/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.mem import chipsalliance.rocketchip.config.Parameters import chisel3._ import chisel3.util._ import utils._ import utility._ import xiangshan._ import xiangshan.cache.{AtomicWordIO, MemoryOpConstants, HasDCacheParameters} import xiangshan.cache.mmu.{TlbCmd, TlbRequestIO} import difftest._ import xiangshan.ExceptionNO._ import xiangshan.backend.fu.PMPRespBundle class AtomicsUnit(implicit p: Parameters) extends XSModule with MemoryOpConstants with HasDCacheParameters{ val io = IO(new Bundle() { val hartId = Input(UInt(8.W)) val in = Flipped(Decoupled(new ExuInput)) val storeDataIn = Flipped(Valid(new ExuOutput)) // src2 from rs val out = Decoupled(new ExuOutput) val dcache = new AtomicWordIO val dtlb = new TlbRequestIO(2) val pmpResp = Flipped(new PMPRespBundle()) val rsIdx = Input(UInt(log2Up(IssQueSize).W)) val flush_sbuffer = new SbufferFlushBundle val feedbackSlow = ValidIO(new RSFeedback) val redirect = Flipped(ValidIO(new Redirect)) val exceptionAddr = ValidIO(UInt(VAddrBits.W)) val csrCtrl = Flipped(new CustomCSRCtrlIO) }) //------------------------------------------------------- // Atomics Memory Accsess FSM //------------------------------------------------------- val s_invalid :: s_tlb_and_flush_sbuffer_req :: s_pm :: s_wait_flush_sbuffer_resp :: s_cache_req :: s_cache_resp :: s_cache_resp_latch :: s_finish :: Nil = Enum(8) val state = RegInit(s_invalid) val out_valid = RegInit(false.B) val data_valid = RegInit(false.B) val in = Reg(new ExuInput()) val exceptionVec = RegInit(0.U.asTypeOf(ExceptionVec())) val atom_override_xtval = RegInit(false.B) val have_sent_first_tlb_req = RegInit(false.B) val isLr = in.uop.ctrl.fuOpType === LSUOpType.lr_w || in.uop.ctrl.fuOpType === LSUOpType.lr_d // paddr after translation val paddr = Reg(UInt()) val vaddr = in.src(0) val is_mmio = Reg(Bool()) // dcache response data val resp_data = Reg(UInt()) val resp_data_wire = WireInit(0.U) val is_lrsc_valid = Reg(Bool()) // sbuffer is empty or not val sbuffer_empty = io.flush_sbuffer.empty // Difftest signals val paddr_reg = Reg(UInt(64.W)) val data_reg = Reg(UInt(64.W)) val mask_reg = Reg(UInt(8.W)) val fuop_reg = Reg(UInt(8.W)) io.exceptionAddr.valid := atom_override_xtval io.exceptionAddr.bits := in.src(0) // assign default value to output signals io.in.ready := false.B io.dcache.req.valid := false.B io.dcache.req.bits := DontCare io.dtlb.req.valid := false.B io.dtlb.req.bits := DontCare io.dtlb.req_kill := false.B io.dtlb.resp.ready := true.B io.flush_sbuffer.valid := false.B XSDebug("state: %d\n", state) when (state === s_invalid) { io.in.ready := true.B when (io.in.fire) { in := io.in.bits in.src(1) := in.src(1) // leave src2 unchanged state := s_tlb_and_flush_sbuffer_req have_sent_first_tlb_req := false.B } } when (io.storeDataIn.fire) { in.src(1) := io.storeDataIn.bits.data data_valid := true.B } assert(!(io.storeDataIn.fire && data_valid), "atomic unit re-receive data") // Send TLB feedback to store issue queue // we send feedback right after we receives request // also, we always treat amo as tlb hit // since we will continue polling tlb all by ourself io.feedbackSlow.valid := RegNext(RegNext(io.in.valid)) io.feedbackSlow.bits.hit := true.B io.feedbackSlow.bits.rsIdx := RegEnable(io.rsIdx, io.in.valid) io.feedbackSlow.bits.flushState := DontCare io.feedbackSlow.bits.sourceType := DontCare io.feedbackSlow.bits.dataInvalidSqIdx := DontCare // tlb translation, manipulating signals && deal with exception // at the same time, flush sbuffer when (state === s_tlb_and_flush_sbuffer_req) { // send req to dtlb // keep firing until tlb hit io.dtlb.req.valid := true.B io.dtlb.req.bits.vaddr := in.src(0) io.dtlb.resp.ready := true.B io.dtlb.req.bits.cmd := Mux(isLr, TlbCmd.atom_read, TlbCmd.atom_write) io.dtlb.req.bits.debug.pc := in.uop.cf.pc io.dtlb.req.bits.debug.isFirstIssue := false.B io.out.bits.uop.debugInfo.tlbFirstReqTime := GTimer() // FIXME lyq: it will be always assigned // send req to sbuffer to flush it if it is not empty io.flush_sbuffer.valid := Mux(sbuffer_empty, false.B, true.B) // do not accept tlb resp in the first cycle // this limition is for hw prefetcher // when !have_sent_first_tlb_req, tlb resp may come from hw prefetch have_sent_first_tlb_req := true.B when(io.dtlb.resp.fire && have_sent_first_tlb_req){ paddr := io.dtlb.resp.bits.paddr(0) // exception handling val addrAligned = LookupTree(in.uop.ctrl.fuOpType(1,0), List( "b00".U -> true.B, //b "b01".U -> (in.src(0)(0) === 0.U), //h "b10".U -> (in.src(0)(1,0) === 0.U), //w "b11".U -> (in.src(0)(2,0) === 0.U) //d )) exceptionVec(loadAddrMisaligned) := !addrAligned && isLr exceptionVec(storeAddrMisaligned) := !addrAligned && !isLr exceptionVec(storePageFault) := io.dtlb.resp.bits.excp(0).pf.st exceptionVec(loadPageFault) := io.dtlb.resp.bits.excp(0).pf.ld exceptionVec(storeAccessFault) := io.dtlb.resp.bits.excp(0).af.st exceptionVec(loadAccessFault) := io.dtlb.resp.bits.excp(0).af.ld when (!io.dtlb.resp.bits.miss) { io.out.bits.uop.debugInfo.tlbRespTime := GTimer() when (!addrAligned) { // NOTE: when addrAligned, do not need to wait tlb actually // check for miss aligned exceptions, tlb exception are checked next cycle for timing // if there are exceptions, no need to execute it state := s_finish out_valid := true.B atom_override_xtval := true.B } .otherwise { state := s_pm } } } } when (state === s_pm) { val pmp = WireInit(io.pmpResp) is_mmio := pmp.mmio // NOTE: only handle load/store exception here, if other exception happens, don't send here val exception_va = exceptionVec(storePageFault) || exceptionVec(loadPageFault) || exceptionVec(storeAccessFault) || exceptionVec(loadAccessFault) val exception_pa = pmp.st || pmp.ld when (exception_va || exception_pa) { state := s_finish out_valid := true.B atom_override_xtval := true.B }.otherwise { // if sbuffer has been flushed, go to query dcache, otherwise wait for sbuffer. state := Mux(sbuffer_empty, s_cache_req, s_wait_flush_sbuffer_resp); } // update storeAccessFault bit exceptionVec(loadAccessFault) := exceptionVec(loadAccessFault) || pmp.ld && isLr exceptionVec(storeAccessFault) := exceptionVec(storeAccessFault) || pmp.st || pmp.ld && !isLr } when (state === s_wait_flush_sbuffer_resp) { when (sbuffer_empty) { state := s_cache_req } } when (state === s_cache_req) { val pipe_req = io.dcache.req.bits pipe_req := DontCare pipe_req.cmd := LookupTree(in.uop.ctrl.fuOpType, List( LSUOpType.lr_w -> M_XLR, LSUOpType.sc_w -> M_XSC, LSUOpType.amoswap_w -> M_XA_SWAP, LSUOpType.amoadd_w -> M_XA_ADD, LSUOpType.amoxor_w -> M_XA_XOR, LSUOpType.amoand_w -> M_XA_AND, LSUOpType.amoor_w -> M_XA_OR, LSUOpType.amomin_w -> M_XA_MIN, LSUOpType.amomax_w -> M_XA_MAX, LSUOpType.amominu_w -> M_XA_MINU, LSUOpType.amomaxu_w -> M_XA_MAXU, LSUOpType.lr_d -> M_XLR, LSUOpType.sc_d -> M_XSC, LSUOpType.amoswap_d -> M_XA_SWAP, LSUOpType.amoadd_d -> M_XA_ADD, LSUOpType.amoxor_d -> M_XA_XOR, LSUOpType.amoand_d -> M_XA_AND, LSUOpType.amoor_d -> M_XA_OR, LSUOpType.amomin_d -> M_XA_MIN, LSUOpType.amomax_d -> M_XA_MAX, LSUOpType.amominu_d -> M_XA_MINU, LSUOpType.amomaxu_d -> M_XA_MAXU )) pipe_req.miss := false.B pipe_req.probe := false.B pipe_req.probe_need_data := false.B pipe_req.source := AMO_SOURCE.U pipe_req.addr := get_block_addr(paddr) pipe_req.vaddr := get_block_addr(in.src(0)) // vaddr pipe_req.word_idx := get_word(paddr) pipe_req.amo_data := genWdata(in.src(1), in.uop.ctrl.fuOpType(1,0)) pipe_req.amo_mask := genWmask(paddr, in.uop.ctrl.fuOpType(1,0)) io.dcache.req.valid := Mux( io.dcache.req.bits.cmd === M_XLR, !io.dcache.block_lr, // block lr to survive in lr storm data_valid // wait until src(1) is ready ) when(io.dcache.req.fire){ state := s_cache_resp paddr_reg := paddr data_reg := io.dcache.req.bits.amo_data mask_reg := io.dcache.req.bits.amo_mask fuop_reg := in.uop.ctrl.fuOpType } } val dcache_resp_data = Reg(UInt()) val dcache_resp_id = Reg(UInt()) val dcache_resp_error = Reg(Bool()) when (state === s_cache_resp) { // when not miss // everything is OK, simply send response back to sbuffer // when miss and not replay // wait for missQueue to handling miss and replaying our request // when miss and replay // req missed and fail to enter missQueue, manually replay it later // TODO: add assertions: // 1. add a replay delay counter? // 2. when req gets into MissQueue, it should not miss any more when(io.dcache.resp.fire()) { when(io.dcache.resp.bits.miss) { when(io.dcache.resp.bits.replay) { state := s_cache_req } } .otherwise { dcache_resp_data := io.dcache.resp.bits.data dcache_resp_id := io.dcache.resp.bits.id dcache_resp_error := io.dcache.resp.bits.error state := s_cache_resp_latch } } } when (state === s_cache_resp_latch) { is_lrsc_valid := dcache_resp_id val rdataSel = LookupTree(paddr(2, 0), List( "b000".U -> dcache_resp_data(63, 0), "b001".U -> dcache_resp_data(63, 8), "b010".U -> dcache_resp_data(63, 16), "b011".U -> dcache_resp_data(63, 24), "b100".U -> dcache_resp_data(63, 32), "b101".U -> dcache_resp_data(63, 40), "b110".U -> dcache_resp_data(63, 48), "b111".U -> dcache_resp_data(63, 56) )) resp_data_wire := LookupTree(in.uop.ctrl.fuOpType, List( LSUOpType.lr_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.sc_w -> dcache_resp_data, LSUOpType.amoswap_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amoadd_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amoxor_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amoand_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amoor_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amomin_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amomax_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amominu_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.amomaxu_w -> SignExt(rdataSel(31, 0), XLEN), LSUOpType.lr_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.sc_d -> dcache_resp_data, LSUOpType.amoswap_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amoadd_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amoxor_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amoand_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amoor_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amomin_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amomax_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amominu_d -> SignExt(rdataSel(63, 0), XLEN), LSUOpType.amomaxu_d -> SignExt(rdataSel(63, 0), XLEN) )) when (dcache_resp_error && io.csrCtrl.cache_error_enable) { exceptionVec(loadAccessFault) := isLr exceptionVec(storeAccessFault) := !isLr assert(!exceptionVec(loadAccessFault)) assert(!exceptionVec(storeAccessFault)) } resp_data := resp_data_wire state := s_finish