/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.mem import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import utils._ import utility._ import xiangshan._ import xiangshan.backend.rob.RobPtr import xiangshan.backend.Bundles._ import xiangshan.mem._ import xiangshan.backend.fu.vector.Bundles._ class VSplitPipeline(isVStore: Boolean = false)(implicit p: Parameters) extends VLSUModule{ val io = IO(new VSplitPipelineIO(isVStore)) def us_whole_reg(fuOpType: UInt) = fuOpType === VlduType.vlr def us_mask(fuOpType: UInt) = fuOpType === VlduType.vlm def us_fof(fuOpType: UInt) = fuOpType === VlduType.vleff val s1_ready = WireInit(false.B) io.in.ready := s1_ready /**----------------------------------------------------------- * s0 stage * decode and generate AlignedType, uop mask, preIsSplit * ---------------------------------------------------------- */ val s0_vtype = io.in.bits.uop.vpu.vtype val s0_sew = s0_vtype.vsew val s0_eew = io.in.bits.uop.vpu.veew val s0_lmul = s0_vtype.vlmul // when load whole register or unit-stride masked , emul should be 1 val s0_fuOpType = io.in.bits.uop.fuOpType val s0_mop = s0_fuOpType(6, 5) val s0_nf = Mux(us_whole_reg(s0_fuOpType), 0.U, io.in.bits.uop.vpu.nf) val s0_vm = io.in.bits.uop.vpu.vm val s0_emul = Mux(us_whole_reg(s0_fuOpType) ,GenUSWholeEmul(io.in.bits.uop.vpu.nf), Mux(us_mask(s0_fuOpType), 0.U(mulBits.W), EewLog2(s0_eew) - s0_sew + s0_lmul)) val s0_preIsSplit = !(isUnitStride(s0_mop) && !us_fof(s0_fuOpType)) val s0_valid = Wire(Bool()) val s0_kill = io.in.bits.uop.robIdx.needFlush(io.redirect) val s0_can_go = s1_ready val s0_fire = s0_valid && s0_can_go val s0_out = Wire(new VLSBundle(isVStore)) val isUsWholeReg = isUnitStride(s0_mop) && us_whole_reg(s0_fuOpType) val isMaskReg = isUnitStride(s0_mop) && us_mask(s0_fuOpType) val isSegment = s0_nf =/= 0.U && !us_whole_reg(s0_fuOpType) val instType = Cat(isSegment, s0_mop) val uopIdx = io.in.bits.uop.vpu.vuopIdx val uopIdxInField = GenUopIdxInField(instType, s0_emul, s0_lmul, uopIdx) val vdIdxInField = GenVdIdxInField(instType, s0_emul, s0_lmul, uopIdxInField) val lmulLog2 = Mux(s0_lmul.asSInt >= 0.S, 0.U, s0_lmul) val emulLog2 = Mux(s0_emul.asSInt >= 0.S, 0.U, s0_emul) val numEewLog2 = emulLog2 - EewLog2(s0_eew) val numSewLog2 = lmulLog2 - s0_sew val numFlowsSameVdLog2 = Mux( isIndexed(instType), log2Up(VLENB).U - s0_sew(1,0), log2Up(VLENB).U - s0_eew(1,0) ) // numUops = nf * max(lmul, emul) val lmulLog2Pos = Mux(s0_lmul.asSInt < 0.S, 0.U, s0_lmul) val emulLog2Pos = Mux(s0_emul.asSInt < 0.S, 0.U, s0_emul) val numUops = Mux( isIndexed(s0_mop) && s0_lmul.asSInt > s0_emul.asSInt, (s0_nf +& 1.U) << lmulLog2Pos, (s0_nf +& 1.U) << emulLog2Pos ) val vvl = io.in.bits.src_vl.asTypeOf(VConfig()).vl val evl = Mux(isUsWholeReg, GenUSWholeRegVL(io.in.bits.uop.vpu.nf +& 1.U,s0_eew), Mux(isMaskReg, GenUSMaskRegVL(vvl), vvl)) val vvstart = io.in.bits.uop.vpu.vstart val alignedType = Mux(isIndexed(instType), s0_sew(1, 0), s0_eew(1, 0)) val broadenAligendType = Mux(s0_preIsSplit, Cat("b0".U, alignedType), "b100".U) // if is unit-stride, use 128-bits memory access val flowsLog2 = GenRealFlowLog2(instType, s0_emul, s0_lmul, s0_eew, s0_sew) val flowsPrevThisUop = uopIdxInField << flowsLog2 // # of flows before this uop in a field val flowsPrevThisVd = vdIdxInField << numFlowsSameVdLog2 // # of flows before this vd in a field val flowsIncludeThisUop = (uopIdxInField +& 1.U) << flowsLog2 // # of flows before this