_t caller_pc_addr = reinterpret_cast(sp) + (frame_size - sizeof(void*)); uintptr_t caller_pc = *reinterpret_cast(caller_pc_addr); if (caller == nullptr || caller->IsNative() || caller->IsRuntimeMethod()) { // We need to check for a deoptimization here because when a redefinition happens it is // not safe to use any compiled code because the field offsets might change. For native // methods, we don't embed any field offsets so no need to check for a deoptimization. // If the caller is null we don't need to do anything. This can happen when the caller // is being interpreted by the switch interpreter (when called from // artQuickToInterpreterBridge) / during shutdown / early startup. return false; } bool needs_deopt = NeedsSlowInterpreterForMethod(self, caller); // Non java debuggable apps don't support redefinition and hence it isn't required to check if // frame needs to be deoptimized. Even in debuggable apps, we only need this check when a // redefinition has actually happened. This is indicated by IsDeoptCheckRequired flag. We also // want to avoid getting method header when we need a deopt anyway. if (Runtime::Current()->IsJavaDebuggable() && !needs_deopt && self->IsDeoptCheckRequired()) { const OatQuickMethodHeader* header = caller->GetOatQuickMethodHeader(caller_pc); if (header != nullptr && header->HasShouldDeoptimizeFlag()) { DCHECK(header->IsOptimized()); uint8_t* should_deopt_flag_addr = reinterpret_cast(caller_sp) + header->GetShouldDeoptimizeFlagOffset(); if ((*should_deopt_flag_addr & static_cast(DeoptimizeFlagValue::kForceDeoptForRedefinition)) != 0) { needs_deopt = true; } } } if (needs_deopt) { if (!Runtime::Current()->IsAsyncDeoptimizeable(caller, caller_pc)) { LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method " << caller->PrettyMethod(); return false; } return true; } return false; } } // namespace instrumentation } // namespace art