/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "base/macros.h" #include "base/utils.h" #include "builder.h" #include "codegen_test_utils.h" #include "dex/dex_file.h" #include "dex/dex_instruction.h" #include "driver/compiler_options.h" #include "nodes.h" #include "optimizing_unit_test.h" #include "register_allocator_linear_scan.h" #include "utils/arm/assembler_arm_vixl.h" #include "utils/arm/managed_register_arm.h" #include "utils/x86/managed_register_x86.h" #include "gtest/gtest.h" namespace art HIDDEN { // Return all combinations of ISA and code generator that are executable on // hardware, or on simulator, and that we'd like to test. static ::std::vector GetTargetConfigs() { ::std::vector v; ::std::vector test_config_candidates = { #ifdef ART_ENABLE_CODEGEN_arm // TODO: Should't this be `kThumb2` instead of `kArm` here? CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32), #endif #ifdef ART_ENABLE_CODEGEN_arm64 CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64), #endif #ifdef ART_ENABLE_CODEGEN_x86 CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86), #endif #ifdef ART_ENABLE_CODEGEN_x86_64 CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64), #endif }; for (const CodegenTargetConfig& test_config : test_config_candidates) { if (CanExecuteISA(test_config.GetInstructionSet())) { v.push_back(test_config); } } return v; } class CodegenTest : public CommonCompilerTest, public OptimizingUnitTestHelper { protected: void TestCode(const std::vector& data, bool has_result = false, int32_t expected = 0); void TestCodeLong(const std::vector& data, bool has_result, int64_t expected); void TestComparison(IfCondition condition, int64_t i, int64_t j, DataType::Type type, const CodegenTargetConfig target_config); void TestPackedSwitch(const CodegenTargetConfig target_config); void TestVectorComparison(IfCondition condition, int64_t lhs_value, int64_t rhs_value, DataType::Type type, CodeGenerator* codegen); }; void CodegenTest::TestCode(const std::vector& data, bool has_result, int32_t expected) { for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { ResetPoolAndAllocator(); HGraph* graph = CreateCFG(data); // Remove suspend checks, they cannot be executed in this context. RemoveSuspendChecks(graph); std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); RunCode(target_config, *compiler_options, graph, [](HGraph*) {}, has_result, expected); } } void CodegenTest::TestCodeLong(const std::vector& data, bool has_result, int64_t expected) { for (const CodegenTargetConfig& target_config : GetTargetConfigs()) { ResetPoolAndAllocator(); HGraph* graph = CreateCFG(data, DataType::Type::kInt64); // Remove suspend checks, they cannot be executed in this context. RemoveSuspendChecks(graph); std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); RunCode(target_config, *compiler_options, graph, [](HGraph*) {}, has_result, expected); } } TEST_F(CodegenTest, ReturnVoid) { const std::vector data = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG1) { const std::vector data = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG2) { const std::vector data = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x100, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, CFG3) { const std::vector data1 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO | 0x200, Instruction::RETURN_VOID, Instruction::GOTO | 0xFF00); TestCode(data1); const std::vector data2 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_16, 3, Instruction::RETURN_VOID, Instruction::GOTO_16, 0xFFFF); TestCode(data2); const std::vector data3 = ZERO_REGISTER_CODE_ITEM( Instruction::GOTO_32, 4, 0, Instruction::RETURN_VOID, Instruction::GOTO_32, 0xFFFF, 0xFFFF); TestCode(data3); } TEST_F(CodegenTest, CFG4) { const std::vector data = ZERO_REGISTER_CODE_ITEM( Instruction::RETURN_VOID, Instruction::GOTO | 0x100, Instruction::GOTO | 0xFE00); TestCode(data); } TEST_F(CodegenTest, CFG5) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::IF_EQ, 3, Instruction::GOTO | 0x100, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, IntConstant) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN_VOID); TestCode(data); } TEST_F(CodegenTest, Return1) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::RETURN | 0); TestCode(data, true, 0); } TEST_F(CodegenTest, Return2) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 0 | 1 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } TEST_F(CodegenTest, Return3) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnIf1) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnIf2) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 0 | 0, Instruction::CONST_4 | 1 << 8 | 1 << 12, Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, Instruction::RETURN | 0 << 8, Instruction::RETURN | 1 << 8); TestCode(data, true, 0); } // Exercise bit-wise (one's complement) not-int instruction. #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ TEST_F(CodegenTest, TEST_NAME) { \ const int32_t input = INPUT; \ const uint16_t input_lo = Low16Bits(input); \ const uint16_t input_hi = High16Bits(input); \ const std::vector data = TWO_REGISTERS_CODE_ITEM( \ Instruction::CONST | 0 << 8, input_lo, input_hi, \ Instruction::NOT_INT | 1 << 8 | 0 << 12 , \ Instruction::RETURN | 1 << 8); \ \ TestCode(data, true, EXPECTED_OUTPUT); \ } NOT_INT_TEST(ReturnNotIntMinus2, -2, 1) NOT_INT_TEST(ReturnNotIntMinus1, -1, 0) NOT_INT_TEST(ReturnNotInt0, 0, -1) NOT_INT_TEST(ReturnNotInt1, 1, -2) NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1 NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2 NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1 NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31) #undef NOT_INT_TEST // Exercise bit-wise (one's complement) not-long instruction. #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ TEST_F(CodegenTest, TEST_NAME) { \ const int64_t input = INPUT; \ const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \ const uint16_t word1 = High16Bits(Low32Bits(input)); \ const uint16_t word2 = Low16Bits(High32Bits(input)); \ const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \ const std::vector data = FOUR_REGISTERS_CODE_ITEM( \ Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \ Instruction::NOT_LONG | 2 << 8 | 0 << 12, \ Instruction::RETURN_WIDE | 2 << 8); \ \ TestCodeLong(data, true, EXPECTED_OUTPUT); \ } NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1)) NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0)) NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1)) NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2)) NOT_LONG_TEST(ReturnNotLongINT32_MIN, INT64_C(-2147483648), INT64_C(2147483647)) // (2^31) - 1 NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1, INT64_C(-2147483647), INT64_C(2147483646)) // (2^31) - 2 NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1, INT64_C(2147483646), INT64_C(-2147483647)) // -(2^31) - 1 NOT_LONG_TEST(ReturnNotLongINT32_MAX, INT64_C(2147483647), INT64_C(-2147483648)) // -(2^31) // Note that the C++ compiler won't accept // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead. NOT_LONG_TEST(ReturnNotINT64_MIN, INT64_C(-9223372036854775807)-1, INT64_C(9223372036854775807)); // (2^63) - 1 NOT_LONG_TEST(ReturnNotINT64_MINPlus1, INT64_C(-9223372036854775807), INT64_C(9223372036854775806)); // (2^63) - 2 NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1, INT64_C(9223372036854775806), INT64_C(-9223372036854775807)); // -(2^63) - 1 NOT_LONG_TEST(ReturnNotLongINT64_MAX, INT64_C(9223372036854775807), INT64_C(-9223372036854775807)-1); // -(2^63) #undef NOT_LONG_TEST TEST_F(CodegenTest, IntToLongOfLongToInt) { const int64_t input = INT64_C(4294967296); // 2^32 const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW. const uint16_t word1 = High16Bits(Low32Bits(input)); const uint16_t word2 = Low16Bits(High32Bits(input)); const uint16_t word3 = High16Bits(High32Bits(input)); // MSW. const std::vector data = FIVE_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0, Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1 Instruction::LONG_TO_INT | 4 << 8 | 0 << 12, Instruction::INT_TO_LONG | 2 << 8 | 4 << 12, Instruction::RETURN_WIDE | 2 << 8); TestCodeLong(data, true, 1); } TEST_F(CodegenTest, ReturnAdd1) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT, 