out_valid := true.B } io.out.valid := out_valid XSError((state === s_finish) =/= out_valid, "out_valid reg error\n") io.out.bits := DontCare io.out.bits.uop := in.uop io.out.bits.uop.cf.exceptionVec := exceptionVec io.out.bits.data := resp_data io.out.bits.redirectValid := false.B io.out.bits.debug.isMMIO := is_mmio io.out.bits.debug.paddr := paddr when (io.out.fire) { XSDebug("atomics writeback: pc %x data %x\n", io.out.bits.uop.cf.pc, io.dcache.resp.bits.data) state := s_invalid out_valid := false.B } when (state === s_finish) { data_valid := false.B } when (io.redirect.valid) { atom_override_xtval := false.B } // atomic trigger val csrCtrl = io.csrCtrl val tdata = Reg(Vec(6, new MatchTriggerIO)) val tEnable = RegInit(VecInit(Seq.fill(6)(false.B))) val en = csrCtrl.trigger_enable tEnable := VecInit(en(2), en (3), en(7), en(4), en(5), en(9)) when(csrCtrl.mem_trigger.t.valid) { tdata(csrCtrl.mem_trigger.t.bits.addr) := csrCtrl.mem_trigger.t.bits.tdata } val lTriggerMapping = Map(0 -> 2, 1 -> 3, 2 -> 5) val sTriggerMapping = Map(0 -> 0, 1 -> 1, 2 -> 4) val backendTriggerHitReg = Reg(Vec(6, Bool())) backendTriggerHitReg := VecInit(Seq.fill(6)(false.B)) when(state === s_cache_req){ // store trigger val store_hit = Wire(Vec(3, Bool())) for (j <- 0 until 3) { store_hit(j) := !tdata(sTriggerMapping(j)).select && TriggerCmp( vaddr, tdata(sTriggerMapping(j)).tdata2, tdata(sTriggerMapping(j)).matchType, tEnable(sTriggerMapping(j)) ) backendTriggerHitReg(sTriggerMapping(j)) := store_hit(j) } when(tdata(0).chain) { backendTriggerHitReg(0) := store_hit(0) && store_hit(1) backendTriggerHitReg(1) := store_hit(0) && store_hit(1) } when(!in.uop.cf.trigger.backendEn(0)) { backendTriggerHitReg(4) := false.B } // load trigger val load_hit = Wire(Vec(3, Bool())) for (j <- 0 until 3) { val addrHit = TriggerCmp( vaddr, tdata(lTriggerMapping(j)).tdata2, tdata(lTriggerMapping(j)).matchType, tEnable(lTriggerMapping(j)) ) load_hit(j) := addrHit && !tdata(lTriggerMapping(j)).select backendTriggerHitReg(lTriggerMapping(j)) := load_hit(j) } when(tdata(2).chain) { backendTriggerHitReg(2) := load_hit(0) && load_hit(1) backendTriggerHitReg(3) := load_hit(0) && load_hit(1) } when(!in.uop.cf.trigger.backendEn(1)) { backendTriggerHitReg(5) := false.B } } // addr trigger do cmp at s_cache_req // trigger result is used at s_finish // thus we can delay it safely io.out.bits.uop.cf.trigger.backendHit := VecInit(Seq.fill(6)(false.B)) when(isLr){ // enable load trigger io.out.bits.uop.cf.trigger.backendHit(2) := backendTriggerHitReg(2) io.out.bits.uop.cf.trigger.backendHit(3) := backendTriggerHitReg(3) io.out.bits.uop.cf.trigger.backendHit(5) := backendTriggerHitReg(5) }.otherwise{ // enable store trigger io.out.bits.uop.cf.trigger.backendHit(0) := backendTriggerHitReg(0) io.out.bits.uop.cf.trigger.backendHit(1) := backendTriggerHitReg(1) io.out.bits.uop.cf.trigger.backendHit(4) := backendTriggerHitReg(4) } if (env.EnableDifftest) { val difftest = DifftestModule(new DiffAtomicEvent) difftest.clock := clock difftest.coreid := io.hartId difftest.valid := state === s_cache_resp_latch difftest.addr := paddr_reg difftest.data := data_reg difftest.mask := mask_reg difftest.fuop := fuop_reg difftest.out := resp_data_wire } if (env.EnableDifftest || env.AlwaysBasicDiff) { val uop = io.out.bits.uop val difftest = DifftestModule(new DiffLrScEvent) difftest.clock := clock difftest.coreid := io.hartId difftest.valid := io.out.fire && (uop.ctrl.fuOpType === LSUOpType.sc_d || uop.ctrl.fuOpType === LSUOpType.sc_w) difftest.success := is_lrsc_valid } }