uop besides this uop val flowNum = io.in.bits.flowNum.get val srcMask = GenFlowMask(Mux(s0_vm, Fill(VLEN, 1.U(1.W)), io.in.bits.src_mask), vvstart, evl, true) val flowMask = ((srcMask & UIntToMask(flowsIncludeThisUop.asUInt, VLEN + 1) & (~UIntToMask(flowsPrevThisUop.asUInt, VLEN)).asUInt ) >> flowsPrevThisVd)(VLENB - 1, 0) val vlmax = GenVLMAX(s0_lmul, s0_sew) // connect s0_out := DontCare s0_out match {case x => x.uop := io.in.bits.uop x.uop.vpu.vl := evl x.uop.uopIdx := uopIdx x.uop.numUops := numUops x.uop.lastUop := (uopIdx +& 1.U) === numUops x.flowMask := flowMask x.byteMask := GenUopByteMask(flowMask, broadenAligendType)(VLENB - 1, 0) x.fof := isUnitStride(s0_mop) && us_fof(s0_fuOpType) x.baseAddr := io.in.bits.src_rs1 x.stride := io.in.bits.src_stride x.flowNum := (1.U << flowNum) x.nfields := s0_nf +& 1.U x.vm := s0_vm x.usWholeReg := isUsWholeReg x.usMaskReg := isMaskReg x.eew := s0_eew x.sew := s0_sew x.emul := s0_emul x.lmul := s0_lmul x.vlmax := Mux(isUsWholeReg, evl, vlmax) x.instType := instType x.data := io.in.bits.src_vs3 x.vdIdxInField := vdIdxInField x.preIsSplit := s0_preIsSplit x.alignedType := broadenAligendType } s0_valid := io.in.valid && !s0_kill /**------------------------------------- * s1 stage * ------------------------------------ * generate UopOffset */ val s1_valid = RegInit(false.B) val s1_kill = Wire(Bool()) val s1_in = Wire(new VLSBundle(isVStore)) val s1_can_go = io.out.ready && io.toMergeBuffer.resp.valid val s1_fire = s1_valid && !s1_kill && s1_can_go s1_ready := s1_kill || !s1_valid || io.out.ready when(s0_fire){ s1_valid := true.B }.elsewhen(s1_fire){ s1_valid := false.B }.elsewhen(s1_kill){ s1_valid := false.B } s1_in := RegEnable(s0_out, s0_fire) val s1_uopidx = s1_in.uop.vpu.vuopIdx val s1_nf = s1_in.uop.vpu.nf val s1_nfields = s1_in.nfields val s1_eew = s1_in.eew val s1_instType = s1_in.instType val s1_stride = s1_in.stride val s1_alignedType = Mux(isIndexed(s1_in.instType), s1_in.sew(1, 0), s1_in.eew(1, 0)) val s1_notIndexedStride = Mux( // stride for strided/unit-stride instruction isStrided(s1_instType), s1_stride(XLEN - 1, 0), // for strided load, stride = x[rs2] s1_nfields << s1_eew(1, 0) // for unit-stride load, stride = eew * NFIELDS ) val uopOffset = (s1_uopidx >> s1_nf) << s1_alignedType val stride = Mux(isIndexed(s1_instType), s1_stride, s1_notIndexedStride) // if is index instructions, get index when split s1_kill := s1_in.uop.robIdx.needFlush(io.redirect) // query mergeBuffer io.toMergeBuffer.req.valid := s1_fire // only can_go will get MergeBuffer entry io.toMergeBuffer.req.bits.flowNum := Mux(s1_in.preIsSplit, 1.U << flowNum, PopCount(s1_in.flowMask)) io.toMergeBuffer.req.bits.data := s1_in.data io.toMergeBuffer.req.bits.uop := s1_in.uop io.toMergeBuffer.req.bits.mask := flowMask io.toMergeBuffer.req.bits.vaddr := DontCare // io.toMergeBuffer.req.bits.vdOffset := // out connect io.out.valid := s1_valid io.out.bits := s1_in io.out.bits.uopOffset := uopOffset io.out.bits.stride := stride io.out.bits.mBIndex := io.toMergeBuffer.resp.bits.mBIndex } abstract class VSplitBuffer(isVStore: Boolean = false)(implicit p: Parameters) extends VLSUModule{ val io = IO(new VSplitBufferIO(isVStore)) val bufferSize: Int class VSplitPtr(implicit p: Parameters) extends CircularQueuePtr[VSplitPtr](bufferSize){ } object VSplitPtr { def apply(f: Bool, v: UInt)(implicit p: Parameters): VSplitPtr = { val ptr = Wire(new VSplitPtr) ptr.flag := f ptr.value := v ptr } } val uopq = Reg(Vec(bufferSize, new VLSBundle(isVStore))) val valid = RegInit(VecInit(Seq.fill(bufferSize)(false.B))) val vstart = RegInit(VecInit(Seq.fill(bufferSize)(0.U(elemIdxBits.W)))) // index of the exception element val vl = RegInit(VecInit(Seq.fill(bufferSize)(0.U.asTypeOf(Valid(UInt(elemIdxBits.W)))))) // only for fof instructions that modify vl val srcMaskVec = Reg(Vec(bufferSize, UInt(VLEN.W))) // ptr val enqPtr = RegInit(0.U.asTypeOf(new VSplitPtr)) val deqPtr = RegInit(0.U.asTypeOf(new VSplitPtr)) // for split val splitIdx = RegInit(0.U(flowIdxBits.W)) val strideOffsetReg = RegInit(0.U(VLEN.W)) /** * Redirect */ val flushed = WireInit(VecInit(Seq.fill(bufferSize)(false.B))) // entry has been flushed by the redirect arrived in the pre 1 cycle val flushVec = (valid zip flushed).zip(uopq).map { case ((v, f), entry) => v && entry.uop.robIdx.needFlush(io.redirect) && !f } val flushEnq = io.in.fire && io.in.bits.uop.robIdx.needFlush(io.redirect) val flushNumReg = RegNext(PopCount(flushEnq +: flushVec)) val redirectReg = RegNext(io.redirect) val flushVecReg = RegNext(WireInit(VecInit(flushVec))) // enqueue when (io.in.fire && !flushEnq) { val id = enqPtr.value uopq(id) := io.in.bits valid(id) := true.B } io.in.ready := isAfter(enqPtr, deqPtr) //split uops val issueValid = valid(deqPtr.value) val issueEntry = uopq(deqPtr.value) val issueMbIndex = uopq(deqPtr.value).mBIndex val issueFlowNum = issueEntry.flowNum val issueBaseAddr = issueEntry.baseAddr val issueUop = issueEntry.uop val issueUopIdx = issueUop.vpu.vuopIdx val issueInstType = issueEntry.instType val issueUopOffset = issueEntry.uopOffset val issueEew = issueEntry.eew val issueSew = issueEntry.sew val issueLmul = issueEntry.emul val issueEmul = issueEntry.lmul val issueAlignedType = issueEntry.alignedType val issuePreIsSplit = issueEntry.preIsSplit val issueByteMask = issueEntry.byteMask val elemIdx = GenElemIdx( instType = issueInstType, emul = issueEmul, lmul = issueLmul, eew = issueEew, sew = issueSew, uopIdx = issueUopIdx, flowIdx = splitIdx ) // elemIdx inside an inst, for exception val indexedStride = IndexAddr( // index for indexed instruction index = issueEntry.stride, flow_inner_idx = ((splitIdx << issueEew(1, 0))(vOffsetBits - 1, 0) >> issueEew(1, 0)).asUInt, eew = issueEew ) val issueStride = Mux(isIndexed(issueInstType), indexedStride, strideOffsetReg) val vaddr = issueBaseAddr + issueUopOffset + issueStride val mask = genVWmask128(vaddr ,issueAlignedType) // scala maske for flow val flowMask = issueEntry.flowMask val vecActive = (flowMask & UIntToOH(splitIdx)).orR /* * Unit-Stride split to one flow or two flow. * for Unit-Stride, if uop's addr is aligned with 128-bits, split it to one flow, otherwise split two */ val usAligned128 = (vaddr(3,0) === 0.U)// addr 128-bit aligned val usSplitMask = genUSSplitMask(issueByteMask, splitIdx, vaddr(3,0)) val usNoSplit = (usAligned128 || !(vaddr(3,0) +& PopCount(usSplitMask))(4)) && !issuePreIsSplit && (splitIdx === 0.U)// unit-stride uop don't need to split into two flow val usSplitVaddr = genUSSplitAddr(vaddr, splitIdx) val regOffset = vaddr(3,0) // offset in 256-bits vd XSError((splitIdx > 1.U && usNoSplit) || (splitIdx > 1.U && !issuePreIsSplit) , "Unit-Stride addr split error!