1 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd2) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::ADD_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd3) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnAdd4) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::ADD_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 7); } TEST_F(CodegenTest, ReturnMulInt) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::MUL_INT, 1 << 8 | 0, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulInt2addr) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 3 << 12 | 0, Instruction::CONST_4 | 4 << 12 | 1 << 8, Instruction::MUL_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulLong) { const std::vector data = FOUR_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, Instruction::MUL_LONG, 2 << 8 | 0, Instruction::RETURN_WIDE); TestCodeLong(data, true, 12); } TEST_F(CodegenTest, ReturnMulLong2addr) { const std::vector data = FOUR_REGISTERS_CODE_ITEM( Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0, Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0, Instruction::MUL_LONG_2ADDR | 2 << 12, Instruction::RETURN_WIDE); TestCodeLong(data, true, 12); } TEST_F(CodegenTest, ReturnMulIntLit8) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, ReturnMulIntLit16) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::MUL_INT_LIT16, 3, Instruction::RETURN); TestCode(data, true, 12); } TEST_F(CodegenTest, NonMaterializedCondition) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { HGraph* graph = CreateGraph(); HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry); graph->SetEntryBlock(entry); MakeGoto(entry); HBasicBlock* first_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(first_block); entry->AddSuccessor(first_block); HIntConstant* constant0 = graph->GetIntConstant(0); HIntConstant* constant1 = graph->GetIntConstant(1); HInstruction* equal = MakeCondition(first_block, kCondEQ, constant0, constant0); MakeIf(first_block, equal); HBasicBlock* then_block = new (GetAllocator()) HBasicBlock(graph); HBasicBlock* else_block = new (GetAllocator()) HBasicBlock(graph); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->SetExitBlock(exit_block); graph->AddBlock(then_block); graph->AddBlock(else_block); graph->AddBlock(exit_block); first_block->AddSuccessor(then_block); first_block->AddSuccessor(else_block); then_block->AddSuccessor(exit_block); else_block->AddSuccessor(exit_block); MakeExit(exit_block); MakeReturn(then_block, constant0); MakeReturn(else_block, constant1); ASSERT_FALSE(equal->IsEmittedAtUseSite()); graph->BuildDominatorTree(); std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); PrepareForRegisterAllocation(graph, *compiler_options).Run(); ASSERT_TRUE(equal->IsEmittedAtUseSite()); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; RunCode(target_config, *compiler_options, graph, hook_before_codegen, true, 0); } } TEST_F(CodegenTest, MaterializedCondition1) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { // Check that condition are materialized correctly. A materialized condition // should yield `1` if it evaluated to true, and `0` otherwise. // We force the materialization of comparisons for different combinations of // inputs and check the results. int lhs[] = {1, 2, -1, 2, 0xabc}; int rhs[] = {2, 1, 2, -1, 0xabc}; for (size_t i = 0; i < arraysize(lhs); i++) { HGraph* graph = CreateGraph(); HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); MakeGoto(entry_block); HBasicBlock* code_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(code_block); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(exit_block); MakeExit(exit_block); entry_block->AddSuccessor(code_block); code_block->AddSuccessor(exit_block); graph->SetExitBlock(exit_block); HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); HInstruction* cmp_lt = MakeCondition(code_block, kCondLT, cst_lhs, cst_rhs); MakeReturn(code_block, cmp_lt); graph->BuildDominatorTree(); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); RunCode(target_config, *compiler_options, graph, hook_before_codegen, true, lhs[i] < rhs[i]); } } } TEST_F(CodegenTest, MaterializedCondition2) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { // Check that HIf correctly interprets a materialized condition. // We force the materialization of comparisons for different combinations of // inputs. An HIf takes the materialized combination as input and returns a // value that we verify. int lhs[] = {1, 2, -1, 2, 0xabc}; int rhs[] = {2, 1, 2, -1, 0xabc}; for (size_t i = 0; i < arraysize(lhs); i++) { HGraph* graph = CreateGraph(); HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(entry_block); graph->SetEntryBlock(entry_block); MakeGoto(entry_block); HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(if_block); HBasicBlock* if_true_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(if_true_block); HBasicBlock* if_false_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(if_false_block); HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph); graph->AddBlock(exit_block); MakeExit(exit_block); graph->SetEntryBlock(entry_block); entry_block->AddSuccessor(if_block); if_block->AddSuccessor(if_true_block); if_block->AddSuccessor(if_false_block); if_true_block->AddSuccessor(exit_block); if_false_block->AddSuccessor(exit_block); graph->SetExitBlock(exit_block); HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]); HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]); HInstruction* cmp_lt = MakeCondition(if_block, kCondLT, cst_lhs, cst_rhs); // We insert a fake instruction to separate the HIf from the HLessThan // and force the materialization of the condition. HInstruction* force_materialization = new (GetAllocator()) HMemoryBarrier(MemBarrierKind::kAnyAny, 0); if_block->AddInstruction(force_materialization); MakeIf(if_block, cmp_lt); HIntConstant* cst_lt = graph->GetIntConstant(1); MakeReturn(if_true_block, cst_lt); HIntConstant* cst_ge = graph->GetIntConstant(0); MakeReturn(if_false_block, cst_ge); graph->BuildDominatorTree(); auto hook_before_codegen = [](HGraph* graph_in) { HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0]; HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator()); block->InsertInstructionBefore(move, block->GetLastInstruction()); }; std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); RunCode(target_config, *compiler_options, graph, hook_before_codegen, true, lhs[i] < rhs[i]); } } } TEST_F(CodegenTest, ReturnDivIntLit8) { const std::vector data = ONE_REGISTER_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0 << 8, Instruction::DIV_INT_LIT8, 3 << 8 | 0, Instruction::RETURN); TestCode(data, true, 1); } TEST_F(CodegenTest, ReturnDivInt2Addr) { const std::vector data = TWO_REGISTERS_CODE_ITEM( Instruction::CONST_4 | 4 << 12 | 0, Instruction::CONST_4 | 2 << 12 | 1 << 8, Instruction::DIV_INT_2ADDR | 1 << 12, Instruction::RETURN); TestCode(data, true, 2); } static bool GetExpectedResultFromComparison(IfCondition condition, int64_t lhs, int64_t rhs) { const uint64_t unsigned_lhs = lhs; const uint64_t unsigned_rhs = rhs; switch (condition) { case kCondEQ: return lhs == rhs; case kCondNE: return lhs != rhs; case kCondLT: return lhs < rhs; case kCondLE: return lhs <= rhs; case kCondGT: return lhs > rhs; case kCondGE: return lhs >= rhs; case kCondB: return unsigned_lhs < unsigned_rhs; case kCondBE: return unsigned_lhs <= unsigned_rhs; case kCondA: return unsigned_lhs > unsigned_rhs; case kCondAE: return unsigned_lhs >= unsigned_rhs; } LOG(FATAL) << "Condition '" << enum_cast(condition) << "' not supported: "; UNREACHABLE(); } // Helper method. void CodegenTest::TestComparison(IfCondition condition, int64_t i, int64_t j, DataType::Type type, const CodegenTargetConfig target_config) { HBasicBlock* block = InitEntryMainExitGraph(); HInstruction* op1; HInstruction* op2; if (type == DataType::Type::kInt32) { op1 = graph_->GetIntConstant(i); op2 = graph_->GetIntConstant(j); } else { DCHECK_EQ(type, DataType::Type::kInt64); op1 = graph_->GetLongConstant(i); op2 = graph_->GetLongConstant(j); } HInstruction* comparison = MakeCondition(block, condition, op1, op2); MakeReturn(block, comparison); graph_->BuildDominatorTree(); std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); bool