/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.mem import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import utils._ import utility._ import xiangshan._ import xiangshan.backend.Bundles.{DynInst, MemExuOutput} import xiangshan.cache._ import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} import xiangshan.cache.mmu.{TlbRequestIO, TlbHintIO} import xiangshan.mem._ import xiangshan.backend._ import xiangshan.backend.rob.RobLsqIO class ExceptionAddrIO(implicit p: Parameters) extends XSBundle { val isStore = Input(Bool()) val vaddr = Output(UInt(VAddrBits.W)) } class FwdEntry extends Bundle { val validFast = Bool() // validFast is generated the same cycle with query val valid = Bool() // valid is generated 1 cycle after query request val data = UInt(8.W) // data is generated 1 cycle after query request } // inflight miss block reqs class InflightBlockInfo(implicit p: Parameters) extends XSBundle { val block_addr = UInt(PAddrBits.W) val valid = Bool() } class LsqEnqIO(implicit p: Parameters) extends MemBlockBundle { val canAccept = Output(Bool()) val needAlloc = Vec(LSQEnqWidth, Input(UInt(2.W))) val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) val resp = Vec(LSQEnqWidth, Output(new LSIdx)) } // Load / Store Queue Wrapper for XiangShan Out of Order LSU class LsqWrapper(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasPerfEvents { val io = IO(new Bundle() { val hartId = Input(UInt(8.W)) val brqRedirect = Flipped(ValidIO(new Redirect)) val enq = new LsqEnqIO val ldu = new Bundle() { val stld_nuke_query = Vec(LoadPipelineWidth, Flipped(new LoadNukeQueryIO)) // from load_s2 val ldld_nuke_query = Vec(LoadPipelineWidth, Flipped(new LoadNukeQueryIO)) // from load_s2 val ldin = Vec(LoadPipelineWidth, Flipped(Decoupled(new LqWriteBundle))) // from load_s3 } val sta = new Bundle() { val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // from store_s0, store mask, send to sq from rs val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // from store_s1 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // from store_s2 val vecStoreAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) } val std = new Bundle() { val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // from store_s0, store data, send to sq from rs } val ldout = Vec(LoadPipelineWidth, DecoupledIO(new MemExuOutput)) val ld_raw_data = Vec(LoadPipelineWidth, Output(new LoadDataFromLQBundle)) val replay = Vec(LoadPipelineWidth, Decoupled(new LsPipelineBundle)) val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) val rob = Flipped(new RobLsqIO) val nuke_rollback = Output(Valid(new Redirect)) val nack_rollback = Output(Valid(new Redirect)) val release = Flipped(Valid(new Release)) val refill = Flipped(Valid(new Refill)) val tl_d_channel = Input(new DcacheToLduForwardIO) val uncacheOutstanding = Input(Bool()) val uncache = new UncacheWordIO val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store val sqEmpty = Output(Bool()) val lq_rep_full = Output(Bool()) val sqFull = Output(Bool()) val lqFull = Output(Bool()) val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize+1).W)) val lqCancelCnt = Output(UInt(log2Up(VirtualLoadQueueSize+1).W)) val lqDeq = Output(UInt(log2Up(CommitWidth + 1).W)) val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) val lqCanAccept = Output(Bool()) val sqCanAccept = Output(Bool()) val lqDeqPtr = Output(new LqPtr) val sqDeqPtr = Output(new