\n") // data io.out.bits match { case x => x.uop := issueUop x.vaddr := Mux(issuePreIsSplit, usSplitVaddr, vaddr) x.alignedType := issueAlignedType x.isvec := true.B x.mask := Mux(issuePreIsSplit, usSplitMask, mask) x.reg_offset := regOffset //for merge unit-stride x.vecActive := vecActive x.is_first_ele := DontCare x.usSecondInv := usNoSplit x.elemIdx := elemIdx x.uop_unit_stride_fof := DontCare x.isFirstIssue := DontCare x.mBIndex := issueMbIndex } //update enqptr when (redirectReg.valid && flushNumReg =/= 0.U) { enqPtr := enqPtr - flushNumReg }.otherwise { when (io.in.fire) { enqPtr := enqPtr + 1.U } } // flush queue for (i <- 0 until bufferSize) { when(flushVecReg(i) && redirectReg.valid && flushNumReg =/= 0.U) { valid(i) := false.B flushed(i) := true.B } } /* Execute logic */ /** Issue to scala pipeline**/ val canIssue = Wire(Bool()) val allowIssue = io.out.ready val doIssue = Wire(Bool()) val issueCount = Mux(usNoSplit, 2.U,PopCount(doIssue)) // for dont need split unit-stride, issue two flow // handshake val thisPtr = deqPtr.value canIssue := !issueUop.robIdx.needFlush(io.redirect) && deqPtr < enqPtr doIssue := canIssue && allowIssue when (!RegNext(io.redirect.valid) || distanceBetween(enqPtr, deqPtr) > flushNumReg) { when (splitIdx < (issueFlowNum - issueCount)) { // The uop has not been entirly splited yet splitIdx := splitIdx + issueCount strideOffsetReg := strideOffsetReg + issueStride }.otherwise { when (doIssue) { // The uop is done spliting splitIdx := 0.U(flowIdxBits.W) // initialize flowIdx strideOffsetReg := 0.U deqPtr := deqPtr + 1.U } } }.otherwise { splitIdx := 0.U(flowIdxBits.W) // initialize flowIdx strideOffsetReg := 0.U } // out connect io.out.valid := canIssue && vecActive } class VSSplitBufferImp(implicit p: Parameters) extends VSplitBuffer(isVStore = true){ override lazy val bufferSize = SplitBufferSize // split data val flowData = GenVSData( data = issueEntry.data.asUInt, elemIdx = splitIdx, alignedType = issueAlignedType ) val usSplitData = genUSSplitData(issueEntry.data.asUInt, splitIdx, vaddr(3,0)) // send data to sq val vstd = io.vstd.get vstd.valid := canIssue vstd.bits.uop := issueUop vstd.bits.data := Mux(issuePreIsSplit, usSplitData, flowData) vstd.bits.debug := DontCare vstd.bits.vdIdx.get := DontCare vstd.bits.vdIdxInField.get := DontCare } class VLSplitBufferImp(implicit p: Parameters) extends VSplitBuffer(isVStore = false){ override lazy val bufferSize = SplitBufferSize } class VSSplitPipelineImp(implicit p: Parameters) extends VSplitPipeline(isVStore = true){ } class VLSplitPipelineImp(implicit p: Parameters) extends VSplitPipeline(isVStore = false){ } class VLSplitImp(implicit p: Parameters) extends VLSUModule{ val io = IO(new VSplitIO(isVStore=false)) val splitPipeline = Module(new VLSplitPipelineImp()) val splitBuffer = Module(new VLSplitBufferImp()) // Split Pipeline splitPipeline.io.in <> io.in splitPipeline.io.redirect <> io.redirect io.toMergeBuffer <> splitPipeline.io.toMergeBuffer // Split Buffer splitBuffer.io.in <> splitPipeline.io.out splitBuffer.io.redirect <> io.redirect io.out <> splitBuffer.io.out } class VSSplitImp(implicit p: Parameters) extends VLSUModule{ val io = IO(new VSplitIO(isVStore=true)) val splitPipeline = Module(new VSSplitPipelineImp()) val splitBuffer = Module(new VSSplitBufferImp()) // Split Pipeline splitPipeline.io.in <> io.in splitPipeline.io.redirect <> io.redirect io.toMergeBuffer <> splitPipeline.io.toMergeBuffer // Split Buffer splitBuffer.io.in <> splitPipeline.io.out splitBuffer.io.redirect <> io.redirect io.out <> splitBuffer.io.out io.vstd.get <> splitBuffer.io.vstd.get }