expected_result = GetExpectedResultFromComparison(condition, i, j); RunCode(target_config, *compiler_options, graph_, [](HGraph*) {}, true, expected_result); } TEST_F(CodegenTest, ComparisonsInt) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { for (int64_t i = -1; i <= 1; i++) { for (int64_t j = -1; j <= 1; j++) { for (int cond = kCondFirst; cond <= kCondLast; cond++) { TestComparison( static_cast(cond), i, j, DataType::Type::kInt32, target_config); } } } } } TEST_F(CodegenTest, ComparisonsLong) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { for (int64_t i = -1; i <= 1; i++) { for (int64_t j = -1; j <= 1; j++) { for (int cond = kCondFirst; cond <= kCondLast; cond++) { TestComparison( static_cast(cond), i, j, DataType::Type::kInt64, target_config); } } } } } // Tests a PackedSwitch in a very large HGraph; validates that the switch jump table is in // range for the PC-relative load in the codegen visitor. void CodegenTest::TestPackedSwitch(const CodegenTargetConfig target_config) { HBasicBlock* return_block = InitEntryMainExitGraph(); constexpr DataType::Type data_type = DataType::Type::kInt32; // A number of entries - we are interested to test jump table implementation. constexpr size_t kNumSwitchEntries = 10; // Number of jump targets (including a 'default' case). constexpr size_t kNumBB = kNumSwitchEntries + 1; // Some arbitrary value to be used as input. constexpr int kInputValue = kNumBB - 4; HInstruction* input = graph_->GetIntConstant(kInputValue); HIntConstant* constant_1 = graph_->GetIntConstant(1); HBasicBlock* switch_block = AddNewBlock(); entry_block_->ReplaceSuccessor(return_block, switch_block); HPackedSwitch* hswitch = new (GetAllocator()) HPackedSwitch(0, kNumSwitchEntries, input); switch_block->AddInstruction(hswitch); std::vector phi_inputs {}; // Add switch jump target blocks. for (int i = 0; i < kNumBB; i++) { HBasicBlock* case_block = AddNewBlock(); case_block->AddPredecessor(switch_block); case_block->AddSuccessor(return_block); HIntConstant* case_value = graph_->GetIntConstant(i); HAdd* add = MakeBinOp(case_block, data_type, input, case_value); phi_inputs.emplace_back(add); MakeGoto(case_block); } HPhi* phi = MakePhi(return_block, phi_inputs); HInstruction* return_val = phi; // Emit a huge number of HAdds - to simulate a very large HGraph. constexpr int kNumOfAdds = 2 * 1024 * 1024; for (int i = 0; i < kNumOfAdds; i++) { return_val = MakeBinOp(return_block, data_type, return_val, constant_1); } MakeReturn(return_block, return_val); graph_->BuildDominatorTree(); EXPECT_TRUE(CheckGraph()); std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default"); RunCode(target_config, *compiler_options, graph_, [](HGraph*) {}, true, kNumOfAdds + 2 * kInputValue); } TEST_F(CodegenTest, PackedSwitchInHugeMethod) { for (CodegenTargetConfig target_config : GetTargetConfigs()) { TestPackedSwitch(target_config); } } #ifdef ART_ENABLE_CODEGEN_arm TEST_F(CodegenTest, ARMVIXLParallelMoveResolver) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kThumb2, "default"); HGraph* graph = CreateGraph(); arm::CodeGeneratorARMVIXL codegen(graph, *compiler_options); codegen.Initialize(); // This will result in calling EmitSwap -> void ParallelMoveResolverARMVIXL::Exchange(int mem1, // int mem2) which was faulty (before the fix). So previously GPR and FP scratch registers were // used as temps; however GPR scratch register is required for big stack offsets which don't fit // LDR encoding. So the following code is a regression test for that situation. HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); move->AddMove(Location::StackSlot(0), Location::StackSlot(8192), DataType::Type::kInt32, nullptr); move->AddMove(Location::StackSlot(8192), Location::StackSlot(0), DataType::Type::kInt32, nullptr); codegen.GetMoveResolver()->EmitNativeCode(move); codegen.Finalize(); } #endif #ifdef ART_ENABLE_CODEGEN_arm64 // Regression test for b/34760542. TEST_F(CodegenTest, ARM64ParallelMoveResolverB34760542) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); codegen.Initialize(); // The following ParallelMove used to fail this assertion: // // Assertion failed (!available->IsEmpty()) // // in vixl::aarch64::UseScratchRegisterScope::AcquireNextAvailable, // because of the following situation: // // 1. a temp register (IP0) is allocated as a scratch register by // the parallel move resolver to solve a cycle (swap): // // [ source=DS0 destination=DS257 type=PrimDouble instruction=null ] // [ source=DS257 destination=DS0 type=PrimDouble instruction=null ] // // 2. within CodeGeneratorARM64::MoveLocation, another temp // register (IP1) is allocated to generate the swap between two // double stack slots; // // 3. VIXL requires a third temp register to emit the `Ldr` or // `Str` operation from CodeGeneratorARM64::MoveLocation (as // one of the stack slots' offsets cannot be encoded as an // immediate), but the pool of (core) temp registers is now // empty. // // The solution used so far is to use a floating-point temp register // (D31) in step #2, so that IP1 is available for step #3. HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); move->AddMove(Location::DoubleStackSlot(0), Location::DoubleStackSlot(257), DataType::Type::kFloat64, nullptr); move->AddMove(Location::DoubleStackSlot(257), Location::DoubleStackSlot(0), DataType::Type::kFloat64, nullptr); codegen.GetMoveResolver()->EmitNativeCode(move); codegen.Finalize(); } // Check that ParallelMoveResolver works fine for ARM64 for both cases when SIMD is on and off. TEST_F(CodegenTest, ARM64ParallelMoveResolverSIMD) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); codegen.Initialize(); graph->SetHasTraditionalSIMD(true); for (int i = 0; i < 2; i++) { HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator()); move->AddMove(Location::SIMDStackSlot(0), Location::SIMDStackSlot(257), DataType::Type::kFloat64, nullptr); move->AddMove(Location::SIMDStackSlot(257), Location::SIMDStackSlot(0), DataType::Type::kFloat64, nullptr); move->AddMove(Location::FpuRegisterLocation(0), Location::FpuRegisterLocation(1), DataType::Type::kFloat64, nullptr); move->AddMove(Location::FpuRegisterLocation(1), Location::FpuRegisterLocation(0), DataType::Type::kFloat64, nullptr); codegen.GetMoveResolver()->EmitNativeCode(move); graph->SetHasTraditionalSIMD(false); } codegen.Finalize(); } // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a75 as example). TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA75) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "cortex-a75"); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures(); EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32)); EXPECT_TRUE(features->Has(vixl::CPUFeatures::kDotProduct)); EXPECT_TRUE(features->Has(vixl::CPUFeatures::kFPHalf)); EXPECT_TRUE(features->Has(vixl::CPUFeatures::kNEONHalf)); EXPECT_TRUE(features->Has(vixl::CPUFeatures::kAtomics)); } // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a53 as example). TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA53) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "cortex-a53"); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures(); EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32)); EXPECT_FALSE(features->Has(vixl::CPUFeatures::kDotProduct)); EXPECT_FALSE(features->Has(vixl::CPUFeatures::kFPHalf)); EXPECT_FALSE(features->Has(vixl::CPUFeatures::kNEONHalf)); EXPECT_FALSE(features->Has(vixl::CPUFeatures::kAtomics)); } constexpr static size_t kExpectedFPSpillSize = 8 * vixl::aarch64::kDRegSizeInBytes; // The following two tests check that for both SIMD and non-SIMD graphs exactly 64-bit is // allocated on stack per callee-saved FP register to be preserved in the frame entry as // ABI states. TEST_F(CodegenTest, ARM64FrameSizeSIMD) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); codegen.Initialize(); graph->SetHasTraditionalSIMD(true); DCHECK_EQ(arm64::callee_saved_fp_registers.GetCount(), 8); vixl::aarch64::CPURegList reg_list = arm64::callee_saved_fp_registers; while (!reg_list.IsEmpty()) { uint32_t reg_code = reg_list.PopLowestIndex().GetCode(); codegen.AddAllocatedRegister(Location::FpuRegisterLocation(reg_code)); } codegen.ComputeSpillMask(); EXPECT_EQ(codegen.GetFpuSpillSize(), kExpectedFPSpillSize); } TEST_F(CodegenTest, ARM64FrameSizeNoSIMD) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default"); HGraph* graph = CreateGraph(); arm64::CodeGeneratorARM64 codegen(graph, *compiler_options); codegen.Initialize(); graph->SetHasTraditionalSIMD(false); graph->SetHasPredicatedSIMD(false); DCHECK_EQ(arm64::callee_saved_fp_registers.GetCount(), 8); vixl::aarch64::CPURegList reg_list = arm64::callee_saved_fp_registers; while (!reg_list.IsEmpty()) { uint32_t reg_code = reg_list.PopLowestIndex().GetCode(); codegen.AddAllocatedRegister(Location::FpuRegisterLocation(reg_code)); } codegen.ComputeSpillMask(); EXPECT_EQ(codegen.GetFpuSpillSize(), kExpectedFPSpillSize); } // This test checks that the result of the VecPredToBoolean instruction doesn't depend on // conditional flags that can be updated by other instructions. For example: // // VecPredWhile p0, opa, opb // Below opb, opa // VecPredToBoolean p0 // // where Below updates conditions flags after VecPredWhile. TEST_F(CodegenTest, ARM64SvePredicateToBoolean) { std::unique_ptr compiler_options = CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default", "sve"); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { HBasicBlock* block = InitEntryMainExitGraph(); TestCodeGeneratorARM64 codegen(graph_, *compiler_options); if (!codegen.SupportsPredicatedSIMD()) { GTEST_SKIP() << "Predicated SIMD is not supported."; } HInstruction *opa = graph_->GetIntConstant(i); HInstruction *opb = graph_->GetIntConstant(j); HVecPredWhile *pred_while = MakeVecPredWhile(block, opa, opb, HVecPredWhile::CondKind::kLO, DataType::Type::kInt32); // Update condition flags by using Below instruction. MakeCondition(block, IfCondition::kCondB, opb, opa); HVecPredToBoolean *boolean = MakeVecPredToBoolean(block, pred_while, HVecPredToBoolean::PCondKind::kNFirst, DataType::Type::kInt32); MakeReturn(block, boolean); graph_->SetHasPredicatedSIMD(true); graph_->BuildDominatorTree(); if (CanExecute(codegen)) { RunCode(&codegen, graph_, [](HGraph*) {}, true, i >= j); } } } } void CodegenTest::TestVectorComparison(IfCondition condition, int64_t lhs_value, int64_t rhs_value, DataType::Type type, CodeGenerator* codegen) { HBasicBlock* block = entry_block_->GetSingleSuccessor(); size_t vector_size_in_bytes = codegen->GetSIMDRegisterWidth(); HVecPredSetAll* predicate = MakeVecPredSetAll(block, graph_->GetIntConstant(1), type, vector_size_in_bytes); HVecReplicateScalar* op1 = MakeVecReplicateScalar(block, graph_->GetConstant(type, lhs_value), type, vector_size_in_bytes, predicate); HVecReplicateScalar* op2 = MakeVecReplicateScalar(block, graph_->GetConstant(type, rhs_value), type, vector_size_in_bytes, predicate); HVecCondition* comparison = MakeVecCondition(block, condition, op1, op2, type, vector_size_in_bytes, predicate); HInstruction* boolean_return = MakeVecPredToBoolean(block, comparison, HVecPredToBoolean::PCondKind::kFirst, type, vector_size_in_bytes); MakeReturn(block, boolean_return); graph_->SetHasPredicatedSIMD(true); graph_->BuildDominatorTree(); if (CanExecute(*codegen)) { bool expected_result = GetExpectedResultFromComparison(condition, lhs_value, rhs_value); RunCode(codegen, graph_, [](HGraph*) {}, true, expected_result); } } // Define tests ensuring that all types of conditions can be generated correctly and return the // expected result. #define DEFINE_CONDITION_TESTS(CondType) \ TEST_F(CodegenTest, ComparisonsVector##CondType) { \ std::unique_ptr compiler_options = \ CommonCompilerTest::CreateCompilerOptions(InstructionSet::kArm64, "default", "sve"); \ for (int64_t i = -1; i <= 1; i++) { \ for (int64_t j = -1; j <= 1; j++) { \ for (int cond = kCondFirst; cond <= kCondLast; cond++) { \ InitEntryMainExitGraph(); \ TestCodeGeneratorARM64 codegen(graph_, *compiler_options); \ if (!codegen.SupportsPredicatedSIMD()) { \ GTEST_SKIP() << "Predicated SIMD is not supported."; \ } \ TestVectorComparison( \ static_cast(cond), i, j, DataType::Type::k##CondType, &codegen); \ } \ } \ } \ } DEFINE_CONDITION_TESTS(Uint8) DEFINE_CONDITION_TESTS(Int8) DEFINE_CONDITION_TESTS(Uint16) DEFINE_CONDITION_TESTS(Int16) DEFINE_CONDITION_TESTS(Int32) #undef DEFINE_CONDITION_TESTS #endif } // namespace art