/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.mem import chipsalliance.rocketchip.config.Parameters import chisel3._ import chisel3.util._ import utils._ import utility._ import xiangshan.ExceptionNO._ import xiangshan._ import xiangshan.backend.fu.PMPRespBundle import xiangshan.backend.fu.FuConfig.LduCfg import xiangshan.backend.rob.DebugLsInfoBundle import xiangshan.cache._ import xiangshan.cache.dcache.ReplayCarry import xiangshan.cache.mmu.{TlbCmd, TlbReq, TlbRequestIO, TlbResp} import xiangshan.backend.Bundles.{DynInst, MemExuInput, MemExuOutput} class LoadToLsqFastIO(implicit p: Parameters) extends XSBundle { val valid = Output(Bool()) val ld_ld_check_ok = Output(Bool()) val st_ld_check_ok = Output(Bool()) val cache_bank_no_conflict = Output(Bool()) val ld_idx = Output(UInt(log2Ceil(LoadQueueSize).W)) val debug = Output(new PerfDebugInfo) def needreplay: Bool = { !ld_ld_check_ok || !st_ld_check_ok || !cache_bank_no_conflict } } class LoadToLsqSlowIO(implicit p: Parameters) extends XSBundle with HasDCacheParameters { val valid = Output(Bool()) val tlb_hited = Output(Bool()) val st_ld_check_ok = Output(Bool()) val cache_no_replay = Output(Bool()) val forward_data_valid = Output(Bool()) val cache_hited = Output(Bool()) val can_forward_full_data = Output(Bool()) val ld_idx = Output(UInt(log2Ceil(LoadQueueSize).W)) val data_invalid_sq_idx = Output(UInt(log2Ceil(StoreQueueSize).W)) val replayCarry = Output(new ReplayCarry) val miss_mshr_id = Output(UInt(log2Up(cfg.nMissEntries).W)) val data_in_last_beat = Output(Bool()) val debug = Output(new PerfDebugInfo) def needreplay: Bool = { !tlb_hited || !st_ld_check_ok || !cache_no_replay || !forward_data_valid || !cache_hited } } class LoadToLsqIO(implicit p: Parameters) extends XSBundle { val loadIn = ValidIO(new LqWriteBundle) val loadPaddrIn = ValidIO(new LqPaddrWriteBundle) val loadVaddrIn = ValidIO(new LqVaddrWriteBundle) val ldout = Flipped(DecoupledIO(new MemExuOutput)) val ldRawData = Input(new LoadDataFromLQBundle) val s2_load_data_forwarded = Output(Bool()) val s3_delayed_load_error = Output(Bool()) val s2_dcache_require_replay = Output(Bool()) val s3_replay_from_fetch = Output(Bool()) // update uop.ctrl.replayInst in load queue in s3 val forward = new PipeLoadForwardQueryIO val loadViolationQuery = new LoadViolationQueryIO val trigger = Flipped(new LqTriggerIO) // for load replay val replayFast = new LoadToLsqFastIO val replaySlow = new LoadToLsqSlowIO } class LoadToLoadIO(implicit p: Parameters) extends XSBundle { // load to load fast path is limited to ld (64 bit) used as vaddr src1 only val data = UInt(XLEN.W) val valid = Bool() } class LoadUnitTriggerIO(implicit p: Parameters) extends XSBundle { val tdata2 = Input(UInt(64.W)) val matchType = Input(UInt(2.W)) val tEnable = Input(Bool()) // timing is calculated before this val addrHit = Output(Bool()) val lastDataHit = Output(Bool()) } // Load Pipeline Stage 0 // Generate addr, use addr to query DCache and DTLB class LoadUnit_S0(implicit p: Parameters) extends XSModule with HasDCacheParameters{ val io = IO(new Bundle() { val in = Flipped(Decoupled(new MemExuInput)) val out = Decoupled(new LsPipelineBundle) val prefetch_in = Flipped(ValidIO(new L1PrefetchReq)) val dtlbReq = DecoupledIO(new TlbReq) val dcacheReq = DecoupledIO(new DCacheWordReq) val fastpath = Input(new LoadToLoadIO) val s0_kill = Input(Bool()) // wire from lq to load pipeline val lsqOut = Flipped(Decoupled(new LsPipelineBundle)) val s0_sqIdx = Output(new SqPtr) // l2l val l2lForward_select = Output(Bool()) }) require(LoadPipelineWidth == backendParams.LduCnt) val s0_vaddr = Wire(UInt(VAddrBits.W)) val s0_mask = Wire(UInt(8.W)) val s0_uop = Wire(new DynInst) val s0_isFirstIssue = Wire(Bool()) val s0_rsIdx = Wire(UInt(log2Up(MemIQSizeMax).W)) val s0_sqIdx = Wire(new SqPtr) val s0_replayCarry = Wire(new ReplayCarry) // way info for way predict related logic // default value s0_replayCarry.valid := false.B s0_replayCarry.real_way_en := 0.U io.s0_sqIdx := s0_sqIdx val tryFastpath = WireInit(false.B) // load flow select/gen // // src0: load replayed by LSQ (io.lsqOut) // src1: hardware prefetch from prefetchor (high confidence) (io.prefetch) // src2: int read / software prefetch first issue from RS (io.in) // src3: vec read first issue from RS (TODO) // src4: load try pointchaising when no issued or replayed load (io.fastpath) // src5: hardware prefetch from prefetchor (high confidence) (io.prefetch) // load flow source valid val lfsrc0_loadReplay_valid = io.lsqOut.valid val lfsrc1_highconfhwPrefetch_valid = io.prefetch_in.valid && io.prefetch_in.bits.confidence > 0.U val lfsrc2_intloadFirstIssue_valid = io.in.valid // int flow first issue or software prefetch val lfsrc3_vecloadFirstIssue_valid = WireInit(false.B) // TODO val lfsrc4_l2lForward_valid = io.fastpath.valid val lfsrc5_lowconfhwPrefetch_valid = io.prefetch_in.valid && io.prefetch_in.bits.confidence === 0.U dontTouch(lfsrc0_loadReplay_valid) dontTouch(lfsrc1_highconfhwPrefetch_valid) dontTouch(lfsrc2_intloadFirstIssue_valid) dontTouch(lfsrc3_vecloadFirstIssue_valid) dontTouch(lfsrc4_l2lForward_valid) dontTouch(lfsrc5_lowconfhwPrefetch_valid) // load flow source ready val lfsrc_loadReplay_ready = WireInit(true.B) val lfsrc_highconfhwPrefetch_ready = !lfsrc0_loadReplay_valid val lfsrc_intloadFirstIssue_ready = !lfsrc0_loadReplay_valid && !lfsrc1_highconfhwPrefetch_valid val lfsrc_vecloadFirstIssue_ready = !lfsrc0_loadReplay_valid && !lfsrc1_highconfhwPrefetch_valid && !lfsrc2_intloadFirstIssue_valid val lfsrc_l2lForward_ready = !lfsrc0_loadReplay_valid && !lfsrc1_highconfhwPrefetch_valid && !lfsrc2_intloadFirstIssue_valid && !lfsrc3_vecloadFirstIssue_valid val lfsrc_lowconfhwPrefetch_ready = !lfsrc0_loadReplay_valid && !lfsrc1_highconfhwPrefetch_valid && !lfsrc2_intloadFirstIssue_valid && !lfsrc3_vecloadFirstIssue_valid && !lfsrc4_l2lForward_valid dontTouch(lfsrc_loadReplay_ready) dontTouch(lfsrc_highconfhwPrefetch_ready) dontTouch(lfsrc_intloadFirstIssue_ready) dontTouch(lfsrc_vecloadFirstIssue_ready) dontTouch(lfsrc_l2lForward_ready) dontTouch(lfsrc_lowconfhwPrefetch_ready) // load flow source select (OH) val lfsrc_loadReplay_select = lfsrc0_loadReplay_valid && lfsrc_loadReplay_ready val lfsrc_hwprefetch_select = lfsrc_highconfhwPrefetch_ready && lfsrc1_highconfhwPrefetch_valid || lfsrc_lowconfhwPrefetch_ready && lfsrc5_lowconfhwPrefetch_valid val lfsrc_intloadFirstIssue_select = lfsrc_intloadFirstIssue_ready && lfsrc2_intloadFirstIssue_valid val lfsrc_vecloadFirstIssue_select = lfsrc_vecloadFirstIssue_ready && lfsrc3_vecloadFirstIssue_valid val lfsrc_l2lForward_select = lfsrc_l2lForward_ready && lfsrc4_l2lForward_valid assert(!lfsrc_vecloadFirstIssue_select) // to be added dontTouch(lfsrc_loadReplay_select) dontTouch(lfsrc_hwprefetch_select) dontTouch(lfsrc_intloadFirstIssue_select) dontTouch(lfsrc_vecloadFirstIssue_select) dontTouch(lfsrc_l2lForward_select) io.l2lForward_select := lfsrc_l2lForward_select // s0_valid == ture iff there is a valid load flow in load_s0 val s0_valid = lfsrc0_loadReplay_valid || lfsrc1_highconfhwPrefetch_valid || lfsrc2_intloadFirstIssue_valid || lfsrc3_vecloadFirstIssue_valid || lfsrc4_l2lForward_valid || lfsrc5_lowconfhwPrefetch_valid // prefetch related ctrl signal val isPrefetch = WireInit(false.B) val isPrefetchRead = WireInit(s0_uop.fuOpType === LSUOpType.prefetch_r) val isPrefetchWrite = WireInit(s0_uop.fuOpType === LSUOpType.prefetch_w) val isHWPrefetch = lfsrc_hwprefetch_select // query DTLB io.dtlbReq.valid := s0_valid // hw prefetch addr does not need to be translated, give tlb paddr io.dtlbReq.bits.vaddr := Mux(lfsrc_hwprefetch_select, io.prefetch_in.bits.paddr, s0_vaddr) io.dtlbReq.bits.cmd := Mux(isPrefetch, Mux(isPrefetchWrite, TlbCmd.write, TlbCmd.read), TlbCmd.read ) io.dtlbReq.bits.size := LSUOpType.size(s0_uop.fuOpType) io.dtlbReq.bits.kill := DontCare io.dtlbReq.bits.memidx.is_ld := true.B io.dtlbReq.bits.memidx.is_st := false.B io.dtlbReq.bits.memidx.idx := s0_uop.lqIdx.value io.dtlbReq.bits.debug.robIdx := s0_uop.robIdx // hw prefetch addr does not need to be translated io.dtlbReq.bits.no_translate := lfsrc_hwprefetch_select io.dtlbReq.bits.debug.pc := s0_uop.pc io.dtlbReq.bits.debug.isFirstIssue := s0_isFirstIssue // query DCache io.dcacheReq.valid := s0_valid when (isPrefetchRead) { io.dcacheReq.bits.cmd := MemoryOpConstants.M_PFR }.elsewhen (isPrefetchWrite) { io.dcacheReq.bits.cmd := MemoryOpConstants.M_PFW }.otherwise { io.dcacheReq.bits.cmd := MemoryOpConstants.M_XRD } io.dcacheReq.bits.addr := s0_vaddr io.dcacheReq.bits.mask := s0_mask io.dcacheReq.bits.data := DontCare when(isPrefetch) { io.dcacheReq.bits.instrtype := DCACHE_PREFETCH_SOURCE.U }.otherwise { io.dcacheReq.bits.instrtype := LOAD_SOURCE.U } io.dcacheReq.bits.isFirstIssue := s0_isFirstIssue io.dcacheReq.bits.replayCarry := s0_replayCarry io.dcacheReq.bits.debug_robIdx := s0_uop.robIdx.value // TODO: update cache meta io.dcacheReq.bits.id := DontCare // assign default value s0_uop := DontCare // load flow priority mux when(lfsrc_loadReplay_select) { s0_vaddr := io.lsqOut.bits.vaddr s0_mask := io.lsqOut.bits.mask s0_uop := io.lsqOut.bits.uop s0_isFirstIssue := io.lsqOut.bits.isFirstIssue s0_rsIdx := io.lsqOut.bits.rsIdx s0_sqIdx := io.lsqOut.bits.uop.sqIdx s0_replayCarry := io.lsqOut.bits.replayCarry val replayUopIsPrefetch = WireInit(LSUOpType.isPrefetch(io.lsqOut.bits.uop.fuOpType)) when (replayUopIsPrefetch) { isPrefetch := true.B } }.elsewhen(lfsrc_hwprefetch_select) { // vaddr based index for dcache s0_vaddr := io.prefetch_in.bits.getVaddr() s0_mask := 0.U s0_uop := DontCare s0_isFirstIssue := false.B s0_rsIdx := DontCare s0_sqIdx := DontCare s0_replayCarry := DontCare // ctrl signal isPrefetch := true.B isPrefetchRead := !io.prefetch_in.bits.is_store isPrefetchWrite := io.prefetch_in.bits.is_store }.elsewhen(lfsrc_intloadFirstIssue_select) { val imm12 = io.in.bits.uop.imm(11, 0) s0_vaddr := io.in.bits.src(0) + SignExt(imm12, VAddrBits) s0_mask := genWmask(s0_vaddr, io.in.bits.uop.fuOpType(1,0)) s0_uop := io.in.bits.uop s0_isFirstIssue := io.in.bits.isFirstIssue s0_rsIdx := io.in.bits.iqIdx s0_sqIdx := io.in.bits.uop.sqIdx val issueUopIsPrefetch = WireInit(LSUOpType.isPrefetch(io.in.bits.uop.fuOpType)) when (issueUopIsPrefetch) { isPrefetch := true.B } }.otherwise { if (EnableLoadToLoadForward) { tryFastpath := lfsrc_l2lForward_select // When there's no valid instruction from RS and LSQ, we try the load-to-load forwarding. s0_vaddr := io.fastpath.data // Assume the pointer chasing is always ld. s0_uop.fuOpType := LSUOpType.ld s0_mask := genWmask(0.U, LSUOpType.ld) // we dont care s0_isFirstIssue and s0_rsIdx and s0_sqIdx in S0 when trying pointchasing // because these signals will be updated in S1 s0_isFirstIssue := true.B s0_rsIdx := DontCare s0_sqIdx := DontCare } } // address align check val addrAligned = LookupTree(s0_uop.fuOpType(1, 0), List( "b00".U -> true.B, //b "b01".U -> (s0_vaddr(0) === 0.U), //h "b10".U -> (s0_vaddr(1, 0) === 0.U), //w "b11".U -> (s0_vaddr(2, 0) === 0.U) //d )) // accept load flow if dcache ready (dtlb is always ready) io.out.valid := s0_valid && io.dcacheReq.ready && !io.s0_kill io.out.bits := DontCare io.out.bits.vaddr := s0_vaddr io.out.bits.mask := s0_mask io.out.bits.uop := s0_uop io.out.bits.uop.exceptionVec(loadAddrMisaligned) := !addrAligned io.out.bits.rsIdx := s0_rsIdx io.out.bits.isFirstIssue := s0_isFirstIssue io.out.bits.isPrefetch := isPrefetch io.out.bits.isHWPrefetch := isHWPrefetch io.out.bits.isLoadReplay := io.lsqOut.valid io.out.bits.mshrid := io.lsqOut.bits.mshrid io.out.bits.forward_tlDchannel := io.lsqOut.valid && io.lsqOut.bits.forward_tlDchannel when(io.dtlbReq.valid && s0_isFirstIssue) { io.out.bits.uop.debugInfo.tlbFirstReqTime := GTimer() }.otherwise{ io.out.bits.uop.debugInfo.tlbFirstReqTime := s0_uop.debugInfo.tlbFirstReqTime } // load flow source ready // always accept load flow from load replay queue // io.lsqOut has highest priority io.lsqOut.ready := (io.out.ready && io.dcacheReq.ready && lfsrc_loadReplay_ready) // accept load flow from rs when: // 1) there is no lsq-replayed load // 2) there is no high confidence prefetch request io.in.ready := (io.out.ready && io.dcacheReq.ready && lfsrc_intloadFirstIssue_select) // for hw prefetch load flow feedback, to be added later // io.prefetch_in.ready := lfsrc_hwprefetch_select XSDebug(io.dcacheReq.fire, p"[DCACHE LOAD REQ] pc ${Hexadecimal(s0_uop.pc)}, vaddr ${Hexadecimal(s0_vaddr)}\n" ) XSPerfAccumulate("in_valid", io.in.valid) XSPerfAccumulate("in_fire", io.in.fire) XSPerfAccumulate("in_fire_first_issue", s0_valid && s0_isFirstIssue) XSPerfAccumulate("lsq_fire_first_issue", io.lsqOut.valid && io.lsqOut.bits.isFirstIssue) XSPerfAccumulate("ldu_fire_first_issue", io.in.valid && io.in.bits.isFirstIssue) XSPerfAccumulate("stall_out", io.out.valid && !io.out.ready && io.dcacheReq.ready) XSPerfAccumulate("stall_dcache", io.out.valid && io.out.ready && !io.dcacheReq.ready) XSPerfAccumulate("addr_spec_success", io.out.fire && s0_vaddr(VAddrBits-1, 12) === io.in.bits.src(0)(VAddrBits-1, 12)) XSPerfAccumulate("addr_spec_failed", io.out.fire && s0_vaddr(VAddrBits-1, 12) =/= io.in.bits.src(0)(VAddrBits-1, 12)) XSPerfAccumulate("addr_spec_success_once", io.out.fire && s0_vaddr(VAddrBits-1, 12) === io.in.bits.src(0)(VAddrBits-1, 12) && io.in.bits.isFirstIssue) XSPerfAccumulate("addr_spec_failed_once", io.out.fire && s0_vaddr(VAddrBits-1, 12) =/= io.in.bits.src(0)(VAddrBits-1, 12) && io.in.bits.isFirstIssue) XSPerfAccumulate("forward_tlDchannel", io.out.bits.forward_tlDchannel) XSPerfAccumulate("hardware_prefetch_fire", io.out.fire && lfsrc_hwprefetch_select) XSPerfAccumulate("software_prefetch_fire", io.out.fire && isPrefetch && lfsrc_intloadFirstIssue_select) XSPerfAccumulate("hardware_prefetch_blocked", io.prefetch_in.valid && !lfsrc_hwprefetch_select) XSPerfAccumulate("hardware_prefetch_total", io.prefetch_in.valid) } // Load