/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.mem import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import utils._ import utility._ import xiangshan.ExceptionNO._ import xiangshan._ import xiangshan.backend.Bundles.{MemExuInput, MemExuOutput} import xiangshan.backend.fu.PMPRespBundle import xiangshan.backend.fu.FuConfig._ import xiangshan.backend.fu.FuType._ import xiangshan.backend.ctrlblock.DebugLsInfoBundle import xiangshan.backend.fu.NewCSR._ import xiangshan.cache.mmu.{TlbCmd, TlbReq, TlbRequestIO, TlbResp, Pbmt} import xiangshan.cache.{DcacheStoreRequestIO, DCacheStoreIO, MemoryOpConstants, HasDCacheParameters, StorePrefetchReq} class StoreUnit(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasVLSUParameters { val io = IO(new Bundle() { val redirect = Flipped(ValidIO(new Redirect)) val csrCtrl = Flipped(new CustomCSRCtrlIO) val stin = Flipped(Decoupled(new MemExuInput)) val issue = Valid(new MemExuInput) // misalignBuffer issue path val misalign_stin = Flipped(Decoupled(new LsPipelineBundle)) val misalign_stout = Valid(new SqWriteBundle) val tlb = new TlbRequestIO() val dcache = new DCacheStoreIO val pmp = Flipped(new PMPRespBundle()) val lsq = ValidIO(new LsPipelineBundle) val lsq_replenish = Output(new LsPipelineBundle()) val feedback_slow = ValidIO(new RSFeedback) val prefetch_req = Flipped(DecoupledIO(new StorePrefetchReq)) // provide prefetch info to sms val prefetch_train = ValidIO(new StPrefetchTrainBundle()) // speculative for gated control val s1_prefetch_spec = Output(Bool()) val s2_prefetch_spec = Output(Bool()) val stld_nuke_query = Valid(new StoreNukeQueryIO) val stout = DecoupledIO(new MemExuOutput) // writeback store val vecstout = DecoupledIO(new VecPipelineFeedbackIO(isVStore = true)) // store mask, send to sq in store_s0 val st_mask_out = Valid(new StoreMaskBundle) val debug_ls = Output(new DebugLsInfoBundle) // vector val vecstin = Flipped(Decoupled(new VecPipeBundle(isVStore = true))) val vec_isFirstIssue = Input(Bool()) // writeback to misalign buffer val misalign_buf = Decoupled(new LsPipelineBundle) // trigger val fromCsrTrigger = Input(new CsrTriggerBundle) val s0_s1_valid = Output(Bool()) }) val s1_ready, s2_ready, s3_ready = WireInit(false.B) // Pipeline // -------------------------------------------------------------------------------- // stage 0 // -------------------------------------------------------------------------------- // generate addr, use addr to query DCache and DTLB val s0_iss_valid = io.stin.valid val s0_prf_valid = io.prefetch_req.valid && io.dcache.req.ready val s0_vec_valid = io.vecstin.valid val s0_ma_st_valid = io.misalign_stin.valid val s0_valid = s0_iss_valid || s0_prf_valid || s0_vec_valid || s0_ma_st_valid val s0_use_flow_ma = s0_ma_st_valid val s0_use_flow_vec = s0_vec_valid && !s0_ma_st_valid val s0_use_flow_rs = s0_iss_valid && !s0_vec_valid && !s0_ma_st_valid val s0_use_flow_prf = s0_prf_valid && !s0_iss_valid && !s0_vec_valid && !s0_ma_st_valid val s0_use_non_prf_flow = s0_use_flow_rs || s0_use_flow_vec || s0_use_flow_ma val s0_stin = Mux(s0_use_flow_rs, io.stin.bits, 0.U.asTypeOf(io.stin.bits)) val s0_vecstin = Mux(s0_use_flow_vec, io.vecstin.bits, 0.U.asTypeOf(io.vecstin.bits)) val s0_uop = Mux( s0_use_flow_ma, io.misalign_stin.bits.uop, Mux( s0_use_flow_rs, s0_stin.uop, s0_vecstin.uop ) ) val s0_isFirstIssue = Mux( s0_use_flow_ma, false.B, s0_use_flow_rs && io.stin.bits.isFirstIssue || s0_use_flow_vec && io.vec_isFirstIssue ) val s0_size = Mux(s0_use_non_prf_flow, s0_uop.fuOpType(2,0), 0.U)// may broken if use it in feature val s0_mem_idx = Mux(s0_use_non_prf_flow, s0_uop.sqIdx.value, 0.U) val s0_rob_idx = Mux(s0_use_non_prf_flow, s0_uop.robIdx, 0.U.asTypeOf(s0_uop.robIdx)) val s0_pc = Mux(s0_use_non_prf_flow, s0_uop.pc, 0.U) val s0_instr_type = Mux(s0_use_non_prf_flow, STORE_SOURCE.U, DCACHE_PREFETCH_SOURCE.U) val s0_wlineflag = Mux(s0_use_flow_rs, s0_uop.fuOpType === LSUOpType.cbo_zero, false.B) val s0_out = Wire(new LsPipelineBundle) val s0_kill = s0_uop.robIdx.needFlush(io.redirect) val s0_can_go = s1_ready val s0_fire = s0_valid && !s0_kill && s0_can_go val s0_is128bit = Wire(Bool()) // vector val s0_vecActive = !s0_use_flow_vec || s0_vecstin.vecActive // val s0_flowPtr = s0_vecstin.flowPtr // val s0_isLastElem = s0_vecstin.isLastElem val s0_secondInv = s0_vecstin.usSecondInv val s0_elemIdx = s0_vecstin.elemIdx val s0_alignedType = s0_vecstin.alignedType val s0_mBIndex = s0_vecstin.mBIndex val s0_vecBaseVaddr = s0_vecstin.basevaddr val s0_isFinalSplit = io.misalign_stin.valid && io.misalign_stin.bits.isFinalSplit // generate addr val s0_saddr = s0_stin.src(0) + SignExt(s0_stin.uop.imm(11,0), VAddrBits) val s0_fullva = Wire(UInt(XLEN.W)) val s0_vaddr = Mux( s0_use_flow_ma, io.misalign_stin.bits.vaddr, Mux( s0_use_flow_rs, s0_saddr, Mux( s0_use_flow_vec, s0_vecstin.vaddr(VAddrBits - 1, 0), io.prefetch_req.bits.vaddr ) ) ) val s0_alignTpye = Mux(s0_use_flow_vec, s0_vecstin.alignedType(1,0), s0_uop.fuOpType(1, 0)) // exception check val s0_addr_aligned = LookupTree(s0_alignTpye, List( "b00".U -> true.B, //b "b01".U -> (s0_vaddr(0) === 0.U), //h "b10".U -> (s0_vaddr(1,0) === 0.U), //w "b11".U -> (s0_vaddr(2,0) === 0.U) //d )) // if vector store sends 128-bit requests, its address must be 128-aligned XSError(s0_use_flow_vec && s0_vaddr(3, 0) =/= 0.U && s0_vecstin.alignedType(2), "unit stride 128 bit element is not aligned!") val s0_isMisalign = Mux(s0_use_non_prf_flow, (!s0_addr_aligned || s0_vecstin.uop.exceptionVec(storeAddrMisaligned) && s0_vecActive), false.B) val s0_addr_low = s0_vaddr(4, 0) val s0_addr_Up_low = LookupTree(s0_alignTpye, List( "b00".U -> 0.U, "b01".U -> 1.U, "b10".U -> 3.U, "b11".U -> 7.U )) + s0_addr_low val s0_rs_corss16Bytes = s0_addr_Up_low(4) =/= s0_addr_low(4) val s0_misalignWith16Byte = !s0_rs_corss16Bytes && !s0_addr_aligned && !s0_use_flow_prf s0_is128bit := Mux(s0_use_flow_ma, io.misalign_stin.bits.is128bit, is128Bit(s0_vecstin.alignedType) || s0_misalignWith16Byte) s0_fullva := Mux( s0_use_flow_rs, s0_stin.src(0) + SignExt(s0_stin.uop.imm(11,0), XLEN), Mux( s0_use_flow_vec, s0_vecstin.vaddr, s0_vaddr ) ) val s0_mask = Mux( s0_use_flow_ma, io.misalign_stin.bits.mask, Mux( s0_use_flow_rs, genVWmask128(s0_saddr, s0_uop.fuOpType(2,0)), Mux( s0_use_flow_vec, s0_vecstin.mask, // -1.asSInt.asUInt Fill(VLEN/8, 1.U(1.W)) ) ) ) io.tlb.req.valid := s0_valid io.tlb.req.bits.vaddr := s0_vaddr io.tlb.req.bits.fullva := s0_fullva io.tlb.req.bits.checkfullva := s0_use_flow_rs || s0_use_flow_vec io.tlb.req.bits.cmd := TlbCmd.write io.tlb.req.bits.isPrefetch := s0_use_flow_prf io.tlb.req.bits.size := s0_size io.tlb.req.bits.kill := false.B io.tlb.req.bits.memidx.is_ld := false.B io.tlb.req.bits.memidx.is_st := true.B io.tlb.req.bits.memidx.idx := s0_mem_idx io.tlb.req.bits.debug.robIdx := s0_rob_idx io.tlb.req.bits.no_translate := false.B io.tlb.req.bits.debug.pc := s0_pc io.tlb.req.bits.debug.isFirstIssue := s0_isFirstIssue io.tlb.req_kill := false.B io.tlb.req.bits.hyperinst := LSUOpType.isHsv(s0_uop.fuOpType) io.tlb.req.bits.hlvx := false.B io.tlb.req.bits.pmp_addr := DontCare // Dcache access here: not **real** dcache write // just read meta and tag in