SqPtr) val exceptionAddr = new ExceptionAddrIO val trigger = Vec(LoadPipelineWidth, new LqTriggerIO) val issuePtrExt = Output(new SqPtr) val l2_hint = Input(Valid(new L2ToL1Hint())) val tlb_hint = Flipped(new TlbHintIO) val force_write = Output(Bool()) val lqEmpty = Output(Bool()) // vector val vecWriteback = Flipped(ValidIO(new MemExuOutput(isVector = true))) val vecStoreRetire = Flipped(ValidIO(new SqPtr)) val vecMMIOReplay = Vec(VecLoadPipelineWidth, DecoupledIO(new LsPipelineBundle())) // top-down val debugTopDown = new LoadQueueTopDownIO }) val loadQueue = Module(new LoadQueue) val storeQueue = Module(new StoreQueue) storeQueue.io.hartId := io.hartId storeQueue.io.uncacheOutstanding := io.uncacheOutstanding dontTouch(loadQueue.io.tlbReplayDelayCycleCtrl) // Todo: imm val tlbReplayDelayCycleCtrl = WireInit(VecInit(Seq(14.U(ReSelectLen.W), 0.U(ReSelectLen.W), 125.U(ReSelectLen.W), 0.U(ReSelectLen.W)))) loadQueue.io.tlbReplayDelayCycleCtrl := tlbReplayDelayCycleCtrl // io.enq logic // LSQ: send out canAccept when both load queue and store queue are ready // Dispatch: send instructions to LSQ only when they are ready io.enq.canAccept := loadQueue.io.enq.canAccept && storeQueue.io.enq.canAccept io.lqCanAccept := loadQueue.io.enq.canAccept io.sqCanAccept := storeQueue.io.enq.canAccept loadQueue.io.enq.sqCanAccept := storeQueue.io.enq.canAccept storeQueue.io.enq.lqCanAccept := loadQueue.io.enq.canAccept io.lqDeqPtr := loadQueue.io.lqDeqPtr io.sqDeqPtr := storeQueue.io.sqDeqPtr for (i <- io.enq.req.indices) { loadQueue.io.enq.needAlloc(i) := io.enq.needAlloc(i)(0) loadQueue.io.enq.req(i).valid := io.enq.needAlloc(i)(0) && io.enq.req(i).valid loadQueue.io.enq.req(i).bits := io.enq.req(i).bits loadQueue.io.enq.req(i).bits.sqIdx := storeQueue.io.enq.resp(i) storeQueue.io.enq.needAlloc(i) := io.enq.needAlloc(i)(1) storeQueue.io.enq.req(i).valid := io.enq.needAlloc(i)(1) && io.enq.req(i).valid storeQueue.io.enq.req(i).bits := io.enq.req(i).bits storeQueue.io.enq.req(i).bits := io.enq.req(i).bits storeQueue.io.enq.req(i).bits.lqIdx := loadQueue.io.enq.resp(i) io.enq.resp(i).lqIdx := loadQueue.io.enq.resp(i) io.enq.resp(i).sqIdx := storeQueue.io.enq.resp(i) } // store queue wiring storeQueue.io.brqRedirect <> io.brqRedirect storeQueue.io.storeAddrIn <> io.sta.storeAddrIn // from store_s1 storeQueue.io.vecStoreAddrIn <> io.sta.vecStoreAddrIn // store_s1 storeQueue.io.storeAddrInRe <> io.sta.storeAddrInRe // from store_s2 storeQueue.io.storeDataIn <> io.std.storeDataIn // from store_s0 storeQueue.io.storeMaskIn <> io.sta.storeMaskIn // from store_s0 storeQueue.io.sbuffer <> io.sbuffer storeQueue.io.mmioStout <> io.mmioStout storeQueue.io.rob <> io.rob storeQueue.io.exceptionAddr.isStore := DontCare storeQueue.io.sqCancelCnt <> io.sqCancelCnt storeQueue.io.sqDeq <> io.sqDeq storeQueue.io.sqEmpty <> io.sqEmpty storeQueue.io.sqFull <> io.sqFull storeQueue.io.forward <> io.forward // overlap forwardMask & forwardData, DO NOT CHANGE SEQUENCE storeQueue.io.force_write <> io.force_write storeQueue.io.vecStoreRetire <> io.vecStoreRetire /* <------- DANGEROUS: Don't change sequence here ! -------> */ // load queue wiring loadQueue.io.redirect <> io.brqRedirect loadQueue.io.ldu <> io.ldu loadQueue.io.ldout <> io.ldout loadQueue.io.ld_raw_data <> io.ld_raw_data loadQueue.io.rob <> io.rob loadQueue.io.nuke_rollback <> io.nuke_rollback loadQueue.io.nack_rollback <> io.nack_rollback loadQueue.io.replay <> io.replay loadQueue.io.refill <> io.refill loadQueue.io.tl_d_channel <> io.tl_d_channel loadQueue.io.release <> io.release loadQueue.io.trigger <> io.trigger loadQueue.io.exceptionAddr.isStore := DontCare loadQueue.io.lqCancelCnt <> io.lqCancelCnt loadQueue.io.sq.stAddrReadySqPtr <> storeQueue.io.stAddrReadySqPtr loadQueue.io.sq.stAddrReadyVec <> storeQueue.io.stAddrReadyVec loadQueue.io.sq.stDataReadySqPtr <> storeQueue.io.stDataReadySqPtr loadQueue.io.sq.stDataReadyVec <> storeQueue.io.stDataReadyVec loadQueue.io.sq.stIssuePtr <> storeQueue.io.stIssuePtr loadQueue.io.sq.sqEmpty <> storeQueue.io.sqEmpty loadQueue.io.sta.storeAddrIn <> io.sta.storeAddrIn // store_s1 loadQueue.io.sta.vecStoreAddrIn <> io.sta.vecStoreAddrIn // store_s1 loadQueue.io.std.storeDataIn <> io.std.storeDataIn // store_s0 loadQueue.io.lqFull <> io.lqFull loadQueue.io.lq_rep_full <> io.lq_rep_full loadQueue.io.lqDeq <> io.lqDeq loadQueue.io.l2_hint <> io.l2_hint loadQueue.io.tlb_hint <> io.tlb_hint loadQueue.io.lqEmpty <> io.lqEmpty loadQueue.io.vecWriteback <> io.vecWriteback loadQueue.io.vecMMIOReplay <> io.vecMMIOReplay // rob commits for lsq is delayed for two cycles, which causes the delayed update for deqPtr in lq/sq // s0: commit // s1: exception find // s2: exception triggered // s3: ptr updated & new address // address will be used at the next cycle after exception is triggered io.exceptionAddr.vaddr := Mux(RegNext(io.exceptionAddr.isStore), storeQueue.io.exceptionAddr.vaddr, loadQueue.io.exceptionAddr.vaddr) io.issuePtrExt := storeQueue.io.stAddrReadySqPtr // naive uncache arbiter val s_idle :: s_load :: s_store :: Nil = Enum(3) val pendingstate = RegInit(s_idle) switch(pendingstate){ is(s_idle){ when(io.uncache.req.fire){ pendingstate := Mux(loadQueue.io.uncache.req.valid, s_load, Mux(io.uncacheOutstanding, s_idle, s_store)) } } is(s_load){ when(io.uncache.resp.fire){ pendingstate := s_idle } } is(s_store){ when(io.uncache.resp.fire){ pendingstate := s_idle } } } loadQueue.io.uncache := DontCare storeQueue.io.uncache := DontCare loadQueue.io.uncache.req.ready := false.B storeQueue.io.uncache.req.ready := false.B loadQueue.io.uncache.resp.valid := false.B storeQueue.io.uncache.resp.valid := false.B when(loadQueue.io.uncache.req.valid){ io.uncache.req <> loadQueue.io.uncache.req }.otherwise{ io.uncache.req <> storeQueue.io.uncache.req } when (io.uncacheOutstanding) { io.uncache.resp <> loadQueue.io.uncache.resp } .otherwise { when(pendingstate === s_load){ io.uncache.resp <> loadQueue.io.uncache.resp }.otherwise{ io.uncache.resp <> storeQueue.io.uncache.resp } } loadQueue.io.debugTopDown <> io.debugTopDown assert(!(loadQueue.io.uncache.req.valid && storeQueue.io.uncache.req.valid)) assert(!(loadQueue.io.uncache.resp.valid && storeQueue.io.uncache.resp.valid)) when (!io.uncacheOutstanding) { assert(!((loadQueue.io.uncache.resp.valid || storeQueue.io.uncache.resp.valid) && pendingstate === s_idle)) } val perfEvents = Seq(loadQueue, storeQueue).flatMap(_.getPerfEvents) generatePerfEvent() } class LsqEnqCtrl(implicit p: Parameters) extends XSModule { val io = IO(new Bundle { val redirect = Flipped(ValidIO(new Redirect)) // to dispatch val enq = new LsqEnqIO // from `memBlock.io.lqDeq val lcommit = Input(UInt(log2Up(CommitWidth + 1).W)) // from `memBlock.io.sqDeq` val scommit = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) // from/tp lsq val lqCancelCnt = Input(UInt(log2Up(VirtualLoadQueueSize + 1).W)) val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W)) val enqLsq = Flipped(new LsqEnqIO) }) val lqPtr = RegInit(0.U.asTypeOf(new LqPtr)) val sqPtr = RegInit(0.U.asTypeOf(new SqPtr)) val lqCounter = RegInit(VirtualLoadQueueSize.U(log2Up(VirtualLoadQueueSize + 1).W)) val sqCounter = RegInit(StoreQueueSize.U(log2Up(StoreQueueSize + 1).W)) val canAccept = RegInit(false.B) val loadEnqVec = io.enq.req.zip(io.enq.needAlloc).map(x => x._1.valid && x._2(0)) val storeEnqVec = io.enq.req.zip(io.enq.needAlloc).map(x => x._1.valid && x._2(1)) val loadEnqNumber = PopCount(loadEnqVec) val storeEnqNumber = PopCount(storeEnqVec) val isLastUopVec = io.enq.req.map(_.bits.lastUop) val lqAllocNumber = PopCount(loadEnqVec.zip(isLastUopVec).map(x => x._1 && x._2)) val sqAllocNumber = PopCount(storeEnqVec.zip(isLastUopVec).map(x => x._1 && x._2)) // How to update ptr and counter: // (1) by default, updated according to enq/commit // (2) when redirect and dispatch queue is empty, update according to lsq val t1_redirect = RegNext(io.redirect.valid) val t2_redirect = RegNext(t1_redirect) val t2_update = t2_redirect && !VecInit(io.enq.needAlloc.map(_.orR)).asUInt.orR val t3_update = RegNext(t2_update) val t3_lqCancelCnt = RegNext(io.lqCancelCnt) val t3_sqCancelCnt = RegNext(io.sqCancelCnt) when (t3_update) { lqPtr := lqPtr - t3_lqCancelCnt lqCounter := lqCounter + io.lcommit + t3_lqCancelCnt sqPtr := sqPtr - t3_sqCancelCnt sqCounter := sqCounter + io.scommit + t3_sqCancelCnt }.elsewhen (!io.redirect.valid && io.enq.canAccept) { lqPtr := lqPtr + lqAllocNumber lqCounter := lqCounter + io.lcommit - lqAllocNumber sqPtr := sqPtr + sqAllocNumber sqCounter := sqCounter + io.scommit - sqAllocNumber }.otherwise { lqCounter := lqCounter + io.lcommit sqCounter := sqCounter + io.scommit } val lqMaxAllocate = LSQLdEnqWidth val sqMaxAllocate = LSQStEnqWidth val maxAllocate = lqMaxAllocate max sqMaxAllocate val ldCanAccept = lqCounter >= lqAllocNumber +& lqMaxAllocate.U val sqCanAccept = sqCounter >= sqAllocNumber +& sqMaxAllocate.U // It is possible that t3_update and enq are true at the same clock cycle. // For example, if redirect.valid lasts more than one clock cycle, // after the last redirect, new instructions may enter but previously redirect // has not been resolved (updated according to the cancel count from LSQ). // To solve the issue easily, we block enqueue when t3_update, which is RegNext(t2_update). io.enq.canAccept := RegNext(ldCanAccept && sqCanAccept && !t2_update) val lqOffset = Wire(Vec(io.enq.resp.length, UInt(log2Up(maxAllocate + 1).W))) val sqOffset = Wire(Vec(io.enq.resp.length, UInt(log2Up(maxAllocate + 1).W))) for ((resp, i) <- io.enq.resp.zipWithIndex) { lqOffset(i) := PopCount(io.enq.needAlloc.zip(isLastUopVec).take(i).map(x => x._1(0) && x._2)) resp.lqIdx := lqPtr + lqOffset(i) sqOffset(i) := PopCount(io.enq.needAlloc.zip(isLastUopVec).take(i).map(x => x._1(1) && x._2)) resp.sqIdx := sqPtr + sqOffset(i) } io.enqLsq.needAlloc := RegNext(VecInit(io.enq.needAlloc.zip(io.enq.req).map(x => x._1 & Fill(2, x._2.bits.lastUop)))) io.enqLsq.req.zip(io.enq.req).zip(io.enq.resp).foreach{ case ((toLsq, enq), resp) => val do_enq = enq.valid && !io.redirect.valid && io.enq.canAccept && enq.bits.lastUop toLsq.valid := RegNext(do_enq) toLsq.bits := RegEnable(enq.bits, do_enq) toLsq.bits.lqIdx := RegEnable(resp.lqIdx, do_enq) toLsq.bits.sqIdx := RegEnable(resp.sqIdx, do_enq) } }