/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.mem import org.chipsalliance.cde.config._ import chisel3._ import chisel3.util._ import utils._ import utility._ import xiangshan._ import xiangshan.ExceptionNO._ import xiangshan.frontend.FtqPtr import xiangshan.backend.rob.{RobLsqIO, RobPtr} import xiangshan.backend.fu.fpu.FPU import xiangshan.backend.fu.FuConfig._ import xiangshan.backend.Bundles.{DynInst, MemExuOutput} import xiangshan.mem.Bundles._ import xiangshan.mem.mdp._ import xiangshan.cache._ import xiangshan.cache.wpu.ReplayCarry import xiangshan.cache.mmu._ import math._ object LoadReplayCauses { // these causes have priority, lower coding has higher priority. // when load replay happens, load unit will select highest priority // from replay causes vector /* * Warning: * ************************************************************ * * Don't change the priority. If the priority is changed, * * * deadlock may occur. If you really need to change or * * * add priority, please ensure that no deadlock will occur. * * ************************************************************ * */ // st-ld violation re-execute check val C_MA = 0 // tlb miss check val C_TM = 1 // store-to-load-forwarding check val C_FF = 2 // dcache replay check val C_DR = 3 // dcache miss check val C_DM = 4 // wpu predict fail val C_WF = 5 // dcache bank conflict check val C_BC = 6 // RAR queue accept check val C_RAR = 7 // RAW queue accept check val C_RAW = 8 // st-ld violation val C_NK = 9 // misalignBuffer Full val C_MF = 10 // total causes val allCauses = 11 } class VecReplayInfo(implicit p: Parameters) extends XSBundle with HasVLSUParameters { val isvec = Bool() val isLastElem = Bool() val is128bit = Bool() val uop_unit_stride_fof = Bool() val usSecondInv = Bool() val elemIdx = UInt(elemIdxBits.W) val alignedType = UInt(alignTypeBits.W) val mbIndex = UInt(max(vlmBindexBits, vsmBindexBits).W) val elemIdxInsideVd = UInt(elemIdxBits.W) val reg_offset = UInt(vOffsetBits.W) val vecActive = Bool() val is_first_ele = Bool() val mask = UInt((VLEN/8).W) } class AgeDetector(numEntries: Int, numEnq: Int, regOut: Boolean = true)(implicit p: Parameters) extends XSModule { val io = IO(new Bundle { // NOTE: deq and enq may come at the same cycle. val enq = Vec(numEnq, Input(UInt(numEntries.W))) val deq = Input(UInt(numEntries.W)) val ready = Input(UInt(numEntries.W)) val out = Output(UInt(numEntries.W)) }) // age(i)(j): entry i enters queue before entry j val age = Seq.fill(numEntries)(Seq.fill(numEntries)(RegInit(false.B))) val nextAge = Seq.fill(numEntries)(Seq.fill(numEntries)(Wire(Bool()))) // to reduce reg usage, only use upper matrix def get_age(row: Int, col: Int): Bool = if (row <= col) age(row)(col) else !age(col)(row) def get_next_age(row: Int, col: Int): Bool = if (row <= col) nextAge(row)(col) else !nextAge(col)(row) def isFlushed(i: Int): Bool = io.deq(i) def isEnqueued(i: Int, numPorts: Int = -1): Bool = { val takePorts = if (numPorts == -1) io.enq.length else numPorts takePorts match { case 0 => false.B case 1 => io.enq.head(i) && !isFlushed(i) case n => VecInit(io.enq.take(n).map(_(i))).asUInt.orR && !isFlushed(i) } } for ((row, i) <- nextAge.zipWithIndex) { val thisValid = get_age(i, i) || isEnqueued(i) for ((elem, j) <- row.zipWithIndex) { when (isFlushed(i)) { // (1) when entry i is flushed or dequeues, set row(i) to false.B elem := false.B }.elsewhen (isFlushed(j)) { // (2) when entry j is flushed or dequeues, set column(j) to validVec elem := thisValid }.elsewhen (isEnqueued(i)) { // (3) when entry i enqueues from port k, // (3.1) if entry j enqueues from previous ports, set to false // (3.2) otherwise, set to true if and only of entry j is invalid // overall: !jEnqFromPreviousPorts && !jIsValid val sel = io.enq.map(_(i)) val result = (0 until numEnq).map(k => isEnqueued(j, k)) // why ParallelMux: sel must be one-hot since enq is one-hot elem := !get_age(j, j) && !ParallelMux(sel, result) }.otherwise { // default: unchanged elem := get_age(i, j) } age(i)(j) := elem } } def getOldest(get: (Int, Int) => Bool): UInt = { VecInit((0 until numEntries).map(i => { io.ready(i) & VecInit((0 until numEntries).map(j => if (i != j) !io.ready(j) || get(i, j) else true.B)).asUInt.andR })).asUInt } val best = getOldest(get_age) val nextBest = getOldest(get_next_age) io.out := (if (regOut) best else nextBest) } object AgeDetector { def apply(numEntries: Int, enq: Vec[UInt], deq: UInt, ready: UInt)(implicit p: Parameters): Valid[UInt] = { val age = Module(new AgeDetector(numEntries, enq.length, regOut = true)) age.io.enq := enq age.io.deq := deq age.io.ready:= ready val out = Wire(Valid(UInt(deq.getWidth.W))) out.valid := age.io.out.orR out.bits := age.io.out out } } class LoadQueueReplay(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper with HasLoadHelper with HasTlbConst with HasPerfEvents { val io = IO(new Bundle() { // control val redirect = Flipped(ValidIO(new Redirect)) val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) // from load unit s3 val enq = Vec(LoadPipelineWidth, Flipped(Decoupled(new LqWriteBundle))) // from sta s1 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // from std s1 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // queue-based replay val replay = Vec(LoadPipelineWidth, Decoupled(new LsPipelineBundle)) // val refill = Flipped(ValidIO(new Refill)) val tl_d_channel = Input(new DcacheToLduForwardIO) // from StoreQueue val stAddrReadySqPtr = Input(new SqPtr) val stAddrReadyVec = Input(Vec(StoreQueueSize, Bool())) val stDataReadySqPtr = Input(new SqPtr) val stDataReadyVec = Input(Vec(StoreQueueSize, Bool())) // val sqEmpty = Input(Bool()) val lqFull = Output(Bool()) val ldWbPtr = Input(new LqPtr) val rarFull = Input(Bool()) val rawFull = Input(Bool()) val loadMisalignFull = Input(Bool()) val l2_hint = Input(Valid(new L2ToL1Hint())) val tlb_hint = Flipped(new TlbHintIO) val tlbReplayDelayCycleCtrl = Vec(4, Input(UInt(ReSelectLen.W))) val debugTopDown = new LoadQueueTopDownIO }) println("LoadQueueReplay size: " + LoadQueueReplaySize) // LoadQueueReplay field: // +-----------+---------+-------+-------------+--------+ // | Allocated | MicroOp | VAddr | Cause | Flags | // +-----------+---------+-------+-------------+--------+ // Allocated : entry has been allocated already // MicroOp : inst's microOp // VAddr : virtual address // Cause : replay cause // Flags : rar/raw queue allocate flags val allocated = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) // The control signals need to explicitly indicate the initial value val scheduled = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) val uop = Reg(Vec(LoadQueueReplaySize, new DynInst)) val vecReplay = Reg(Vec(LoadQueueReplaySize, new VecReplayInfo)) val vaddrModule = Module(new LqVAddrModule( gen = UInt(VAddrBits.W), numEntries = LoadQueueReplaySize, numRead = LoadPipelineWidth, numWrite = LoadPipelineWidth, numWBank = LoadQueueNWriteBanks, numWDelay = 2, numCamPort = 0)) vaddrModule.io := DontCare val debug_vaddr = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(VAddrBits.W)))) val cause = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U(LoadReplayCauses.allCauses.W)))) val blocking = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) val strict = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) // freeliset: store valid entries index. // +---+---+--------------+-----+-----+ // | 0 | 1 | ...... | n-2 | n-1 | // +---+---+--------------+-----+-----+ val freeList = Module(new FreeList( size = LoadQueueReplaySize, allocWidth = LoadPipelineWidth, freeWidth = 4, enablePreAlloc = true, moduleName = "LoadQueueReplay freelist" )) freeList.io := DontCare /** * used for re-select control */ val blockSqIdx = Reg(Vec(LoadQueueReplaySize, new SqPtr)) // DCache miss block val missMSHRId = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U((log2Up(cfg.nMissEntries+1).W))))) val tlbHintId = RegInit(VecInit(List.fill(LoadQueueReplaySize)(0.U((log2Up(loadfiltersize+1).W))))) // Has this load already updated dcache replacement? val replacementUpdated = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) val missDbUpdated = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) val trueCacheMissReplay = WireInit(VecInit(cause.map(_(LoadReplayCauses.C_DM)))) val replayCarryReg = RegInit(VecInit(List.fill(LoadQueueReplaySize)(ReplayCarry(nWays, 0.U, false.B)))) val dataInLastBeatReg = RegInit(VecInit(List.fill(LoadQueueReplaySize)(false.B))) // LoadQueueReplay deallocate val freeMaskVec = Wire(Vec(LoadQueueReplaySize, Bool())) /** * Enqueue */ val canEnqueue = io.enq.map(_.valid) val cancelEnq = io.enq.map(enq => enq.bits.uop.robIdx.needFlush(io.redirect)) val needReplay = io.enq.map(enq => enq.bits.rep_info.need_rep) val hasExceptions = io.enq.map(enq => ExceptionNO.selectByFu(enq.bits.uop.exceptionVec, LduCfg).asUInt.orR && !enq.bits.tlbMiss) val loadReplay = io.enq.map(enq => enq.bits.isLoadReplay) val needEnqueue = VecInit((0 until LoadPipelineWidth).map(w => { canEnqueue(w) && !cancelEnq(w) && needReplay(w) && !hasExceptions(w) })) val newEnqueue = Wire(Vec(LoadPipelineWidth, Bool())) val canFreeVec = VecInit((0 until LoadPipelineWidth).map(w => { canEnqueue(w) && loadReplay(w) && (!needReplay(w) || hasExceptions(w)) })) // select LoadPipelineWidth valid index. val lqFull = freeList.io.empty val lqFreeNums = freeList.io.validCount // replay logic // release logic generation val storeAddrInSameCycleVec = Wire(Vec(LoadQueueReplaySize, Bool())) val storeDataInSameCycleVec = Wire(Vec(LoadQueueReplaySize, Bool())) val addrNotBlockVec = Wire(Vec(LoadQueueReplaySize, Bool())) val dataNotBlockVec = Wire(Vec(LoadQueueReplaySize, Bool())) val storeAddrValidVec = addrNotBlockVec.asUInt | storeAddrInSameCycleVec.asUInt val storeDataValidVec = dataNotBlockVec.asUInt | storeDataInSameCycleVec.asUInt // store data valid check val stAddrReadyVec = io.stAddrReadyVec val stDataReadyVec = io.stDataReadyVec for (i <- 0 until LoadQueueReplaySize) { // dequeue // FIXME: store*Ptr is not accurate dataNotBlockVec(i) := isAfter(io.stDataReadySqPtr, blockSqIdx(i)) || stDataReadyVec(blockSqIdx(i).value) || io.sqEmpty // for better timing addrNotBlockVec(i) := isAfter(io.stAddrReadySqPtr, blockSqIdx(i)) || !strict(i) && stAddrReadyVec(blockSqIdx(i).value) || io.sqEmpty // for better timing // store address execute storeAddrInSameCycleVec(i) := VecInit((0 until StorePipelineWidth).map(w => { io.storeAddrIn(w).valid && !io.storeAddrIn(w).bits.miss && blockSqIdx(i) === io.storeAddrIn(w).bits.uop.sqIdx })).asUInt.orR // for better timing // store data execute storeDataInSameCycleVec(i) := VecInit((0 until StorePipelineWidth).map(w => { io.storeDataIn(w).valid && blockSqIdx(i) === io.storeDataIn(w).bits.uop.sqIdx })).asUInt.orR // for better timing } // store addr issue check val stAddrDeqVec = Wire(Vec(LoadQueueReplaySize, Bool())) (0 until LoadQueueReplaySize).map(i => { stAddrDeqVec(i) := allocated(i) && storeAddrValidVec(i) }) // store data issue check val stDataDeqVec = Wire(Vec(LoadQueueReplaySize, Bool())) (0 until LoadQueueReplaySize).map(i => { stDataDeqVec(i) := allocated(i) && storeDataValidVec(i) }) // update blocking condition (0 until LoadQueueReplaySize).map(i => { // case C_MA when (cause(i)(LoadReplayCauses.C_MA)) { blocking(i) := Mux(stAddrDeqVec(i), false.B, blocking(i)) } // case C_TM when (cause(i)(LoadReplayCauses.C_TM)) { blocking(i) := Mux(io.tlb_hint.resp.valid && (io.tlb_hint.resp.bits.replay_all || io.tlb_hint.resp.bits.id === tlbHintId(i)), false.B, blocking(i)) } // case C_FF when (cause(i)(LoadReplayCauses.C_FF)) { blocking(i) := Mux(stDataDeqVec(i), false.B, blocking(i)) } // case C_DM when (cause(i)(LoadReplayCauses.C_DM)) { blocking(i) := Mux(io.tl_d_channel.valid && io.tl_d_channel.mshrid === missMSHRId(i), false.B, blocking(i)) } // case C_RAR when (cause(i)(LoadReplayCauses.C_RAR)) { blocking(i) := Mux((!io.rarFull || !isAfter(uop(i).lqIdx, io.ldWbPtr)), false.B, blocking(i)) } // case C_RAW when (cause(i)(LoadReplayCauses.C_RAW)) { blocking(i) := Mux((!io.rawFull || !isAfter(uop(i).sqIdx, io.stAddrReadySqPtr)), false.B, blocking(i)) } // case C_MF when (cause(i)(LoadReplayCauses.C_MF)) { blocking(i) := Mux(!io.loadMisalignFull, false.B, blocking(i)) } }) // Replay is splitted into 3 stages require((LoadQueueReplaySize % LoadPipelineWidth) == 0) def getRemBits(input: UInt)(rem: Int): UInt = { VecInit((0 until LoadQueueReplaySize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) })).asUInt } def getRemSeq(input: Seq[Seq[Bool]])(rem: Int) = { (0 until LoadQueueReplaySize / LoadPipelineWidth).map(i => { input(LoadPipelineWidth * i + rem) }) } // stage1: select 2 entries and read their vaddr val s0_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(LoadQueueReplaySize.W)))) val s1_can_go = Wire(Vec(LoadPipelineWidth, Bool())) val s1_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(log2Up(LoadQueueReplaySize + 1).W)))) val s2_can_go = Wire(Vec(LoadPipelineWidth, Bool())) val s2_oldestSel = Wire(Vec(LoadPipelineWidth, Valid(UInt(log2Up(LoadQueueReplaySize + 1).W)))) // generate mask val needCancel = Wire(Vec(LoadQueueReplaySize, Bool())) // generate enq mask val enqIndexOH = Wire(Vec(LoadPipelineWidth, UInt(LoadQueueReplaySize.W))) val s0_loadEnqFireMask = newEnqueue.zip(enqIndexOH).map(x => Mux(x._1, x._2, 0.U)) val s0_remLoadEnqFireVec = s0_loadEnqFireMask.map(x => VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(x)(rem)))) val s0_remEnqSelVec = Seq.tabulate(LoadPipelineWidth)(w => VecInit(s0_remLoadEnqFireVec.map(x => x(w)))) // generate free mask val s0_loadFreeSelMask = GatedRegNext(freeMaskVec.asUInt) val s0_remFreeSelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => getRemBits(s0_loadFreeSelMask)(rem))) // l2 hint wakes up cache missed load // l2 will send GrantData in next 2/3 cycle, wake up the missed load early and sent them to load pipe, so them will hit the data in D channel or mshr in load S1 val s0_loadHintWakeMask = VecInit((0 until LoadQueueReplaySize).map(i => { allocated(i) && !scheduled(i) && cause(i)(LoadReplayCauses.C_DM) && blocking(i) && missMSHRId(i) === io.l2_hint.bits.sourceId && io.l2_hint.valid })).asUInt // l2 will send 2 beats data in 2 cycles, so if data needed by this load is in first beat, select it this cycle, otherwise next cycle // when isKeyword = 1, s0_loadHintSelMask need overturn val s0_loadHintSelMask = Mux( io.l2_hint.bits.isKeyword, s0_loadHintWakeMask & dataInLastBeatReg.asUInt, s0_loadHintWakeMask & VecInit(dataInLastBeatReg.map(!_)).asUInt ) val s0_remLoadHintSelMask = VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(s0_loadHintSelMask)(rem))) val s0_remHintSelValidVec = VecInit((0 until LoadPipelineWidth).map(rem => ParallelORR(s0_remLoadHintSelMask(rem)))) val s0_hintSelValid = ParallelORR(s0_loadHintSelMask) // wake up cache missed load (0 until LoadQueueReplaySize).foreach(i => { when(s0_loadHintWakeMask(i)) { blocking(i) := false.B } }) // generate replay mask // replay select priority is given as follow // 1. hint wake up load // 2. higher priority load // 3. lower priority load val s0_loadHigherPriorityReplaySelMask = VecInit((0 until LoadQueueReplaySize).map(i => { val hasHigherPriority = cause(i)(LoadReplayCauses.C_DM) || cause(i)(LoadReplayCauses.C_FF) allocated(i) && !scheduled(i) && !blocking(i) && hasHigherPriority })).asUInt // use uint instead vec to reduce verilog lines val s0_remLoadHigherPriorityReplaySelMask = VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(s0_loadHigherPriorityReplaySelMask)(rem))) val s0_loadLowerPriorityReplaySelMask = VecInit((0 until LoadQueueReplaySize).map(i => { val hasLowerPriority = !cause(i)(LoadReplayCauses.C_DM) && !cause(i)(LoadReplayCauses.C_FF) allocated(i) && !scheduled(i) && !blocking(i) && hasLowerPriority })).asUInt // use uint instead vec to reduce verilog lines val s0_remLoadLowerPriorityReplaySelMask = VecInit((0 until LoadPipelineWidth).map(rem => getRemBits(s0_loadLowerPriorityReplaySelMask)(rem))) val s0_loadNormalReplaySelMask = s0_loadLowerPriorityReplaySelMask | s0_loadHigherPriorityReplaySelMask | s0_loadHintSelMask val s0_remNormalReplaySelVec = VecInit((0 until LoadPipelineWidth).map(rem => s0_remLoadLowerPriorityReplaySelMask(rem) | s0_remLoadHigherPriorityReplaySelMask(rem) | s0_remLoadHintSelMask(rem))) val s0_remPriorityReplaySelVec = VecInit((0 until LoadPipelineWidth).map(rem => { Mux(s0_remHintSelValidVec(rem), s0_remLoadHintSelMask(rem), Mux(ParallelORR(s0_remLoadHigherPriorityReplaySelMask(rem)), s0_remLoadHigherPriorityReplaySelMask(rem), s0_remLoadLowerPriorityReplaySelMask(rem))) })) /****************************************************************************************************** * WARNING: Make sure that OldestSelectStride must less than or equal stages of load pipeline. * ****************************************************************************************************** */ val OldestSelectStride = 4 val oldestPtrExt = (0 until OldestSelectStride).map(i => io.ldWbPtr + i.U) val s0_oldestMatchMaskVec = (0 until LoadQueueReplaySize).map(i => (0 until OldestSelectStride).map(j => s0_loadNormalReplaySelMask(i) && uop(i).lqIdx === oldestPtrExt(j))) val s0_remOldsetMatchMaskVec = (0 until LoadPipelineWidth).map(rem => getRemSeq(s0_oldestMatchMaskVec.map(_.take(1)))(rem)) val s0_remOlderMatchMaskVec = (0 until LoadPipelineWidth).map(rem => getRemSeq(s0_oldestMatchMaskVec.map(_.drop(1)))(rem)) val s0_remOldestSelVec = VecInit(Seq.tabulate(LoadPipelineWidth)(rem => { VecInit((0 until LoadQueueReplaySize / LoadPipelineWidth).map(i => { Mux(ParallelORR(s0_remOldsetMatchMaskVec(rem).map(_(0))), s0_remOldsetMatchMaskVec(rem)(i)(0), s0_remOlderMatchMaskVec(rem)(i).reduce(_|_)) })).asUInt })) val s0_remOldestHintSelVec = s0_remOldestSelVec.zip(s0_remLoadHintSelMask).map { case(oldestVec, hintVec) => oldestVec & hintVec } // select oldest logic s0_oldestSel := VecInit((0 until LoadPipelineWidth).map(rport => { // select enqueue earlest inst val ageOldest = AgeDetector(LoadQueueReplaySize / LoadPipelineWidth, s0_remEnqSelVec(rport), s0_remFreeSelVec(rport), s0_remPriorityReplaySelVec(rport)) assert(!(ageOldest.valid && PopCount(ageOldest.bits) > 1.U), "oldest index must be one-hot!") val ageOldestValid = ageOldest.valid val ageOldestIndexOH = ageOldest.bits // select program order oldest val l2HintFirst = io.l2_hint.valid && ParallelORR(s0_remOldestHintSelVec(rport)) val issOldestValid = l2HintFirst || ParallelORR(s0_remOldestSelVec(rport)) val issOldestIndexOH = Mux(l2HintFirst, PriorityEncoderOH(s0_remOldestHintSelVec(rport)), PriorityEncoderOH(s0_remOldestSelVec(rport))) val oldest = Wire(Valid(UInt())) val oldestSel = Mux(issOldestValid, issOldestIndexOH, ageOldestIndexOH) val oldestBitsVec = Wire(Vec(LoadQueueReplaySize, Bool())) require((LoadQueueReplaySize % LoadPipelineWidth) == 0) oldestBitsVec.foreach(e => e := false.B) for (i <- 0 until LoadQueueReplaySize / LoadPipelineWidth) { oldestBitsVec(i * LoadPipelineWidth + rport) := oldestSel(i) } oldest.valid := ageOldest.valid || issOldestValid oldest.bits := oldestBitsVec.asUInt oldest })) // stage2: send replay request to load unit // replay cold down val ColdDownCycles = 16 val coldCounter = RegInit(VecInit(List.fill(LoadPipelineWidth)(0.U(log2Up(ColdDownCycles).W)))) val ColdDownThreshold = Wire(UInt(log2Up(ColdDownCycles).W)) ColdDownThreshold := Constantin.createRecord(s"ColdDownThreshold_${p(XSCoreParamsKey).HartId}", initValue = 12) assert(ColdDownCycles.U > ColdDownThreshold, "ColdDownCycles must great than ColdDownThreshold!") def replayCanFire(i: Int) = coldCounter(i) >= 0.U && coldCounter(i) < ColdDownThreshold def coldDownNow(i: Int) = coldCounter(i) >= ColdDownThreshold val replay_req = Wire(Vec(LoadPipelineWidth, DecoupledIO(new LsPipelineBundle))) for (i <- 0 until LoadPipelineWidth) { val s0_can_go = s1_can_go(i) || uop(s1_oldestSel(i).bits).robIdx.needFlush(io.redirect) || uop(s1_oldestSel(i).bits).robIdx.needFlush(RegNext(io.redirect)) val s0_oldestSelIndexOH = s0_oldestSel(i).bits // one-hot s1_oldestSel(i).valid := RegEnable(s0_oldestSel(i).valid, false.B, s0_can_go) s1_oldestSel(i).bits := RegEnable(OHToUInt(s0_oldestSel(i).bits), s0_can_go) for (j <- 0 until LoadQueueReplaySize) { when (s0_can_go && s0_oldestSel(i).valid && s0_oldestSelIndexOH(j)) { scheduled(j) := true.B } } } val s2_cancelReplay = Wire(Vec(LoadPipelineWidth, Bool())) for (i <- 0 until LoadPipelineWidth) { val s1_cancel = uop(s1_oldestSel(i).bits).robIdx.needFlush(io.redirect) || uop(s1_oldestSel(i).bits).robIdx.needFlush(RegNext(io.redirect)) val s1_oldestSelV = s1_oldestSel(i).valid && !s1_cancel s1_can_go(i) := replayCanFire(i) && (!s2_oldestSel(i).valid || replay_req(i).fire) || s2_cancelReplay(i) s2_oldestSel(i).valid := RegEnable(Mux(s1_can_go(i), s1_oldestSelV, false.B), false.B, (s1_can_go(i) || replay_req(i).fire)) s2_oldestSel(i).bits := RegEnable(s1_oldestSel(i).bits, s1_can_go(i)) vaddrModule.io.ren(i) := s1_oldestSel(i).valid && s1_can_go(i) vaddrModule.io.raddr(i) := s1_oldestSel(i).bits } for (i <- 0 until LoadPipelineWidth) { val s1_replayIdx = s1_oldestSel(i).bits val s2_replayUop = RegEnable(uop(s1_replayIdx), s1_can_go(i)) val s2_vecReplay = RegEnable(vecReplay(s1_replayIdx), s1_can_go(i)) val s2_replayMSHRId = RegEnable(missMSHRId(s1_replayIdx), s1_can_go(i)) val s2_replacementUpdated = RegEnable(replacementUpdated(s1_replayIdx), s1_can_go(i)) val s2_missDbUpdated = RegEnable(missDbUpdated(s1_replayIdx), s1_can_go(i)) val s2_replayCauses = RegEnable(cause(s1_replayIdx), s1_can_go(i)) val s2_replayCarry = RegEnable(replayCarryReg(s1_replayIdx), s1_can_go(i)) val s2_replayCacheMissReplay = RegEnable(trueCacheMissReplay(s1_replayIdx), s1_can_go(i)) s2_cancelReplay(i) := s2_replayUop.robIdx.needFlush(io.redirect) s2_can_go(i) := DontCare replay_req(i).valid := s2_oldestSel(i).valid replay_req(i).bits := DontCare replay_req(i).bits.uop := s2_replayUop replay_req(i).bits.uop.exceptionVec(loadAddrMisaligned) := false.B replay_req(i).bits.isvec := s2_vecReplay.isvec replay_req(i).bits.isLastElem := s2_vecReplay.isLastElem replay_req(i).bits.is128bit := s2_vecReplay.is128bit replay_req(i).bits.uop_unit_stride_fof := s2_vecReplay.uop_unit_stride_fof replay_req(i).bits.usSecondInv := s2_vecReplay.usSecondInv replay_req(i).bits.elemIdx := s2_vecReplay.elemIdx replay_req(i).bits.alignedType := s2_vecReplay.alignedType replay_req(i).bits.mbIndex := s2_vecReplay.mbIndex replay_req(i).bits.elemIdxInsideVd := s2_vecReplay.elemIdxInsideVd replay_req(i).bits.reg_offset := s2_vecReplay.reg_offset replay_req(i).bits.vecActive := s2_vecReplay.vecActive replay_req(i).bits.is_first_ele := s2_vecReplay.is_first_ele replay_req(i).bits.mask := s2_vecReplay.mask replay_req(i).bits.vaddr := vaddrModule.io.rdata(i) replay_req(i).bits.isFirstIssue := false.B replay_req(i).bits.isLoadReplay := true.B replay_req(i).bits.replayCarry := s2_replayCarry replay_req(i).bits.mshrid := s2_replayMSHRId replay_req(i).bits.replacementUpdated := s2_replacementUpdated replay_req(i).bits.missDbUpdated := s2_missDbUpdated replay_req(i).bits.forward_tlDchannel := s2_replayCauses(LoadReplayCauses.C_DM) replay_req(i).bits.schedIndex := s2_oldestSel(i).bits replay_req(i).bits.uop.loadWaitStrict := false.B XSError(replay_req(i).fire && !allocated(s2_oldestSel(i).bits), p"LoadQueueReplay: why replay an invalid entry ${s2_oldestSel(i).bits} ?") } val EnableHybridUnitReplay = Constantin.createRecord("EnableHybridUnitReplay", true) when(EnableHybridUnitReplay) { for (i <- 0 until LoadPipelineWidth) io.replay(i) <> replay_req(i) }.otherwise { io.replay(0) <> replay_req(0) io.replay(2).valid := false.B io.replay(2).bits := DontCare val arbiter = Module(new RRArbiter(new LsPipelineBundle, 2)) arbiter.io.in(0) <> replay_req(1) arbiter.io.in(1) <> replay_req(2) io.replay(1) <> arbiter.io.out } // update cold counter val lastReplay = RegNext(VecInit(io.replay.map(_.fire))) for (i <- 0 until LoadPipelineWidth) { when (lastReplay(i) && io.replay(i).fire) { coldCounter(i) := coldCounter(i) + 1.U } .elsewhen (coldDownNow(i)) { coldCounter(i) := coldCounter(i) + 1.U } .otherwise { coldCounter(i) := 0.U } } // XSDebug(io.refill.valid, "miss resp: paddr:0x%x data %x\n", io.refill.bits.addr, io.refill.bits.data) // init freeMaskVec.map(e => e := false.B) // LoadQueueReplay can't backpressure. // We think LoadQueueReplay can always enter, as long as it is the same size as VirtualLoadQueue. assert(freeList.io.canAllocate.reduce(_ || _) || !io.enq.map(_.valid).reduce(_ || _), s"LoadQueueReplay Overflow") // Allocate logic needEnqueue.zip(newEnqueue).zip(io.enq).map { case ((needEnq, newEnq), enq) => newEnq := needEnq && !enq.bits.isLoadReplay } for ((enq, w) <- io.enq.zipWithIndex) { vaddrModule.io.wen(w) := false.B freeList.io.doAllocate(w) := false.B freeList.io.allocateReq(w) := true.B // Allocated ready val offset = PopCount(newEnqueue.take(w)) val enqIndex = Mux(enq.bits.isLoadReplay, enq.bits.schedIndex, freeList.io.allocateSlot(offset)) enqIndexOH(w) := UIntToOH(enqIndex) enq.ready := true.B val debug_robIdx = enq.bits.uop.robIdx.asUInt XSError( needEnqueue(w) && enq.ready && allocated(enqIndex) && !enq.bits.isLoadReplay, p"LoadQueueReplay: can not accept more load, check: ldu $w, robIdx $debug_robIdx!") XSError( needEnqueue(w) && enq.ready && hasExceptions(w), p"LoadQueueReplay: The instruction has exception, it can not be replay, check: ldu $w, robIdx $debug_robIdx!") when (needEnqueue(w) && enq.ready) { freeList.io.doAllocate(w) := !enq.bits.isLoadReplay // Allocate new entry allocated(enqIndex) := true.B scheduled(enqIndex) := false.B uop(enqIndex) := enq.bits.uop vecReplay(enqIndex).isvec := enq.bits.isvec vecReplay(enqIndex).isLastElem := enq.bits.isLastElem vecReplay(enqIndex).is128bit := enq.bits.is128bit vecReplay(enqIndex).uop_unit_stride_fof := enq.bits.uop_unit_stride_fof vecReplay(enqIndex).usSecondInv := enq.bits.usSecondInv vecReplay(enqIndex).elemIdx := enq.bits.elemIdx vecReplay(enqIndex).alignedType:= enq.bits.alignedType vecReplay(enqIndex).mbIndex := enq.bits.mbIndex vecReplay(enqIndex).elemIdxInsideVd := enq.bits.elemIdxInsideVd vecReplay(enqIndex).reg_offset := enq.bits.reg_offset vecReplay(enqIndex).vecActive := enq.bits.vecActive vecReplay(enqIndex).is_first_ele := enq.bits.is_first_ele vecReplay(enqIndex).mask := enq.bits.mask vaddrModule.io.wen(w) := true.B vaddrModule.io.waddr(w) := enqIndex vaddrModule.io.wdata(w) := enq.bits.vaddr debug_vaddr(enqIndex) := enq.bits.vaddr /** * used for feedback and replay */ // set flags val replayInfo = enq.bits.rep_info val dataInLastBeat = replayInfo.last_beat cause(enqIndex) := replayInfo.cause.asUInt // init blocking(enqIndex) := true.B strict(enqIndex) := false.B // update blocking pointer when (replayInfo.cause(LoadReplayCauses.C_BC) || replayInfo.cause(LoadReplayCauses.C_NK) || replayInfo.cause(LoadReplayCauses.C_DR) || replayInfo.cause(LoadReplayCauses.C_WF)) { // normal case: bank conflict or schedule error or dcache replay // can replay next cycle blocking(enqIndex) := false.B } // special case: tlb miss when (replayInfo.cause(LoadReplayCauses.C_TM)) { blocking(enqIndex) := !replayInfo.tlb_full && !(io.tlb_hint.resp.valid && (io.tlb_hint.resp.bits.id === replayInfo.tlb_id || io.tlb_hint.resp.bits.replay_all)) tlbHintId(enqIndex) := replayInfo.tlb_id } // special case: dcache miss when (replayInfo.cause(LoadReplayCauses.C_DM) && enq.bits.handledByMSHR) { blocking(enqIndex) := !replayInfo.full_fwd && // dcache miss !(io.tl_d_channel.valid && io.tl_d_channel.mshrid === replayInfo.mshr_id) // no refill in this cycle } // special case: st-ld violation when (replayInfo.cause(LoadReplayCauses.C_MA)) { blockSqIdx(enqIndex) := replayInfo.addr_inv_sq_idx strict(enqIndex) := enq.bits.uop.loadWaitStrict } // special case: data forward fail when (replayInfo.cause(LoadReplayCauses.C_FF)) { blockSqIdx(enqIndex) := replayInfo.data_inv_sq_idx } // extra info replayCarryReg(enqIndex) := replayInfo.rep_carry replacementUpdated(enqIndex) := enq.bits.replacementUpdated missDbUpdated(enqIndex) := enq.bits.missDbUpdated // update mshr_id only when the load has already been handled by mshr when(enq.bits.handledByMSHR) { missMSHRId(enqIndex) := replayInfo.mshr_id } dataInLastBeatReg(enqIndex) := dataInLastBeat //dataInLastBeatReg(enqIndex) := Mux(io.l2_hint.bits.isKeyword, !dataInLastBeat, dataInLastBeat) } // val schedIndex = enq.bits.schedIndex when (enq.valid && enq.bits.isLoadReplay) { when (!needReplay(w) || hasExceptions(w)) { allocated(schedIndex) := false.B freeMaskVec(schedIndex) := true.B } .otherwise { scheduled(schedIndex) := false.B } } } // vector load, all replay entries of same robidx and uopidx // should be released when vlmergebuffer commit or flush val vecLdCanceltmp = Wire(Vec(LoadQueueReplaySize, Vec(VecLoadPipelineWidth, Bool()))) val vecLdCancel = Wire(Vec(LoadQueueReplaySize, Bool())) val vecLdCommittmp = Wire(Vec(LoadQueueReplaySize, Vec(VecLoadPipelineWidth, Bool()))) val vecLdCommit = Wire(Vec(LoadQueueReplaySize, Bool())) for (i <- 0 until LoadQueueReplaySize) { val fbk = io.vecFeedback for (j <- 0 until VecLoadPipelineWidth) { vecLdCanceltmp(i)(j) := allocated(i) && fbk(j).valid && fbk(j).bits.isFlush && uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx vecLdCommittmp(i)(j) := allocated(i) && fbk(j).valid && fbk(j).bits.isCommit && uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx } vecLdCancel(i) := vecLdCanceltmp(i).reduce(_ || _) vecLdCommit(i) := vecLdCommittmp(i).reduce(_ || _) XSError(((vecLdCancel(i) || vecLdCommit(i)) && allocated(i)), s"vector load, should not have replay entry $i when commit or flush.