dcache, to find out the store will hit or miss // NOTE: The store request does not wait for the dcache to be ready. // If the dcache is not ready at this time, the dcache is not queried. // But, store prefetch request will always wait for dcache to be ready to make progress. io.dcache.req.valid := s0_fire io.dcache.req.bits.cmd := MemoryOpConstants.M_PFW io.dcache.req.bits.vaddr := s0_vaddr io.dcache.req.bits.instrtype := s0_instr_type s0_out := DontCare s0_out.vaddr := s0_vaddr s0_out.fullva := s0_fullva // Now data use its own io s0_out.data := s0_stin.src(1) s0_out.uop := s0_uop s0_out.miss := false.B // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue. s0_out.mask := Mux(s0_rs_corss16Bytes && !s0_addr_aligned, genBasemask(s0_saddr,s0_alignTpye(1,0)), s0_mask) s0_out.isFirstIssue := s0_isFirstIssue s0_out.isHWPrefetch := s0_use_flow_prf s0_out.wlineflag := s0_wlineflag s0_out.isvec := s0_use_flow_vec s0_out.is128bit := s0_is128bit s0_out.vecActive := s0_vecActive s0_out.usSecondInv := s0_secondInv s0_out.elemIdx := s0_elemIdx s0_out.alignedType := s0_alignedType s0_out.mbIndex := s0_mBIndex s0_out.misalignWith16Byte := s0_misalignWith16Byte s0_out.isMisalign := s0_isMisalign s0_out.vecBaseVaddr := s0_vecBaseVaddr when(s0_valid && s0_isFirstIssue) { s0_out.uop.debugInfo.tlbFirstReqTime := GTimer() } s0_out.isFrmMisAlignBuf := s0_use_flow_ma s0_out.isFinalSplit := s0_isFinalSplit // s0_out.uop.exceptionVec(storeAddrMisaligned) := Mux(s0_use_non_prf_flow, (!s0_addr_aligned || s0_vecstin.uop.exceptionVec(storeAddrMisaligned) && s0_vecActive), false.B) && !s0_misalignWith16Byte io.st_mask_out.valid := s0_use_flow_rs || s0_use_flow_vec io.st_mask_out.bits.mask := s0_out.mask io.st_mask_out.bits.sqIdx := s0_out.uop.sqIdx io.stin.ready := s1_ready && s0_use_flow_rs io.vecstin.ready := s1_ready && s0_use_flow_vec io.prefetch_req.ready := s1_ready && io.dcache.req.ready && !s0_iss_valid && !s0_vec_valid && !s0_ma_st_valid io.misalign_stin.ready := s1_ready && s0_use_flow_ma // Pipeline // -------------------------------------------------------------------------------- // stage 1 // -------------------------------------------------------------------------------- // TLB resp (send paddr to dcache) val s1_valid = RegInit(false.B) val s1_in = RegEnable(s0_out, s0_fire) val s1_out = Wire(new LsPipelineBundle) val s1_kill = Wire(Bool()) val s1_can_go = s2_ready val s1_fire = s1_valid && !s1_kill && s1_can_go val s1_vecActive = RegEnable(s0_out.vecActive, true.B, s0_fire) val s1_frm_mabuf = s1_in.isFrmMisAlignBuf val s1_is128bit = s1_in.is128bit // mmio cbo decoder val s1_mmio_cbo = s1_in.uop.fuOpType === LSUOpType.cbo_clean || s1_in.uop.fuOpType === LSUOpType.cbo_flush || s1_in.uop.fuOpType === LSUOpType.cbo_inval val s1_vaNeedExt = io.tlb.resp.bits.excp(0).vaNeedExt val s1_isHyper = io.tlb.resp.bits.excp(0).isHyper val s1_paddr = io.tlb.resp.bits.paddr(0) val s1_gpaddr = io.tlb.resp.bits.gpaddr(0) val s1_fullva = io.tlb.resp.bits.fullva val s1_isForVSnonLeafPTE = io.tlb.resp.bits.isForVSnonLeafPTE val s1_tlb_miss = io.tlb.resp.bits.miss && io.tlb.resp.valid && s1_valid val s1_mmio = s1_mmio_cbo val s1_pbmt = Mux(!s1_tlb_miss, io.tlb.resp.bits.pbmt.head, 0.U(Pbmt.width.W)) val s1_exception = ExceptionNO.selectByFu(s1_out.uop.exceptionVec, StaCfg).asUInt.orR val s1_isvec = RegEnable(s0_out.isvec, false.B, s0_fire) //We don't want `StoreUnit` to have an additional effect on the Store of vector from a `misalignBuffer,` //But there are places where a marker bit is needed to enable additional processing of vector instructions. //For example: `StoreQueue` is exceptionBuffer val s1_frm_mab_vec = RegEnable(s0_use_flow_ma && io.misalign_stin.bits.isvec, false.B, s0_fire) // val s1_isLastElem = RegEnable(s0_isLastElem, false.B, s0_fire) s1_kill := s1_in.uop.robIdx.needFlush(io.redirect) || (s1_tlb_miss && !s1_isvec && !s1_frm_mabuf) s1_ready := !s1_valid || s1_kill || s2_ready io.tlb.resp.ready := true.B // TODO: why dtlbResp needs a ready? when (s0_fire) { s1_valid := true.B } .elsewhen (s1_fire) { s1_valid := false.B } .elsewhen (s1_kill) { s1_valid := false.B } // st-ld violation dectect request. io.stld_nuke_query.valid := s1_valid && !s1_tlb_miss && !s1_in.isHWPrefetch && !s1_frm_mabuf io.stld_nuke_query.bits.robIdx := s1_in.uop.robIdx io.stld_nuke_query.bits.paddr := s1_paddr io.stld_nuke_query.bits.mask := s1_in.mask io.stld_nuke_query.bits.matchLine := (s1_in.isvec || s1_in.misalignWith16Byte) && s1_in.is128bit // issue io.issue.valid := s1_valid && !s1_tlb_miss && !s1_in.isHWPrefetch && !s1_isvec && !s1_frm_mabuf io.issue.bits := RegEnable(s0_stin, s0_valid) // trigger val storeTrigger = Module(new MemTrigger(MemType.STORE)) storeTrigger.io.fromCsrTrigger.tdataVec := io.fromCsrTrigger.tdataVec storeTrigger.io.fromCsrTrigger.tEnableVec := io.fromCsrTrigger.tEnableVec storeTrigger.io.fromCsrTrigger.triggerCanRaiseBpExp := io.fromCsrTrigger.triggerCanRaiseBpExp storeTrigger.io.fromCsrTrigger.debugMode := io.fromCsrTrigger.debugMode storeTrigger.io.fromLoadStore.vaddr := s1_in.vaddr storeTrigger.io.fromLoadStore.isVectorUnitStride := s1_in.isvec && s1_in.is128bit storeTrigger.io.fromLoadStore.mask := s1_in.mask val s1_trigger_action = storeTrigger.io.toLoadStore.triggerAction val s1_trigger_debug_mode = TriggerAction.isDmode(s1_trigger_action) val s1_trigger_breakpoint = TriggerAction.isExp(s1_trigger_action) // for misalign in vsMergeBuffer io.s0_s1_valid := s0_valid || s1_valid // Send TLB feedback to store issue queue // Store feedback is generated in store_s1, sent to RS in store_s2 val s1_feedback = Wire(Valid(new RSFeedback)) s1_feedback.valid := s1_valid & !s1_in.isHWPrefetch s1_feedback.bits.hit := !s1_tlb_miss s1_feedback.bits.flushState := io.tlb.resp.bits.ptwBack s1_feedback.bits.robIdx := s1_out.uop.robIdx s1_feedback.bits.sourceType := RSFeedbackType.tlbMiss s1_feedback.bits.dataInvalidSqIdx := DontCare s1_feedback.bits.sqIdx := s1_out.uop.sqIdx s1_feedback.bits.lqIdx := s1_out.uop.lqIdx XSDebug(s1_feedback.valid, "S1 Store: tlbHit: %d robIdx: %d\n", s1_feedback.bits.hit, s1_feedback.bits.robIdx.value ) // io.feedback_slow := s1_feedback // get paddr from dtlb, check if rollback is needed // writeback store inst to lsq s1_out := s1_in s1_out.paddr := s1_paddr s1_out.gpaddr := s1_gpaddr s1_out.fullva := s1_fullva s1_out.vaNeedExt := s1_vaNeedExt s1_out.isHyper := s1_isHyper s1_out.miss := false.B s1_out.nc := Pbmt.isNC(s1_pbmt) s1_out.mmio := s1_mmio || Pbmt.isIO(s1_pbmt) s1_out.tlbMiss := s1_tlb_miss s1_out.atomic := s1_mmio || Pbmt.isIO(s1_pbmt) s1_out.isForVSnonLeafPTE := s1_isForVSnonLeafPTE when (RegNext(io.tlb.req.bits.checkfullva) && (s1_out.uop.exceptionVec(storePageFault) || s1_out.uop.exceptionVec(storeAccessFault) || s1_out.uop.exceptionVec(storeGuestPageFault))) { s1_out.uop.exceptionVec(storeAddrMisaligned) := false.B } s1_out.uop.exceptionVec(storePageFault) := io.tlb.resp.bits.excp(0).pf.st && s1_vecActive s1_out.uop.exceptionVec(storeAccessFault) := io.tlb.resp.bits.excp(0).af.st && s1_vecActive s1_out.uop.exceptionVec(storeGuestPageFault) := io.tlb.resp.bits.excp(0).gpf.st && s1_vecActive s1_out.uop.flushPipe := false.B s1_out.uop.trigger := s1_trigger_action s1_out.uop.exceptionVec(breakPoint) := s1_trigger_breakpoint s1_out.uop.exceptionVec(storeAddrMisaligned) := s1_mmio && s1_in.isMisalign s1_out.vecVaddrOffset := Mux( s1_trigger_debug_mode || s1_trigger_breakpoint, storeTrigger.io.toLoadStore.triggerVaddr - s1_in.vecBaseVaddr, s1_in.vaddr + genVFirstUnmask(s1_in.mask).asUInt - s1_in.vecBaseVaddr , ) s1_out.vecTriggerMask := Mux(s1_trigger_debug_mode || s1_trigger_breakpoint, storeTrigger.io.toLoadStore.triggerMask, 0.U) // scalar store and scalar load nuke check, and also other purposes //A 128-bit aligned unaligned memory access requires changing the unaligned flag bit in sq io.lsq.valid := s1_valid && !s1_in.isHWPrefetch io.lsq.bits := s1_out io.lsq.bits.miss := s1_tlb_miss io.lsq.bits.isvec := s1_out.isvec || s1_frm_mab_vec io.lsq.bits.updateAddrValid := (!s1_in.isMisalign || s1_in.misalignWith16Byte) && (!s1_frm_mabuf || s1_in.isFinalSplit) || s1_exception // kill dcache write intent request when tlb miss or exception io.dcache.s1_kill := (s1_tlb_miss || s1_exception || s1_mmio || s1_in.uop.robIdx.needFlush(io.redirect)) io.dcache.s1_paddr := s1_paddr // write below io.out.bits assign sentence to prevent overwriting values val s1_tlb_memidx = io.tlb.resp.bits.memidx when(s1_tlb_memidx.is_st && io.tlb.resp.valid && !s1_tlb_miss && s1_tlb_memidx.idx === s1_out.uop.sqIdx.value) { // printf("Store idx = %d\n", s1_tlb_memidx.idx) s1_out.uop.debugInfo.tlbRespTime := GTimer() } val s1_mis_align = s1_valid && !s1_tlb_miss && !s1_in.isHWPrefetch && GatedValidRegNext(io.csrCtrl.hd_misalign_st_enable) && s1_in.isMisalign && !s1_in.misalignWith16Byte && !s1_trigger_breakpoint && !s1_trigger_debug_mode // Pipeline // -------------------------------------------------------------------------------- // stage 2 // -------------------------------------------------------------------------------- // mmio check val s2_valid = RegInit(false.B) val s2_in = RegEnable(s1_out, s1_fire) val s2_out = Wire(new LsPipelineBundle) val s2_kill = Wire(Bool()) val s2_can_go = s3_ready val s2_fire = s2_valid && !s2_kill && s2_can_go val s2_vecActive = RegEnable(s1_out.vecActive, true.B, s1_fire) val s2_frm_mabuf = s2_in.isFrmMisAlignBuf val s2_frm_mab_vec = RegEnable(s1_frm_mab_vec, true.B, s1_fire) val s2_pbmt = RegEnable(s1_pbmt, s1_fire) val s2_trigger_debug_mode = RegEnable(s1_trigger_debug_mode, false.B, s1_fire) s2_ready := !s2_valid || s2_kill || s3_ready when (s1_fire) { s2_valid := true.B } .elsewhen (s2_fire) { s2_valid := false.B } .elsewhen (s2_kill) { s2_valid := false.B } val s2_pmp = WireInit(io.pmp) val s2_exception = RegNext(s1_feedback.bits.hit) && (s2_trigger_debug_mode || ExceptionNO.selectByFu(s2_out.uop.exceptionVec, StaCfg).asUInt.orR) val s2_mmio = (s2_in.mmio || (Pbmt.isPMA(s2_pbmt) && s2_pmp.mmio)) && RegNext(s1_feedback.bits.hit) val s2_actually_uncache = (Pbmt.isPMA(s2_pbmt) && s2_pmp.mmio || s2_in.nc || s2_in.mmio) && RegNext(s1_feedback.bits.hit) val s2_uncache = !s2_exception && !s2_in.tlbMiss && s2_actually_uncache s2_kill := ((s2_mmio && !s2_exception) && !s2_in.isvec && !s2_frm_mabuf) || s2_in.uop.robIdx.needFlush(io.redirect) s2_out := s2_in s2_out.af := s2_out.uop.exceptionVec(storeAccessFault) s2_out.mmio := s2_mmio && !s2_exception s2_out.atomic := s2_in.atomic || Pbmt.isPMA(s2_pbmt) && s2_pmp.atomic s2_out.uop.exceptionVec(storeAccessFault) := (s2_in.uop.exceptionVec(storeAccessFault) || s2_pmp.st || ((s2_in.isvec || s2_frm_mabuf) && s2_actually_uncache && RegNext(s1_feedback.bits.hit)) ) && s2_vecActive s2_out.uop.exceptionVec(storeAddrMisaligned) := s2_mmio && s2_in.isMisalign s2_out.uop.vpu.vstart := s2_in.vecVaddrOffset >> s2_in.uop.vpu.veew // kill dcache write intent request when mmio or exception io.dcache.s2_kill := (s2_uncache || s2_exception || s2_in.uop.robIdx.needFlush(io.redirect)) io.dcache.s2_pc := s2_out.uop.pc // TODO: dcache resp io.dcache.resp.ready := true.B val s2_mis_align = s2_valid && RegEnable(s1_mis_align, s1_fire) && !s2_mmio // goto misalignBuffer val toMisalignBufferValid = s2_mis_align && !s2_frm_mabuf io.misalign_buf.valid := toMisalignBufferValid io.misalign_buf.bits := s2_in val misalignBufferNack = toMisalignBufferValid && !io.misalign_buf.ready // feedback tlb miss to RS in store_s2 val feedback_slow_valid = WireInit(false.B) feedback_slow_valid := s1_feedback.valid && !s1_out.uop.robIdx.needFlush(io.redirect) && !s1_out.isvec && !s1_frm_mabuf io.feedback_slow.valid := GatedValidRegNext(feedback_slow_valid) io.feedback_slow.bits := RegEnable(s1_feedback.bits, feedback_slow_valid) io.feedback_slow.bits.hit := RegEnable(s1_feedback.bits.hit, feedback_slow_valid) && !misalignBufferNack val s2_vecFeedback = RegNext(!s1_out.uop.robIdx.needFlush(io.redirect) && s1_feedback.bits.hit && s1_feedback.valid) && !misalignBufferNack && s2_in.isvec && !s2_frm_mabuf val s2_misalign_stout = WireInit(0.U.asTypeOf(io.misalign_stout)) s2_misalign_stout.valid := s2_valid && s2_can_go && s2_frm_mabuf s2_misalign_stout.bits.mmio := s2_out.mmio s2_misalign_stout.bits.vaddr := s2_out.vaddr s2_misalign_stout.bits.isHyper := s2_out.isHyper s2_misalign_stout.bits.paddr := s2_out.paddr s2_misalign_stout.bits.gpaddr := s2_out.gpaddr s2_misalign_stout.bits.isForVSnonLeafPTE := s2_out.isForVSnonLeafPTE s2_misalign_stout.bits.need_rep := RegEnable(s1_tlb_miss, s1_fire) s2_misalign_stout.bits.uop.exceptionVec := s2_out.uop.exceptionVec io.misalign_stout := s2_misalign_stout // mmio and exception io.lsq_replenish := s2_out io.lsq_replenish.af := s2_out.af && s2_valid && !s2_kill // prefetch related io.lsq_replenish.miss := io.dcache.resp.fire && io.dcache.resp.bits.miss // miss info io.lsq_replenish.updateAddrValid := !s2_mis_align && (!s2_frm_mabuf || s2_out.isFinalSplit) || s2_exception io.lsq_replenish.isvec := s2_out.isvec || s2_frm_mab_vec io.lsq_replenish.hasException := (ExceptionNO.selectByFu(s2_out.uop.exceptionVec, StaCfg).asUInt.orR || TriggerAction.isDmode(s2_out.uop.trigger) || s2_out.af) && s2_valid && !s2_kill // RegNext prefetch train for better timing // ** Now, prefetch train is valid at store s3 ** val s2_prefetch_train_valid = WireInit(false.B) s2_prefetch_train_valid := s2_valid && io.dcache.resp.fire && !s2_out.mmio && !s2_out.nc && !s2_in.tlbMiss && !s2_in.isHWPrefetch if(EnableStorePrefetchSMS) { io.s1_prefetch_spec := s1_fire io.s2_prefetch_spec := s2_prefetch_train_valid io.prefetch_train.valid := RegNext(s2_prefetch_train_valid) io.prefetch_train.bits.fromLsPipelineBundle(s2_in, latch = true, enable = s2_prefetch_train_valid) }else { io.s1_prefetch_spec := false.B io.s2_prefetch_spec := false.B io.prefetch_train.valid := false.B io.prefetch_train.bits.fromLsPipelineBundle(s2_in, latch = true, enable = false.B) } // override miss bit io.prefetch_train.bits.miss := RegEnable(io.dcache.resp.bits.miss, s2_prefetch_train_valid) // TODO: add prefetch and access bit io.prefetch_train.bits.meta_prefetch := false.B io.prefetch_train.bits.meta_access := false.B io.prefetch_train.bits.isFinalSplit := false.B io.prefetch_train.bits.misalignWith16Byte := false.B io.prefetch_train.bits.isMisalign := false.B io.prefetch_train.bits.misalignNeedWakeUp := false.B