Pipeline Stage 1 // TLB resp (send paddr to dcache) class LoadUnit_S1(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { val io = IO(new Bundle() { val in = Flipped(Decoupled(new LsPipelineBundle)) val s1_kill = Input(Bool()) val out = Decoupled(new LsPipelineBundle) val dtlbResp = Flipped(DecoupledIO(new TlbResp(2))) val lsuPAddr = Output(UInt(PAddrBits.W)) val dcachePAddr = Output(UInt(PAddrBits.W)) val dcacheKill = Output(Bool()) val dcacheBankConflict = Input(Bool()) val fullForwardFast = Output(Bool()) val sbuffer = new LoadForwardQueryIO val lsq = new PipeLoadForwardQueryIO val loadViolationQueryReq = Decoupled(new LoadViolationQueryReq) val reExecuteQuery = Flipped(Vec(StorePipelineWidth, Valid(new LoadReExecuteQueryIO))) val rsFeedback = ValidIO(new RSFeedback) val replayFast = new LoadToLsqFastIO val csrCtrl = Flipped(new CustomCSRCtrlIO) val needLdVioCheckRedo = Output(Bool()) val needReExecute = Output(Bool()) }) val s1_uop = io.in.bits.uop val s1_paddr_dup_lsu = io.dtlbResp.bits.paddr(0) val s1_paddr_dup_dcache = io.dtlbResp.bits.paddr(1) // af & pf exception were modified below. val s1_exception = ExceptionNO.selectByFu(io.out.bits.uop.exceptionVec, LduCfg).asUInt.orR val s1_tlb_miss = io.dtlbResp.bits.miss val s1_mask = io.in.bits.mask val s1_is_prefetch = io.in.bits.isPrefetch val s1_is_hw_prefetch = io.in.bits.isHWPrefetch val s1_is_sw_prefetch = s1_is_prefetch && !s1_is_hw_prefetch val s1_bank_conflict = io.dcacheBankConflict io.out.bits := io.in.bits // forwardXX field will be updated in s1 val s1_tlb_memidx = io.dtlbResp.bits.memidx when(s1_tlb_memidx.is_ld && io.dtlbResp.valid && !s1_tlb_miss && s1_tlb_memidx.idx === io.out.bits.uop.lqIdx.value) { // printf("load idx = %d\n", s1_tlb_memidx.idx) io.out.bits.uop.debugInfo.tlbRespTime := GTimer() } io.dtlbResp.ready := true.B io.lsuPAddr := s1_paddr_dup_lsu io.dcachePAddr := s1_paddr_dup_dcache //io.dcacheKill := s1_tlb_miss || s1_exception || s1_mmio io.dcacheKill := s1_tlb_miss || s1_exception || io.s1_kill // load forward query datapath io.sbuffer.valid := io.in.valid && !(s1_exception || s1_tlb_miss || io.s1_kill || s1_is_prefetch) io.sbuffer.vaddr := io.in.bits.vaddr io.sbuffer.paddr := s1_paddr_dup_lsu io.sbuffer.uop := s1_uop io.sbuffer.sqIdx := s1_uop.sqIdx io.sbuffer.mask := s1_mask io.sbuffer.pc := s1_uop.pc // FIXME: remove it io.lsq.valid := io.in.valid && !(s1_exception || s1_tlb_miss || io.s1_kill || s1_is_prefetch) io.lsq.vaddr := io.in.bits.vaddr io.lsq.paddr := s1_paddr_dup_lsu io.lsq.uop := s1_uop io.lsq.sqIdx := s1_uop.sqIdx io.lsq.sqIdxMask := DontCare // will be overwritten by sqIdxMask pre-generated in s0 io.lsq.mask := s1_mask io.lsq.pc := s1_uop.pc // FIXME: remove it // ld-ld violation query io.loadViolationQueryReq.valid := io.in.valid && !(s1_exception || s1_tlb_miss || io.s1_kill || s1_is_prefetch) io.loadViolationQueryReq.bits.paddr := s1_paddr_dup_lsu io.loadViolationQueryReq.bits.uop := s1_uop // st-ld violation query val needReExecuteVec = Wire(Vec(StorePipelineWidth, Bool())) val needReExecute = Wire(Bool()) for (w <- 0 until StorePipelineWidth) { // needReExecute valid when // 1. ReExecute query request valid. // 2. Load instruction is younger than requestors(store instructions). // 3. Physical address match. // 4. Data contains. needReExecuteVec(w) := io.reExecuteQuery(w).valid && isAfter(io.in.bits.uop.robIdx, io.reExecuteQuery(w).bits.robIdx) && !s1_tlb_miss && (s1_paddr_dup_lsu(PAddrBits-1, 3) === io.reExecuteQuery(w).bits.paddr(PAddrBits-1, 3)) && (s1_mask & io.reExecuteQuery(w).bits.mask).orR } needReExecute := needReExecuteVec.asUInt.orR io.needReExecute := needReExecute // Generate forwardMaskFast to wake up insts earlier val forwardMaskFast = io.lsq.forwardMaskFast.asUInt | io.sbuffer.forwardMaskFast.asUInt io.fullForwardFast := ((~forwardMaskFast).asUInt & s1_mask) === 0.U // Generate feedback signal caused by: // * dcache bank conflict // * need redo ld-ld violation check val needLdVioCheckRedo = io.loadViolationQueryReq.valid && !io.loadViolationQueryReq.ready && RegNext(io.csrCtrl.ldld_vio_check_enable) io.needLdVioCheckRedo := needLdVioCheckRedo // make nanhu rs feedback port happy // if a load flow comes from rs, always feedback hit (no need to replay from rs) io.rsFeedback.valid := Mux(io.in.bits.isLoadReplay, false.B, io.in.valid && !io.s1_kill && !s1_is_hw_prefetch) io.rsFeedback.bits.hit := true.B // we have found s1_bank_conflict / re do ld-ld violation check io.rsFeedback.bits.rsIdx := io.in.bits.rsIdx io.rsFeedback.bits.flushState := io.in.bits.ptwBack io.rsFeedback.bits.sourceType := Mux(s1_bank_conflict, RSFeedbackType.bankConflict, RSFeedbackType.ldVioCheckRedo) io.rsFeedback.bits.dataInvalidSqIdx := DontCare // request replay from load replay queue, fast port io.replayFast.valid := io.in.valid && !io.s1_kill && !s1_is_hw_prefetch io.replayFast.ld_ld_check_ok := !needLdVioCheckRedo || s1_is_sw_prefetch io.replayFast.st_ld_check_ok := !needReExecute || s1_is_sw_prefetch io.replayFast.cache_bank_no_conflict := !s1_bank_conflict || s1_is_sw_prefetch io.replayFast.ld_idx := io.in.bits.uop.lqIdx.value io.replayFast.debug := io.in.bits.uop.debugInfo // if replay is detected in load_s1, // load inst will be canceled immediately io.out.valid := io.in.valid && (!needLdVioCheckRedo && !s1_bank_conflict && !needReExecute || s1_is_sw_prefetch) && !io.s1_kill io.out.bits.paddr := s1_paddr_dup_lsu io.out.bits.tlbMiss := s1_tlb_miss // current ori test will cause the case of ldest == 0, below will be modifeid in the future. // af & pf exception were modified io.out.bits.uop.exceptionVec(loadPageFault) := io.dtlbResp.bits.excp(0).pf.ld io.out.bits.uop.exceptionVec(loadAccessFault) := io.dtlbResp.bits.excp(0).af.ld io.out.bits.ptwBack := io.dtlbResp.bits.ptwBack io.out.bits.rsIdx := io.in.bits.rsIdx io.in.ready := !io.in.valid || io.out.ready XSPerfAccumulate("in_valid", io.in.valid) XSPerfAccumulate("in_fire", io.in.fire) XSPerfAccumulate("in_fire_first_issue", io.in.fire && io.in.bits.isFirstIssue) XSPerfAccumulate("tlb_miss", io.in.fire && s1_tlb_miss) XSPerfAccumulate("tlb_miss_first_issue", io.in.fire && s1_tlb_miss && io.in.bits.isFirstIssue) XSPerfAccumulate("stall_out", io.out.valid && !io.out.ready) } // Load Pipeline Stage 2 // DCache resp class LoadUnit_S2(implicit p: Parameters) extends XSModule with HasLoadHelper with HasCircularQueuePtrHelper with HasDCacheParameters { val io = IO(new Bundle() { val in = Flipped(Decoupled(new LsPipelineBundle)) val out = Decoupled(new LsPipelineBundle) val rsFeedback = ValidIO(new RSFeedback) val replaySlow = new LoadToLsqSlowIO val dcacheResp = Flipped(DecoupledIO(new DCacheWordResp)) val pmpResp = Flipped(new PMPRespBundle()) val lsq = new LoadForwardQueryIO val dataInvalidSqIdx = Input(UInt()) val sbuffer = new LoadForwardQueryIO val dataForwarded = Output(Bool()) val s2_dcache_require_replay = Output(Bool()) val fullForward = Output(Bool()) val dcache_kill = Output(Bool()) val s3_delayed_load_error = Output(Bool()) val loadViolationQueryResp = Flipped(Valid(new LoadViolationQueryResp)) val csrCtrl = Flipped(new CustomCSRCtrlIO) val sentFastUop = Input(Bool()) val static_pm = Input(Valid(Bool())) // valid for static, bits for mmio val s2_can_replay_from_fetch = Output(Bool()) // dirty code val loadDataFromDcache = Output(new LoadDataFromDcacheBundle) val reExecuteQuery = Flipped(Vec(StorePipelineWidth, Valid(new LoadReExecuteQueryIO))) val needReExecute = Output(Bool()) // forward tilelink D channel val forward_D = Input(Bool()) val forwardData_D = Input(Vec(8, UInt(8.W))) // forward mshr data val forward_mshr = Input(Bool()) val forwardData_mshr = Input(Vec(8, UInt(8.W))) // indicate whether forward tilelink D channel or mshr data is valid val forward_result_valid = Input(Bool()) val s2_forward_fail = Output(Bool()) }) val pmp = WireInit(io.pmpResp) when (io.static_pm.valid) { pmp.ld := false.B pmp.st := false.B pmp.instr := false.B pmp.mmio := io.static_pm.bits } val s2_is_prefetch = io.in.bits.isPrefetch val s2_is_hw_prefetch = io.in.bits.isHWPrefetch val forward_D_or_mshr_valid = io.forward_result_valid && (io.forward_D || io.forward_mshr) // assert(!reset && io.forward_D && io.forward_mshr && io.in.valid && io.in.bits.forward_tlDchannel, "forward D and mshr at the same time") // exception that may cause load addr to be invalid / illegal // // if such exception happen, that inst and its exception info // will be force writebacked to rob val s2_exception_vec = WireInit(io.in.bits.uop.exceptionVec) s2_exception_vec(loadAccessFault) := io.in.bits.uop.exceptionVec(loadAccessFault) || pmp.ld // soft prefetch will not trigger any exception (but ecc error interrupt may be triggered) when (s2_is_prefetch) { s2_exception_vec := 0.U.asTypeOf(s2_exception_vec.cloneType) } val s2_exception = ExceptionNO.selectByFu(s2_exception_vec, LduCfg).asUInt.orR && !io.in.bits.tlbMiss // writeback access fault caused by ecc error / bus error // // * ecc data error is slow to generate, so we will not use it until load stage 3 // * in load stage 3, an extra signal io.load_error will be used to // now cache ecc error will raise an access fault // at the same time, error info (including error paddr) will be write to // an customized CSR "CACHE_ERROR" if (EnableAccurateLoadError) { io.s3_delayed_load_error := io.dcacheResp.bits.error_delayed && io.csrCtrl.cache_error_enable && RegNext(io.out.valid) } else { io.s3_delayed_load_error := false.B } val actually_mmio = pmp.mmio val s2_uop = io.in.bits.uop val s2_mask = io.in.bits.mask val s2_paddr = io.in.bits.paddr val s2_tlb_miss = io.in.bits.tlbMiss val s2_mmio = !s2_is_prefetch && actually_mmio && !s2_exception val s2_cache_miss = io.dcacheResp.bits.miss && !forward_D_or_mshr_valid val s2_cache_replay = io.dcacheResp.bits.replay && !forward_D_or_mshr_valid val s2_cache_tag_error = io.dcacheResp.bits.tag_error val s2_forward_fail = io.lsq.matchInvalid || io.sbuffer.matchInvalid val s2_ldld_violation = io.loadViolationQueryResp.valid && io.loadViolationQueryResp.bits.have_violation && RegNext(io.csrCtrl.ldld_vio_check_enable) val s2_data_invalid = io.lsq.dataInvalid && !s2_ldld_violation && !s2_exception io.s2_forward_fail := s2_forward_fail io.dcache_kill := pmp.ld || pmp.mmio // move pmp resp kill to outside io.dcacheResp.ready := true.B val dcacheShouldResp = !(s2_tlb_miss || s2_exception || s2_mmio || s2_is_prefetch) assert(!(io.in.valid && (dcacheShouldResp && !io.dcacheResp.valid)), "DCache response got lost") // merge forward result // lsq has higher priority than sbuffer val forwardMask = Wire(Vec(8, Bool())) val forwardData = Wire(Vec(8, UInt(8.W))) val fullForward = ((~forwardMask.asUInt).asUInt & s2_mask) === 0.U && !io.lsq.dataInvalid io.lsq := DontCare io.sbuffer := DontCare io.fullForward := fullForward // generate XLEN/8 Muxs for (i <- 0 until XLEN / 8) { forwardMask(i) := io.lsq.forwardMask(i) || io.sbuffer.forwardMask(i) forwardData(i) := Mux(io.lsq.forwardMask(i), io.lsq.forwardData(i), io.sbuffer.forwardData(i)) } XSDebug(io.out.fire, "[FWD LOAD RESP] pc %x fwd %x(%b) + %x(%b)\n", s2_uop.pc, io.lsq.forwardData.asUInt, io.lsq.forwardMask.asUInt, io.in.bits.forwardData.asUInt, io.in.bits.forwardMask.asUInt ) // data merge // val rdataVec = VecInit((0 until XLEN / 8).map(j => // Mux(forwardMask(j), forwardData(j), io.dcacheResp.bits.data(8*(j+1)-1, 8*j)) // )) // s2_rdataVec will be write to load queue // val rdata = rdataVec.asUInt // val rdataSel = LookupTree(s2_paddr(2, 0), List( // "b000".U -> rdata(63, 0), // "b001".U -> rdata(63, 8), // "b010".U -> rdata(63, 16), // "b011".U -> rdata(63, 24), // "b100".U -> rdata(63, 32), // "b101".U -> rdata(63, 40), // "b110".U -> rdata(63, 48), // "b111".U -> rdata(63, 56) // )) // val rdataPartialLoad = rdataHelper(s2_uop, rdataSel) // s2_rdataPartialLoad is not used io.out.valid := io.in.valid && !s2_tlb_miss && // always request replay and cancel current flow if tlb miss (!s2_data_invalid && !io.needReExecute || s2_is_prefetch) && // prefetch does not care about ld-st dependency !s2_is_hw_prefetch // hardware prefetch flow should not be writebacked // write_lq_safe is needed by dup logic // io.write_lq_safe := !s2_tlb_miss && !s2_data_invalid // Inst will be canceled in store queue / lsq, // so we do not need to care about flush in load / store unit's out.valid io.out.bits := io.in.bits // io.out.bits.data := rdataPartialLoad io.out.bits.data := 0.U // data will be generated in load_s3 // when exception occurs, set it to not miss and let it write back to rob (via int port) if (EnableFastForward) { io.out.bits.miss := s2_cache_miss && !s2_exception && !fullForward && !s2_is_prefetch } else { io.out.bits.miss := s2_cache_miss && !s2_exception && !s2_is_prefetch } io.out.bits.uop.fpWen := io.in.bits.uop.fpWen && !s2_exception // val s2_loadDataFromDcache = new LoadDataFromDcacheBundle // s2_loadDataFromDcache.forwardMask := forwardMask // s2_loadDataFromDcache.forwardData := forwardData // s2_loadDataFromDcache.uop := io.out.bits.uop // s2_loadDataFromDcache.addrOffset := s2_paddr(2, 0) // // forward D or mshr // s2_loadDataFromDcache.forward_D := io.forward_D // s2_loadDataFromDcache.forwardData_D := io.forwardData_D // s2_loadDataFromDcache.forward_mshr := io.forward_mshr // s2_loadDataFromDcache.forwardData_mshr := io.forwardData_mshr // s2_loadDataFromDcache.forward_result_valid := io.forward_result_valid // io.loadDataFromDcache := RegEnable(s2_loadDataFromDcache, io.in.valid) io.loadDataFromDcache.respDcacheData := io.dcacheResp.bits.data_delayed io.loadDataFromDcache.forwardMask := RegEnable(forwardMask, io.in.valid) io.loadDataFromDcache.forwardData := RegEnable(forwardData, io.in.valid) io.loadDataFromDcache.uop := RegEnable(io.out.bits.uop, io.in.valid) io.loadDataFromDcache.addrOffset := RegEnable(s2_paddr(2, 0), io.in.valid) // forward D or mshr io.loadDataFromDcache.forward_D := RegEnable(io.forward_D, io.in.valid) io.loadDataFromDcache.forwardData_D := RegEnable(io.forwardData_D, io.in.valid) io.loadDataFromDcache.forward_mshr := RegEnable(io.forward_mshr, io.in.valid) io.loadDataFromDcache.forwardData_mshr := RegEnable(io.forwardData_mshr, io.in.valid) io.loadDataFromDcache.forward_result_valid := RegEnable(io.forward_result_valid, io.in.valid) io.s2_can_replay_from_fetch := !s2_mmio && !s2_is_prefetch && !s2_tlb_miss // if forward fail, replay this inst from fetch val debug_forwardFailReplay = s2_forward_fail && !s2_mmio && !s2_is_prefetch && !s2_tlb_miss // if ld-ld violation is detected, replay from this inst from fetch val debug_ldldVioReplay = s2_ldld_violation && !s2_mmio && !s2_is_prefetch && !s2_tlb_miss // io.out.bits.uop.ctrl.replayInst := false.B io.out.bits.mmio := s2_mmio io.out.bits.uop.flushPipe := s2_mmio && io.sentFastUop io.out.bits.uop.exceptionVec := s2_exception_vec // cache error not included // For timing reasons, sometimes we can not let // io.out.bits.miss := s2_cache_miss && !s2_exception && !fullForward // We use io.dataForwarded instead. It means: // 1. Forward logic have prepared all data needed, // and dcache query is no longer needed. // 2. ... or data cache tag error is detected, this kind of inst // will not update miss queue. That is to say, if miss, that inst // may not be refilled // Such inst will be writebacked from load queue. io.dataForwarded := s2_cache_miss && !s2_exception && (fullForward || io.csrCtrl.cache_error_enable && s2_cache_tag_error) // io.out.bits.forwardX will be send to lq io.out.bits.forwardMask := forwardMask // data from dcache is not included in io.out.bits.forwardData io.out.bits.forwardData := forwardData io.in.ready := io.out.ready || !io.in.valid // st-ld violation query val needReExecuteVec = Wire(Vec(StorePipelineWidth, Bool())) val needReExecute = Wire(Bool()) for (i <- 0 until StorePipelineWidth) { // NeedFastRecovery Valid when // 1. Fast recovery query request Valid. // 2. Load instruction is younger than requestors(store instructions). // 3. Physical address match. // 4. Data contains. needReExecuteVec(i) := io.reExecuteQuery(i).valid && isAfter(io.in.bits.uop.robIdx, io.reExecuteQuery(i).bits.robIdx) && !s2_tlb_miss && (s2_paddr(PAddrBits-1,3) === io.reExecuteQuery(i).bits.paddr(PAddrBits-1, 3)) && (s2_mask & io.reExecuteQuery(i).bits.mask).orR } needReExecute := needReExecuteVec.asUInt.orR io.needReExecute := needReExecute // rs slow feedback port in nanhu is not used for now io.rsFeedback.valid := false.B io.rsFeedback.bits := DontCare // request replay from load replay queue, fast port io.replaySlow.valid := io.in.valid && !s2_is_hw_prefetch // hardware prefetch flow should not be reported to load replay queue io.replaySlow.tlb_hited := !s2_tlb_miss io.replaySlow.st_ld_check_ok := !needReExecute || s2_is_prefetch // Note: soft prefetch does not care about ld-st dependency if (EnableFastForward) { io.replaySlow.cache_no_replay := !s2_cache_replay || s2_is_prefetch || s2_mmio || s2_exception || fullForward }else { io.replaySlow.cache_no_replay := !s2_cache_replay || s2_is_prefetch || s2_mmio || s2_exception || io.dataForwarded } io.replaySlow.forward_data_valid := !s2_data_invalid || s2_is_prefetch // Note: soft prefetch does not care about ld-st dependency io.replaySlow.cache_hited := !io.out.bits.miss || io.out.bits.mmio io.replaySlow.can_forward_full_data := io.dataForwarded io.replaySlow.ld_idx := io.in.bits.uop.lqIdx.value io.replaySlow.data_invalid_sq_idx := io.dataInvalidSqIdx io.replaySlow.replayCarry := io.dcacheResp.bits.replayCarry io.replaySlow.miss_mshr_id := io.dcacheResp.bits.mshr_id io.replaySlow.data_in_last_beat := io.in.bits.paddr(log2Up(refillBytes)) io.replaySlow.debug := io.in.bits.uop.debugInfo // To be removed val s2_need_replay_from_rs = Wire(Bool()) if (EnableFastForward) { s2_need_replay_from_rs := needReExecute || s2_tlb_miss || // replay if dtlb miss s2_cache_replay && !s2_is_prefetch && !s2_mmio && !s2_exception && !fullForward || // replay if dcache miss queue full / busy s2_data_invalid && !s2_is_prefetch // replay if store to load forward data is not ready } else { // Note that if all parts of data are available in sq / sbuffer, replay required by dcache will not be scheduled s2_need_replay_from_rs := needReExecute || s2_tlb_miss || // replay if dtlb miss s2_cache_replay && !s2_is_prefetch && !s2_mmio && !s2_exception && !io.dataForwarded || // replay if dcache miss queue full / busy s2_data_invalid && !s2_is_prefetch // replay if store to load forward data is not ready } // s2_cache_replay is quite slow to generate, send it separately to LQ if (EnableFastForward) { io.s2_dcache_require_replay := s2_cache_replay && !fullForward } else { io.s2_dcache_require_replay := s2_cache_replay && s2_need_replay_from_rs && !io.dataForwarded && !s2_is_prefetch && io.out.bits.miss } XSPerfAccumulate("in_valid", io.in.valid) XSPerfAccumulate("in_fire", io.in.fire) XSPerfAccumulate("in_fire_first_issue", io.in.fire && io.in.bits.isFirstIssue) XSPerfAccumulate("dcache_miss", io.in.fire && s2_cache_miss) XSPerfAccumulate("dcache_miss_first_issue", io.in.fire && s2_cache_miss && io.in.bits.isFirstIssue) XSPerfAccumulate("full_forward", io.in.valid && fullForward) XSPerfAccumulate("dcache_miss_full_forward", io.in.valid && s2_cache_miss && fullForward) XSPerfAccumulate("replay", io.rsFeedback.valid && !io.rsFeedback.bits.hit) XSPerfAccumulate("replay_tlb_miss", io.rsFeedback.valid && !io.rsFeedback.bits.hit && s2_tlb_miss) XSPerfAccumulate("replay_cache", io.rsFeedback.valid && !io.rsFeedback.bits.hit && !s2_tlb_miss && s2_cache_replay) XSPerfAccumulate("stall_out", io.out.valid && !io.out.ready) XSPerfAccumulate("replay_from_fetch_forward", io.out.valid && debug_forwardFailReplay) XSPerfAccumulate("replay_from_fetch_load_vio", io.out.valid && debug_ldldVioReplay) XSPerfAccumulate("replay_lq", io.replaySlow.valid && (!io.replaySlow.tlb_hited || !io.replaySlow.cache_no_replay || !io.replaySlow.forward_data_valid)) XSPerfAccumulate("replay_tlb_miss_lq", io.replaySlow.valid && !io.replaySlow.tlb_hited) XSPerfAccumulate("replay_sl_vio", io.replaySlow.valid && io.replaySlow.tlb_hited && !io.replaySlow.st_ld_check_ok) XSPerfAccumulate("replay_cache_lq", io.replaySlow.valid && io.replaySlow.tlb_hited && io.replaySlow.st_ld_check_ok && !io.replaySlow.cache_no_replay) XSPerfAccumulate("replay_cache_miss_lq", io.replaySlow.valid && !io.replaySlow.cache_hited) XSPerfAccumulate("prefetch", io.in.fire && s2_is_prefetch) XSPerfAccumulate("prefetch_ignored", io.in.fire && s2_is_prefetch && s2_cache_replay) // ignore prefetch for mshr full / miss req port conflict XSPerfAccumulate("prefetch_miss", io.in.fire && s2_is_prefetch && s2_cache_miss) // prefetch req miss in l1 XSPerfAccumulate("prefetch_hit", io.in.fire && s2_is_prefetch && !s2_cache_miss) // prefetch req hit in l1 // prefetch a missed line in l1, and l1 accepted it XSPerfAccumulate("prefetch_accept", io.in.fire && s2_is_prefetch && s2_cache_miss && !s2_cache_replay) } class LoadUnit(implicit p: Parameters) extends XSModule with HasLoadHelper with HasPerfEvents with HasDCacheParameters { val io = IO(new Bundle() { val ldin = Flipped(Decoupled(new MemExuInput)) val ldout = Decoupled(new MemExuOutput) val redirect = Flipped(ValidIO(new Redirect)) val feedbackSlow = ValidIO(new RSFeedback) val feedbackFast = ValidIO(new RSFeedback) val dcache = new DCacheLoadIO val sbuffer = new LoadForwardQueryIO val lsq = new LoadToLsqIO val tlDchannel = Input(new DcacheToLduForwardIO) val forward_mshr = Flipped(new LduToMissqueueForwardIO) val refill = Flipped(ValidIO(new Refill)) val fastUop = ValidIO(new DynInst) // early wakeup signal generated in load_s1, send to RS in load_s2 val trigger = Vec(3, new LoadUnitTriggerIO) val tlb = new TlbRequestIO(2) val pmp = Flipped(new PMPRespBundle()) // arrive same to tlb now // provide prefetch info val prefetch_train = ValidIO(new LdPrefetchTrainBundle()) // hardware prefetch to l1 cache req val prefetch_req = Flipped(ValidIO(new L1PrefetchReq)) // load to load fast path val fastpathOut = Output(new LoadToLoadIO) val fastpathIn = Input(new LoadToLoadIO) val loadFastMatch = Input(Bool()) val loadFastImm = Input(UInt(12.W)) // load ecc val s3_delayed_load_error = Output(Bool()) // load ecc error // Note that io.s3_delayed_load_error and io.lsq.s3_delayed_load_error is different // load unit ctrl val csrCtrl = Flipped(new CustomCSRCtrlIO) val reExecuteQuery = Flipped(Vec(StorePipelineWidth, Valid(new LoadReExecuteQueryIO))) // load replay val lsqOut = Flipped(Decoupled(new LsPipelineBundle)) val debug_ls = Output(new DebugLsInfoBundle) val s2IsPointerChasing = Output(Bool()) // provide right pc for hw prefetch }) val load_s0 = Module(new LoadUnit_S0) val load_s1 = Module(new LoadUnit_S1) val load_s2 = Module(new LoadUnit_S2) load_s0.io.lsqOut <> io.lsqOut // load s0 load_s0.io.in <> io.ldin load_s0.io.dtlbReq <> io.tlb.req load_s0.io.dcacheReq <> io.dcache.req load_s0.io.s0_kill := false.B // we try pointerchasing if lfsrc_l2lForward_select condition is satisfied val s0_tryPointerChasing = load_s0.io.l2lForward_select val s0_pointerChasingVAddr = io.fastpathIn.data(5, 0) +& io.loadFastImm(5, 0) load_s0.io.fastpath.valid := io.fastpathIn.valid load_s0.io.fastpath.data := Cat(io.fastpathIn.data(XLEN-1, 6), s0_pointerChasingVAddr(5,0)) val s1_data = PipelineConnect(load_s0.io.out, load_s1.io.in, true.B, load_s0.io.out.bits.uop.robIdx.needFlush(io.redirect) && !s0_tryPointerChasing).get // load s1 // update s1_kill when any source has valid request load_s1.io.s1_kill := RegEnable(load_s0.io.s0_kill, false.B, io.ldin.valid || io.lsqOut.valid || io.fastpathIn.valid) io.tlb.req_kill := load_s1.io.s1_kill load_s1.io.dtlbResp <> io.tlb.resp io.dcache.s1_paddr_dup_lsu <> load_s1.io.lsuPAddr io.dcache.s1_paddr_dup_dcache <> load_s1.io.dcachePAddr io.dcache.s1_kill := load_s1.io.dcacheKill load_s1.io.sbuffer <> io.sbuffer load_s1.io.lsq <> io.lsq.forward load_s1.io.loadViolationQueryReq <> io.lsq.loadViolationQuery.req load_s1.io.dcacheBankConflict <> io.dcache.s1_bank_conflict load_s1.io.csrCtrl <> io.csrCtrl load_s1.io.reExecuteQuery := io.reExecuteQuery // provide paddr and vaddr for lq io.lsq.loadPaddrIn.valid := load_s1.io.out.valid && !load_s1.io.out.bits.isHWPrefetch io.lsq.loadPaddrIn.bits.lqIdx := load_s1.io.out.bits.uop.lqIdx io.lsq.loadPaddrIn.bits.paddr := load_s1.io.lsuPAddr io.lsq.loadVaddrIn.valid := load_s1.io.in.valid && !load_s1.io.s1_kill && !load_s1.io.out.bits.isHWPrefetch io.lsq.loadVaddrIn.bits.lqIdx := load_s1.io.out.bits.uop.lqIdx io.lsq.loadVaddrIn.bits.vaddr := load_s1.io.out.bits.vaddr // when S0 has opportunity to try pointerchasing, make sure it truely goes to S1 // which is S0's out is ready and dcache is ready val s0_doTryPointerChasing = s0_tryPointerChasing && load_s0.io.out.ready && load_s0.io.dcacheReq.ready val s1_tryPointerChasing = RegNext(s0_doTryPointerChasing, false.B) val s1_pointerChasingVAddr = RegEnable(s0_pointerChasingVAddr, s0_doTryPointerChasing) val cancelPointerChasing = WireInit(false.B) if (EnableLoadToLoadForward) { // Sometimes, we need to cancel the load-load forwarding. // These can be put at S0 if timing is bad at S1. // Case 0: CACHE_SET(base + offset) != CACHE_SET(base) (lowest 6-bit addition has an overflow) val addressMisMatch = s1_pointerChasingVAddr(6) || RegEnable(io.loadFastImm(11, 6).orR, s0_doTryPointerChasing) // Case 1: the address is not 64-bit aligned or the fuOpType is not LD val addressNotAligned = s1_pointerChasingVAddr(2, 0).orR val fuOpTypeIsNotLd = io.ldin.bits.uop.fuOpType =/= LSUOpType.ld // Case 2: this is not a valid load-load pair val notFastMatch = RegEnable(!io.loadFastMatch, s0_tryPointerChasing) // Case 3: this load-load uop is cancelled val isCancelled = !io.ldin.valid when (s1_tryPointerChasing) { cancelPointerChasing := addressMisMatch || addressNotAligned || fuOpTypeIsNotLd || notFastMatch || isCancelled load_s1.io.in.bits.uop := io.ldin.bits.uop val spec_vaddr = s1_data.vaddr val vaddr = Cat(spec_vaddr(VAddrBits - 1, 6), s1_pointerChasingVAddr(5, 3), 0.U(3.W)) load_s1.io.in.bits.vaddr := vaddr load_s1.io.in.bits.rsIdx := io.ldin.bits.iqIdx load_s1.io.in.bits.isFirstIssue := io.ldin.bits.isFirstIssue // We need to replace vaddr(5, 3). val spec_paddr = io.tlb.resp.bits.paddr(0) load_s1.io.dtlbResp.bits.paddr.foreach(_ := Cat(spec_paddr(PAddrBits - 1, 6), s1_pointerChasingVAddr(5, 3), 0.U(3.W))) // recored tlb time when get the data to ensure the correctness of the latency calculation (although it should not record in here, because it does not use tlb) load_s1.io.in.bits.uop.debugInfo.tlbFirstReqTime := GTimer() load_s1.io.in.bits.uop.debugInfo.tlbRespTime := GTimer() } when (cancelPointerChasing) { load_s1.io.s1_kill := true.B }.otherwise { load_s0.io.s0_kill := s1_tryPointerChasing && !io.lsqOut.valid when (s1_tryPointerChasing) { io.ldin.ready := true.B } } XSPerfAccumulate("load_to_load_forward", s1_tryPointerChasing && !cancelPointerChasing) XSPerfAccumulate("load_to_load_forward_try", s1_tryPointerChasing) XSPerfAccumulate("load_to_load_forward_fail", cancelPointerChasing) XSPerfAccumulate("load_to_load_forward_fail_cancelled", cancelPointerChasing && isCancelled) XSPerfAccumulate("load_to_load_forward_fail_wakeup_mismatch", cancelPointerChasing && !isCancelled && notFastMatch) XSPerfAccumulate("load_to_load_forward_fail_op_not_ld", cancelPointerChasing && !isCancelled && !notFastMatch && fuOpTypeIsNotLd) XSPerfAccumulate("load_to_load_forward_fail_addr_align", cancelPointerChasing && !isCancelled && !notFastMatch && !fuOpTypeIsNotLd && addressNotAligned) XSPerfAccumulate("load_to_load_forward_fail_set_mismatch", cancelPointerChasing && !isCancelled && !notFastMatch && !fuOpTypeIsNotLd && !addressNotAligned && addressMisMatch) } PipelineConnect(load_s1.io.out, load_s2.io.in, true.B, load_s1.io.out.bits.uop.robIdx.needFlush(io.redirect) || cancelPointerChasing) val (forward_D, forwardData_D) = io.tlDchannel.forward(load_s1.io.out.valid && load_s1.io.out.bits.forward_tlDchannel, load_s1.io.out.bits.mshrid, load_s1.io.out.bits.paddr) io.forward_mshr.valid := load_s1.io.out.valid && load_s1.io.out.bits.forward_tlDchannel io.forward_mshr.mshrid := load_s1.io.out.bits.mshrid io.forward_mshr.paddr := load_s1.io.out.bits.paddr val (forward_result_valid, forward_mshr, forwardData_mshr) = io.forward_mshr.forward() XSPerfAccumulate("successfully_forward_channel_D", forward_D && forward_result_valid) XSPerfAccumulate("successfully_forward_mshr", forward_mshr && forward_result_valid) // load s2 load_s2.io.forward_D := forward_D load_s2.io.forwardData_D := forwardData_D load_s2.io.forward_result_valid := forward_result_valid load_s2.io.forward_mshr := forward_mshr load_s2.io.forwardData_mshr := forwardData_mshr io.s2IsPointerChasing := RegEnable(s1_tryPointerChasing && !cancelPointerChasing, load_s1.io.out.fire) io.prefetch_train.bits.fromLsPipelineBundle(load_s2.io.in.bits) // override miss bit io.prefetch_train.bits.miss := io.dcache.resp.bits.miss io.prefetch_train.bits.meta_prefetch := io.dcache.resp.bits.meta_prefetch io.prefetch_train.bits.meta_access := io.dcache.resp.bits.meta_access io.prefetch_train.valid := load_s2.io.in.fire && !load_s2.io.out.bits.mmio && !load_s2.io.in.bits.tlbMiss io.dcache.s2_kill := load_s2.io.dcache_kill // to kill mmio resp which are redirected if (env.FPGAPlatform) io.dcache.s2_pc := DontCare else io.dcache.s2_pc := load_s2.io.out.bits.uop.pc load_s2.io.dcacheResp <> io.dcache.resp load_s2.io.pmpResp <> io.pmp load_s2.io.static_pm := RegNext(io.tlb.resp.bits.static_pm) load_s2.io.lsq.forwardData <> io.lsq.forward.forwardData load_s2.io.lsq.forwardMask <> io.lsq.forward.forwardMask load_s2.io.lsq.forwardMaskFast <> io.lsq.forward.forwardMaskFast // should not be used in load_s2 load_s2.io.lsq.dataInvalid <> io.lsq.forward.dataInvalid load_s2.io.lsq.matchInvalid <> io.lsq.forward.matchInvalid load_s2.io.sbuffer.forwardData <> io.sbuffer.forwardData load_s2.io.sbuffer.forwardMask <> io.sbuffer.forwardMask load_s2.io.sbuffer.forwardMaskFast <> io.sbuffer.forwardMaskFast // should not be used in load_s2 load_s2.io.sbuffer.dataInvalid <> io.sbuffer.dataInvalid // always false load_s2.io.sbuffer.matchInvalid <> io.sbuffer.matchInvalid load_s2.io.dataForwarded <> io.lsq.s2_load_data_forwarded load_s2.io.dataInvalidSqIdx := io.lsq.forward.dataInvalidSqIdx // provide dataInvalidSqIdx to make wakeup faster load_s2.io.loadViolationQueryResp <> io.lsq.loadViolationQuery.resp load_s2.io.csrCtrl <> io.csrCtrl load_s2.io.sentFastUop := io.fastUop.valid load_s2.io.reExecuteQuery := io.reExecuteQuery // feedback bank conflict / ld-vio check struct hazard to rs io.feedbackFast.bits := RegNext(load_s1.io.rsFeedback.bits) io.feedbackFast.valid := RegNext(load_s1.io.rsFeedback.valid && !load_s1.io.out.bits.uop.robIdx.needFlush(io.redirect)) // pre-calcuate sqIdx mask in s0, then send it to lsq in s1 for forwarding val sqIdxMaskReg = RegNext(UIntToMask(load_s0.io.s0_sqIdx.value, StoreQueueSize)) // to enable load-load, sqIdxMask must be calculated based on ldin.uop // If the timing here is not OK, load-load forwarding has to be disabled. // Or we calculate sqIdxMask at RS?? io.lsq.forward.sqIdxMask := sqIdxMaskReg if (EnableLoadToLoadForward) { when (s1_tryPointerChasing) { io.lsq.forward.sqIdxMask := UIntToMask(io.ldin.bits.uop.sqIdx.value, StoreQueueSize) } } // // use s2_hit_way to select data received in s1 // load_s2.io.dcacheResp.bits.data := Mux1H(RegNext(io.dcache.s1_hit_way), RegNext(io.dcache.s1_data)) // assert(load_s2.io.dcacheResp.bits.data === io.dcache.resp.bits.data) // now io.fastUop.valid is sent to RS in load_s2 val forward_D_or_mshr_valid = forward_result_valid && (forward_D || forward_mshr) val s2_dcache_hit = io.dcache.s2_hit || forward_D_or_mshr_valid // dcache hit dup in lsu side io.fastUop.valid := RegNext( !io.dcache.s1_disable_fast_wakeup && // load fast wakeup should be disabled when dcache data read is not ready load_s1.io.in.valid && // valid load request !load_s1.io.in.bits.isHWPrefetch && // is not hardware prefetch req !load_s1.io.s1_kill && // killed by load-load forwarding !load_s1.io.dtlbResp.bits.fast_miss && // not mmio or tlb miss, pf / af not included here !io.lsq.forward.dataInvalidFast // forward failed ) && !RegNext(load_s1.io.needLdVioCheckRedo) && // load-load violation check: load paddr cam struct hazard !RegNext(load_s1.io.needReExecute) && !RegNext(load_s1.io.out.bits.uop.robIdx.needFlush(io.redirect)) && (load_s2.io.in.valid && !load_s2.io.needReExecute && s2_dcache_hit) // dcache hit in lsu side io.fastUop.bits := RegNext(load_s1.io.out.bits.uop) XSDebug(load_s0.io.out.valid, p"S0: pc ${Hexadecimal(load_s0.io.out.bits.uop.pc)}, lId ${Hexadecimal(load_s0.io.out.bits.uop.lqIdx.asUInt)}, " + p"vaddr ${Hexadecimal(load_s0.io.out.bits.vaddr)}, mask ${Hexadecimal(load_s0.io.out.bits.mask)}\n") XSDebug(load_s1.io.out.valid, p"S1: pc ${Hexadecimal(load_s1.io.out.bits.uop.pc)}, lId ${Hexadecimal(load_s1.io.out.bits.uop.lqIdx.asUInt)}, tlb_miss ${io.tlb.resp.bits.miss}, " + p"paddr ${Hexadecimal(load_s1.io.out.bits.paddr)}, mmio ${load_s1.io.out.bits.mmio}\n") // writeback to LSQ // Current dcache use MSHR // Load queue will be updated at s2 for both hit/miss int/fp load io.lsq.loadIn.valid := load_s2.io.out.valid && !load_s2.io.out.bits.isHWPrefetch // generate LqWriteBundle from LsPipelineBundle io.lsq.loadIn.bits.fromLsPipelineBundle(load_s2.io.out.bits) io.lsq.replayFast := load_s1.io.replayFast io.lsq.replaySlow := load_s2.io.replaySlow io.lsq.replaySlow.valid := load_s2.io.replaySlow.valid && !load_s2.io.out.bits.uop.robIdx.needFlush(io.redirect) // generate duplicated load queue data wen val load_s2_valid_vec = RegInit(0.U(6.W)) val load_s2_leftFire = load_s1.io.out.valid && load_s2.io.in.ready // val write_lq_safe = load_s2.io.write_lq_safe load_s2_valid_vec := 0x0.U(6.W) when (load_s2_leftFire && !load_s1.io.out.bits.isHWPrefetch) { load_s2_valid_vec := 0x3f.U(6.W)} // TODO: refactor me when (load_s1.io.out.bits.uop.robIdx.needFlush(io.redirect)) { load_s2_valid_vec := 0x0.U(6.W) } assert(RegNext((load_s2.io.in.valid === load_s2_valid_vec(0)) || RegNext(load_s1.io.out.bits.isHWPrefetch))) io.lsq.loadIn.bits.lq_data_wen_dup := load_s2_valid_vec.asBools() // s2_dcache_require_replay signal will be RegNexted, then used in s3 io.lsq.s2_dcache_require_replay := load_s2.io.s2_dcache_require_replay // write to rob and writeback bus val s2_wb_valid = load_s2.io.out.valid && !load_s2.io.out.bits.miss && !load_s2.io.out.bits.mmio // Int load, if hit, will be writebacked at s2 val hitLoadOut = Wire(Valid(new MemExuOutput)) hitLoadOut.valid := s2_wb_valid hitLoadOut.bits.uop := load_s2.io.out.bits.uop hitLoadOut.bits.data := load_s2.io.out.bits.data hitLoadOut.bits.debug.isMMIO := load_s2.io.out.bits.mmio hitLoadOut.bits.debug.isPerfCnt := false.B hitLoadOut.bits.debug.paddr := load_s2.io.out.bits.paddr hitLoadOut.bits.debug.vaddr := load_s2.io.out.bits.vaddr load_s2.io.out.ready := true.B // load s3 val s3_load_wb_meta_reg = RegNext(Mux(hitLoadOut.valid, hitLoadOut.bits, io.lsq.ldout.bits)) // data from load queue refill val s3_loadDataFromLQ = RegEnable(io.lsq.ldRawData, io.lsq.ldout.valid) val s3_rdataLQ = s3_loadDataFromLQ.mergedData() val s3_rdataSelLQ = LookupTree(s3_loadDataFromLQ.addrOffset, List( "b000".U -> s3_rdataLQ(63, 0), "b001".U -> s3_rdataLQ(63, 8), "b010".U -> s3_rdataLQ(63, 16), "b011".U -> s3_rdataLQ(63, 24), "b100".U -> s3_rdataLQ(63, 32), "b101".U -> s3_rdataLQ(63, 40), "b110".U -> s3_rdataLQ(63, 48), "b111".U -> s3_rdataLQ(63, 56) )) val s3_rdataPartialLoadLQ = rdataHelper(s3_loadDataFromLQ.uop, s3_rdataSelLQ) // data from dcache hit val s3_loadDataFromDcache = load_s2.io.loadDataFromDcache val s3_rdataDcache = s3_loadDataFromDcache.mergedData() val s3_rdataSelDcache = LookupTree(s3_loadDataFromDcache.addrOffset, List( "b000".U -> s3_rdataDcache(63, 0), "b001".U -> s3_rdataDcache(63, 8), "b010".U -> s3_rdataDcache(63, 16), "b011".U -> s3_rdataDcache(63, 24), "b100".U -> s3_rdataDcache(63, 32), "b101".U -> s3_rdataDcache(63, 40), "b110".U -> s3_rdataDcache(63, 48), "b111".U -> s3_rdataDcache(63, 56) )) val s3_rdataPartialLoadDcache = rdataHelper(s3_loadDataFromDcache.uop, s3_rdataSelDcache) io.ldout.bits := s3_load_wb_meta_reg io.ldout.bits.data := Mux(RegNext(hitLoadOut.valid), s3_rdataPartialLoadDcache, s3_rdataPartialLoadLQ) io.ldout.valid := RegNext(hitLoadOut.valid) && !RegNext(load_s2.io.out.bits.uop.robIdx.needFlush(io.redirect)) || RegNext(io.lsq.ldout.valid) && !RegNext(io.lsq.ldout.bits.uop.robIdx.needFlush(io.redirect)) && !RegNext(hitLoadOut.valid) io.ldout.bits.uop.exceptionVec(loadAccessFault) := s3_load_wb_meta_reg.uop.exceptionVec(loadAccessFault) || RegNext(hitLoadOut.valid) && load_s2.io.s3_delayed_load_error // fast load to load forward io.fastpathOut.valid := RegNext(load_s2.io.out.valid) // for debug only io.fastpathOut.data := s3_loadDataFromDcache.mergedData() // fastpath is for ld only // feedback tlb miss / dcache miss queue full io.feedbackSlow.bits := RegNext(load_s2.io.rsFeedback.bits) io.feedbackSlow.valid := RegNext(load_s2.io.rsFeedback.valid && !load_s2.io.out.bits.uop.robIdx.needFlush(io.redirect)) // If replay is reported at load_s1, inst will be canceled (will not enter load_s2), // in that case: // * replay should not be reported twice assert(!(RegNext(io.feedbackFast.valid) && io.feedbackSlow.valid)) // * io.fastUop.valid should not be reported assert(!RegNext(io.feedbackFast.valid && !io.feedbackFast.bits.hit && io.fastUop.valid)) // load forward_fail/ldld_violation check // check for inst in load pipeline val s3_forward_fail = RegNext(io.lsq.forward.matchInvalid || io.sbuffer.matchInvalid) val s3_ldld_violation = RegNext( io.lsq.loadViolationQuery.resp.valid && io.lsq.loadViolationQuery.resp.bits.have_violation && RegNext(io.csrCtrl.ldld_vio_check_enable) ) val s3_need_replay_from_fetch = s3_forward_fail || s3_ldld_violation val s3_can_replay_from_fetch = RegEnable(load_s2.io.s2_can_replay_from_fetch, load_s2.io.out.valid) // 1) use load pipe check result generated in load_s3 iff load_hit when (RegNext(hitLoadOut.valid)) { io.ldout.bits.uop.replayInst := s3_need_replay_from_fetch } // 2) otherwise, write check result to load queue io.lsq.s3_replay_from_fetch := s3_need_replay_from_fetch && s3_can_replay_from_fetch // s3_delayed_load_error path is not used for now, as we writeback load result in load_s3 // but we keep this path for future use io.s3_delayed_load_error := false.B io.lsq.s3_delayed_load_error := false.B //load_s2.io.s3_delayed_load_error io.lsq.ldout.ready := !hitLoadOut.valid when(io.feedbackSlow.valid && !io.feedbackSlow.bits.hit){ // when need replay from rs, inst should not be writebacked to rob assert(RegNext(!hitLoadOut.valid)) assert(RegNext(!io.lsq.loadIn.valid) || RegNext(load_s2.io.s2_dcache_require_replay)) } // hareware prefetch to l1 io.prefetch_req <> load_s0.io.prefetch_in // trigger val lastValidData = RegEnable(io.ldout.bits.data, io.ldout.fire) val hitLoadAddrTriggerHitVec = Wire(Vec(3, Bool())) val lqLoadAddrTriggerHitVec = io.lsq.trigger.lqLoadAddrTriggerHitVec (0 until 3).map{i => { val tdata2 = io.trigger(i).tdata2 val matchType = io.trigger(i).matchType val tEnable = io.trigger(i).tEnable hitLoadAddrTriggerHitVec(i) := TriggerCmp(load_s2.io.out.bits.vaddr, tdata2, matchType, tEnable) io.trigger(i).addrHit := Mux(hitLoadOut.valid, hitLoadAddrTriggerHitVec(i), lqLoadAddrTriggerHitVec(i)) io.trigger(i).lastDataHit := TriggerCmp(lastValidData, tdata2, matchType, tEnable) }} io.lsq.trigger.hitLoadAddrTriggerHitVec := hitLoadAddrTriggerHitVec // s1 io.debug_ls.s1.isBankConflict := load_s1.io.in.fire && (!load_s1.io.dcacheKill && load_s1.io.dcacheBankConflict) io.debug_ls.s1.isLoadToLoadForward := load_s1.io.out.valid && s1_tryPointerChasing && !cancelPointerChasing io.debug_ls.s1.isTlbFirstMiss := io.tlb.resp.valid && io.tlb.resp.bits.miss && io.tlb.resp.bits.debug.isFirstIssue io.debug_ls.s1.isReplayFast := io.lsq.replayFast.valid && io.lsq.replayFast.needreplay io.debug_ls.s1_robIdx := load_s1.io.in.bits.uop.robIdx.value // s2 io.debug_ls.s2.isDcacheFirstMiss := load_s2.io.in.fire && load_s2.io.in.bits.isFirstIssue && load_s2.io.dcacheResp.bits.miss io.debug_ls.s2.isForwardFail := load_s2.io.in.fire && load_s2.io.s2_forward_fail io.debug_ls.s2.isReplaySlow := io.lsq.replaySlow.valid && io.lsq.replaySlow.needreplay io.debug_ls.s2.isLoadReplayTLBMiss := io.lsq.replaySlow.valid && !io.lsq.replaySlow.tlb_hited io.debug_ls.s2.isLoadReplayCacheMiss := io.lsq.replaySlow.valid && !io.lsq.replaySlow.cache_hited io.debug_ls.replayCnt := DontCare io.debug_ls.s2_robIdx := load_s2.io.in.bits.uop.robIdx.value // bug lyq: some signals in perfEvents are no longer suitable for the current MemBlock design // hardware performance counter val perfEvents = Seq( ("load_s0_in_fire ", load_s0.io.in.fire ), ("load_to_load_forward ", load_s1.io.out.valid && s1_tryPointerChasing && !cancelPointerChasing ), ("stall_dcache ", load_s0.io.out.valid && load_s0.io.out.ready && !load_s0.io.dcacheReq.ready ), ("load_s1_in_fire ", load_s1.io.in.fire ), ("load_s1_tlb_miss ", load_s1.io.in.fire && load_s1.io.dtlbResp.bits.miss ), ("load_s2_in_fire ", load_s2.io.in.fire ), ("load_s2_dcache_miss ", load_s2.io.in.fire && load_s2.io.dcacheResp.bits.miss ), ("load_s2_replay ", load_s2.io.rsFeedback.valid && !load_s2.io.rsFeedback.bits.hit ), ("load_s2_replay_tlb_miss ", load_s2.io.rsFeedback.valid && !load_s2.io.rsFeedback.bits.hit && load_s2.io.in.bits.tlbMiss ), ("load_s2_replay_cache ", load_s2.io.rsFeedback.valid && !load_s2.io.rsFeedback.bits.hit && !load_s2.io.in.bits.tlbMiss && load_s2.io.dcacheResp.bits.miss), ) generatePerfEvent() when(io.ldout.fire){ XSDebug("ldout %x\n", io.ldout.bits.uop.pc) } }