\n") } // misprediction recovery / exception redirect for (i <- 0 until LoadQueueReplaySize) { needCancel(i) := uop(i).robIdx.needFlush(io.redirect) && allocated(i) when (needCancel(i)) { allocated(i) := false.B freeMaskVec(i) := true.B } } freeList.io.free := freeMaskVec.asUInt io.lqFull := lqFull // Topdown val robHeadVaddr = io.debugTopDown.robHeadVaddr val uop_wrapper = Wire(Vec(LoadQueueReplaySize, new XSBundleWithMicroOp)) (uop_wrapper.zipWithIndex).foreach { case (u, i) => { u.uop := uop(i) } } val lq_match_vec = (debug_vaddr.zip(allocated)).map{case(va, alloc) => alloc && (va === robHeadVaddr.bits)} val rob_head_lq_match = ParallelOperation(lq_match_vec.zip(uop_wrapper), (a: Tuple2[Bool, XSBundleWithMicroOp], b: Tuple2[Bool, XSBundleWithMicroOp]) => { val (a_v, a_uop) = (a._1, a._2) val (b_v, b_uop) = (b._1, b._2) val res = Mux(a_v && b_v, Mux(isAfter(a_uop.uop.robIdx, b_uop.uop.robIdx), b_uop, a_uop), Mux(a_v, a_uop, Mux(b_v, b_uop, a_uop))) (a_v || b_v, res) }) val lq_match_bits = rob_head_lq_match._2.uop val lq_match = rob_head_lq_match._1 && robHeadVaddr.valid val lq_match_idx = lq_match_bits.lqIdx.value val rob_head_tlb_miss = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_TM) val rob_head_nuke = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_NK) val rob_head_mem_amb = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_MA) val rob_head_confilct_replay = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_BC) val rob_head_forward_fail = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_FF) val rob_head_mshrfull_replay = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_DR) val rob_head_dcache_miss = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_DM) val rob_head_rar_nack = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_RAR) val rob_head_raw_nack = lq_match && cause(lq_match_idx)(LoadReplayCauses.C_RAW) val rob_head_other_replay = lq_match && (rob_head_rar_nack || rob_head_raw_nack || rob_head_forward_fail) val rob_head_vio_replay = rob_head_nuke || rob_head_mem_amb val rob_head_miss_in_dtlb = io.debugTopDown.robHeadMissInDTlb io.debugTopDown.robHeadTlbReplay := rob_head_tlb_miss && !rob_head_miss_in_dtlb io.debugTopDown.robHeadTlbMiss := rob_head_tlb_miss && rob_head_miss_in_dtlb io.debugTopDown.robHeadLoadVio := rob_head_vio_replay io.debugTopDown.robHeadLoadMSHR := rob_head_mshrfull_replay io.debugTopDown.robHeadOtherReplay := rob_head_other_replay val perfValidCount = RegNext(PopCount(allocated)) // perf cnt val enqNumber = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay)) val deqNumber = PopCount(io.replay.map(_.fire)) val deqBlockCount = PopCount(io.replay.map(r => r.valid && !r.ready)) val replayTlbMissCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_TM))) val replayMemAmbCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_MA))) val replayNukeCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_NK))) val replayRARRejectCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_RAR))) val replayRAWRejectCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_RAW))) val replayBankConflictCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_BC))) val replayDCacheReplayCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_DR))) val replayForwardFailCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_FF))) val replayDCacheMissCount = PopCount(io.enq.map(enq => enq.fire && !enq.bits.isLoadReplay && enq.bits.rep_info.cause(LoadReplayCauses.C_DM))) XSPerfAccumulate("enq", enqNumber) XSPerfAccumulate("deq", deqNumber) XSPerfAccumulate("deq_block", deqBlockCount) XSPerfAccumulate("replay_full", io.lqFull) XSPerfAccumulate("replay_rar_nack", replayRARRejectCount) XSPerfAccumulate("replay_raw_nack", replayRAWRejectCount) XSPerfAccumulate("replay_nuke", replayNukeCount) XSPerfAccumulate("replay_mem_amb", replayMemAmbCount) XSPerfAccumulate("replay_tlb_miss", replayTlbMissCount) XSPerfAccumulate("replay_bank_conflict", replayBankConflictCount) XSPerfAccumulate("replay_dcache_replay", replayDCacheReplayCount) XSPerfAccumulate("replay_forward_fail", replayForwardFailCount) XSPerfAccumulate("replay_dcache_miss", replayDCacheMissCount) XSPerfAccumulate("replay_hint_wakeup", s0_hintSelValid) XSPerfAccumulate("replay_hint_priority_beat1", io.l2_hint.valid && io.l2_hint.bits.isKeyword) val perfEvents: Seq[(String, UInt)] = Seq( ("enq", enqNumber), ("deq", deqNumber), ("deq_block", deqBlockCount), ("replay_full", io.lqFull), ("replay_rar_nack", replayRARRejectCount), ("replay_raw_nack", replayRAWRejectCount), ("replay_nuke", replayNukeCount), ("replay_mem_amb", replayMemAmbCount), ("replay_tlb_miss", replayTlbMissCount), ("replay_bank_conflict", replayBankConflictCount), ("replay_dcache_replay", replayDCacheReplayCount), ("replay_forward_fail", replayForwardFailCount), ("replay_dcache_miss", replayDCacheMissCount), ) generatePerfEvent() // end }