io.prefetch_train.bits.updateAddrValid := false.B io.prefetch_train.bits.hasException := false.B // Pipeline // -------------------------------------------------------------------------------- // stage 3 // -------------------------------------------------------------------------------- // store write back val s3_valid = RegInit(false.B) val s3_in = RegEnable(s2_out, s2_fire) val s3_out = Wire(new MemExuOutput(isVector = true)) val s3_kill = s3_in.uop.robIdx.needFlush(io.redirect) val s3_can_go = s3_ready val s3_fire = s3_valid && !s3_kill && s3_can_go val s3_vecFeedback = RegEnable(s2_vecFeedback, s2_fire) // store misalign will not writeback to rob now when (s2_fire) { s3_valid := (!s2_mmio || s2_exception) && !s2_out.isHWPrefetch && !s2_mis_align && !s2_frm_mabuf } .elsewhen (s3_fire) { s3_valid := false.B } .elsewhen (s3_kill) { s3_valid := false.B } // wb: writeback val SelectGroupSize = RollbackGroupSize val lgSelectGroupSize = log2Ceil(SelectGroupSize) val TotalSelectCycles = scala.math.ceil(log2Ceil(LoadQueueRAWSize).toFloat / lgSelectGroupSize).toInt + 1 s3_out := DontCare s3_out.uop := s3_in.uop s3_out.data := DontCare s3_out.debug.isMMIO := s3_in.mmio s3_out.debug.isNC := s3_in.nc s3_out.debug.paddr := s3_in.paddr s3_out.debug.vaddr := s3_in.vaddr s3_out.debug.isPerfCnt := false.B // Pipeline // -------------------------------------------------------------------------------- // stage x // -------------------------------------------------------------------------------- // delay TotalSelectCycles - 2 cycle(s) val TotalDelayCycles = TotalSelectCycles - 2 val sx_valid = Wire(Vec(TotalDelayCycles + 1, Bool())) val sx_ready = Wire(Vec(TotalDelayCycles + 1, Bool())) val sx_in = Wire(Vec(TotalDelayCycles + 1, new VecMemExuOutput(isVector = true))) val sx_in_vec = Wire(Vec(TotalDelayCycles +1, Bool())) // backward ready signal s3_ready := sx_ready.head for (i <- 0 until TotalDelayCycles + 1) { if (i == 0) { sx_valid(i) := s3_valid sx_in(i).output := s3_out sx_in(i).vecFeedback := s3_vecFeedback sx_in(i).nc := s3_in.nc sx_in(i).mmio := s3_in.mmio sx_in(i).usSecondInv := s3_in.usSecondInv sx_in(i).elemIdx := s3_in.elemIdx sx_in(i).alignedType := s3_in.alignedType sx_in(i).mbIndex := s3_in.mbIndex sx_in(i).mask := s3_in.mask sx_in(i).vaddr := s3_in.fullva sx_in(i).vaNeedExt := s3_in.vaNeedExt sx_in(i).gpaddr := s3_in.gpaddr sx_in(i).isForVSnonLeafPTE := s3_in.isForVSnonLeafPTE sx_in(i).vecTriggerMask := s3_in.vecTriggerMask sx_in_vec(i) := s3_in.isvec sx_ready(i) := !s3_valid(i) || sx_in(i).output.uop.robIdx.needFlush(io.redirect) || (if (TotalDelayCycles == 0) io.stout.ready else sx_ready(i+1)) } else { val cur_kill = sx_in(i).output.uop.robIdx.needFlush(io.redirect) val cur_can_go = (if (i == TotalDelayCycles) io.stout.ready else sx_ready(i+1)) val cur_fire = sx_valid(i) && !cur_kill && cur_can_go val prev_fire = sx_valid(i-1) && !sx_in(i-1).output.uop.robIdx.needFlush(io.redirect) && sx_ready(i) sx_ready(i) := !sx_valid(i) || cur_kill || (if (i == TotalDelayCycles) io.stout.ready else sx_ready(i+1)) val sx_valid_can_go = prev_fire || cur_fire || cur_kill sx_valid(i) := RegEnable(Mux(prev_fire, true.B, false.B), false.B, sx_valid_can_go) sx_in(i) := RegEnable(sx_in(i-1), prev_fire) sx_in_vec(i) := RegEnable(sx_in_vec(i-1), prev_fire) } } val sx_last_valid = sx_valid.takeRight(1).head val sx_last_ready = sx_ready.takeRight(1).head val sx_last_in = sx_in.takeRight(1).head val sx_last_in_vec = sx_in_vec.takeRight(1).head sx_last_ready := !sx_last_valid || sx_last_in.output.uop.robIdx.needFlush(io.redirect) || io.stout.ready // write back: normal store, nc store io.stout.valid := sx_last_valid && !sx_last_in.output.uop.robIdx.needFlush(io.redirect) && !sx_last_in_vec //isStore(sx_last_in.output.uop.fuType) io.stout.bits := sx_last_in.output io.stout.bits.uop.exceptionVec := ExceptionNO.selectByFu(sx_last_in.output.uop.exceptionVec, StaCfg) io.vecstout.valid := sx_last_valid && !sx_last_in.output.uop.robIdx.needFlush(io.redirect) && sx_last_in_vec //isVStore(sx_last_in.output.uop.fuType) // TODO: implement it! io.vecstout.bits.mBIndex := sx_last_in.mbIndex io.vecstout.bits.hit := sx_last_in.vecFeedback io.vecstout.bits.isvec := true.B io.vecstout.bits.sourceType := RSFeedbackType.tlbMiss io.vecstout.bits.flushState := DontCare io.vecstout.bits.trigger := sx_last_in.output.uop.trigger io.vecstout.bits.nc := sx_last_in.nc io.vecstout.bits.mmio := sx_last_in.mmio io.vecstout.bits.exceptionVec := ExceptionNO.selectByFu(sx_last_in.output.uop.exceptionVec, VstuCfg) io.vecstout.bits.usSecondInv := sx_last_in.usSecondInv io.vecstout.bits.vecFeedback := sx_last_in.vecFeedback io.vecstout.bits.elemIdx := sx_last_in.elemIdx io.vecstout.bits.alignedType := sx_last_in.alignedType io.vecstout.bits.mask := sx_last_in.mask io.vecstout.bits.vaddr := sx_last_in.vaddr io.vecstout.bits.vaNeedExt := sx_last_in.vaNeedExt io.vecstout.bits.gpaddr := sx_last_in.gpaddr io.vecstout.bits.isForVSnonLeafPTE := sx_last_in.isForVSnonLeafPTE io.vecstout.bits.vstart := sx_last_in.output.uop.vpu.vstart io.vecstout.bits.vecTriggerMask := sx_last_in.vecTriggerMask // io.vecstout.bits.reg_offset.map(_ := DontCare) // io.vecstout.bits.elemIdx.map(_ := sx_last_in.elemIdx) // io.vecstout.bits.elemIdxInsideVd.map(_ := DontCare) // io.vecstout.bits.vecdata.map(_ := DontCare) // io.vecstout.bits.mask.map(_ := DontCare) // io.vecstout.bits.alignedType.map(_ := sx_last_in.alignedType) io.debug_ls := DontCare io.debug_ls.s1_robIdx := s1_in.uop.robIdx.value io.debug_ls.s1_isTlbFirstMiss := io.tlb.resp.valid && io.tlb.resp.bits.miss && io.tlb.resp.bits.debug.isFirstIssue && !s1_in.isHWPrefetch private def printPipeLine(pipeline: LsPipelineBundle, cond: Bool, name: String): Unit = { XSDebug(cond, p"$name" + p" pc ${Hexadecimal(pipeline.uop.pc)} " + p"addr ${Hexadecimal(pipeline.vaddr)} -> ${Hexadecimal(pipeline.paddr)} " + p"op ${Binary(pipeline.uop.fuOpType)} " + p"data ${Hexadecimal(pipeline.data)} " + p"mask ${Hexadecimal(pipeline.mask)}\n" ) } printPipeLine(s0_out, s0_valid, "S0") printPipeLine(s1_out, s1_valid, "S1") // perf cnt XSPerfAccumulate("s0_in_valid", s0_valid) XSPerfAccumulate("s0_in_fire", s0_fire) XSPerfAccumulate("s0_vecin_fire", s0_fire && s0_use_flow_vec) XSPerfAccumulate("s0_in_fire_first_issue", s0_fire && s0_isFirstIssue) XSPerfAccumulate("s0_addr_spec_success", s0_fire && !s0_use_flow_vec && s0_saddr(VAddrBits-1, 12) === s0_stin.src(0)(VAddrBits-1, 12)) XSPerfAccumulate("s0_addr_spec_failed", s0_fire && !s0_use_flow_vec && s0_saddr(VAddrBits-1, 12) =/= s0_stin.src(0)(VAddrBits-1, 12)) XSPerfAccumulate("s0_addr_spec_success_once", s0_fire && !s0_use_flow_vec && s0_saddr(VAddrBits-1, 12) === s0_stin.src(0)(VAddrBits-1, 12) && s0_isFirstIssue) XSPerfAccumulate("s0_addr_spec_failed_once", s0_fire && !s0_use_flow_vec && s0_saddr(VAddrBits-1, 12) =/= s0_stin.src(0)(VAddrBits-1, 12) && s0_isFirstIssue) XSPerfAccumulate("s1_in_valid", s1_valid) XSPerfAccumulate("s1_in_fire", s1_fire) XSPerfAccumulate("s1_in_fire_first_issue", s1_fire && s1_in.isFirstIssue) XSPerfAccumulate("s1_tlb_miss", s1_fire && s1_tlb_miss) XSPerfAccumulate("s1_tlb_miss_first_issue", s1_fire && s1_tlb_miss && s1_in.isFirstIssue) // end }