/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.frontend.icache import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy.{IdRange, LazyModule, LazyModuleImp} import freechips.rocketchip.tilelink._ import freechips.rocketchip.util.BundleFieldBase import huancun.{AliasField, PrefetchField} import org.chipsalliance.cde.config.Parameters import utility._ import utils._ import xiangshan._ import xiangshan.cache._ import xiangshan.cache.mmu.TlbRequestIO import xiangshan.frontend._ case class ICacheParameters( nSets: Int = 256, nWays: Int = 4, rowBits: Int = 64, nTLBEntries: Int = 32, tagECC: Option[String] = None, dataECC: Option[String] = None, replacer: Option[String] = Some("random"), nMissEntries: Int = 2, nReleaseEntries: Int = 1, nProbeEntries: Int = 2, // fdip default config enableICachePrefetch: Boolean = true, prefetchToL1: Boolean = false, prefetchPipeNum: Int = 1, nPrefetchEntries: Int = 12, nPrefBufferEntries: Int = 32, maxIPFMoveConf: Int = 1, // temporary use small value to cause more "move" operation nMMIOs: Int = 1, blockBytes: Int = 64 )extends L1CacheParameters { val setBytes = nSets * blockBytes val aliasBitsOpt = DCacheParameters().aliasBitsOpt //if(setBytes > pageSize) Some(log2Ceil(setBytes / pageSize)) else None val reqFields: Seq[BundleFieldBase] = Seq( PrefetchField(), ReqSourceField() ) ++ aliasBitsOpt.map(AliasField) val echoFields: Seq[BundleFieldBase] = Nil def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) def replacement = ReplacementPolicy.fromString(replacer,nWays,nSets) } trait HasICacheParameters extends HasL1CacheParameters with HasInstrMMIOConst with HasIFUConst{ val cacheParams = icacheParameters val dataCodeUnit = 16 val dataCodeUnitNum = blockBits/dataCodeUnit def highestIdxBit = log2Ceil(nSets) - 1 def encDataUnitBits = cacheParams.dataCode.width(dataCodeUnit) def dataCodeBits = encDataUnitBits - dataCodeUnit def dataCodeEntryBits = dataCodeBits * dataCodeUnitNum val ICacheSets = cacheParams.nSets val ICacheWays = cacheParams.nWays val ICacheSameVPAddrLength = 12 val ReplaceIdWid = 5 val ICacheWordOffset = 0 val ICacheSetOffset = ICacheWordOffset + log2Up(blockBytes) val ICacheAboveIndexOffset = ICacheSetOffset + log2Up(ICacheSets) val ICacheTagOffset = ICacheAboveIndexOffset min ICacheSameVPAddrLength def PortNumber = 2 def partWayNum = 2 def pWay = nWays/partWayNum def enableICachePrefetch = cacheParams.enableICachePrefetch def prefetchToL1 = cacheParams.prefetchToL1 def prefetchPipeNum = cacheParams.prefetchPipeNum def nPrefetchEntries = cacheParams.nPrefetchEntries def nPrefBufferEntries = cacheParams.nPrefBufferEntries def maxIPFMoveConf = cacheParams.maxIPFMoveConf def getBits(num: Int) = log2Ceil(num).W def generatePipeControl(lastFire: Bool, thisFire: Bool, thisFlush: Bool, lastFlush: Bool): Bool = { val valid = RegInit(false.B) when(thisFlush) {valid := false.B} .elsewhen(lastFire && !lastFlush) {valid := true.B} .elsewhen(thisFire) {valid := false.B} valid } def ResultHoldBypass[T<:Data](data: T, valid: Bool): T = { Mux(valid, data, RegEnable(data, valid)) } def holdReleaseLatch(valid: Bool, release: Bool, flush: Bool): Bool ={ val bit = RegInit(false.B) when(flush) { bit := false.B } .elsewhen(valid && !release) { bit := true.B } .elsewhen(release) { bit := false.B } bit || valid } def blockCounter(block: Bool, flush: Bool, threshold: Int): Bool = { val counter = RegInit(0.U(log2Up(threshold + 1).W)) when (block) { counter := counter + 1.U } when (flush) { counter := 0.U} counter > threshold.U } def InitQueue[T <: Data](entry: T, size: Int): Vec[T] ={ return RegInit(VecInit(Seq.fill(size)(0.U.asTypeOf(entry.cloneType)))) } def getBlkPaddr(addr: UInt) = addr(PAddrBits-1, log2Ceil(blockBytes)) require(isPow2(nSets), s"nSets($nSets) must be pow2") require(isPow2(nWays), s"nWays($nWays) must be pow2") } abstract class ICacheBundle(implicit p: Parameters) extends XSBundle with HasICacheParameters abstract class ICacheModule(implicit p: Parameters) extends XSModule with HasICacheParameters abstract class ICacheArray(implicit p: Parameters) extends XSModule with HasICacheParameters class ICacheMetadata(implicit p: Parameters) extends ICacheBundle { val tag = UInt(tagBits.W) } object ICacheMetadata { def apply(tag: Bits)(implicit p: Parameters) = { val meta = Wire(new ICacheMetadata) meta.tag := tag meta } } class ICacheMetaArray()(implicit p: Parameters) extends ICacheArray { def onReset = ICacheMetadata(0.U) val metaBits = onReset.getWidth val metaEntryBits = cacheParams.tagCode.width(metaBits) val io=IO{new Bundle{ val write = Flipped(DecoupledIO(new ICacheMetaWriteBundle)) val read = Flipped(DecoupledIO(new ICacheReadBundle)) val readResp = Output(new ICacheMetaRespBundle) val cacheOp = Flipped(new L1CacheInnerOpIO) // customized cache op port val fencei = Input(Bool()) }} io.read.ready := !io.write.valid val port_0_read_0 = io.read.valid && !io.read.bits.vSetIdx(0)(0) val port_0_read_1 = io.read.valid && io.read.bits.vSetIdx(0)(0) val port_1_read_1 = io.read.valid && io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_1_read_0 = io.read.valid && !io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_0_read_0_reg = RegEnable(port_0_read_0, io.read.fire) val port_0_read_1_reg = RegEnable(port_0_read_1, io.read.fire) val port_1_read_1_reg = RegEnable(port_1_read_1, io.read.fire) val port_1_read_0_reg = RegEnable(port_1_read_0, io.read.fire) val bank_0_idx = Mux(port_0_read_0, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val bank_1_idx = Mux(port_0_read_1, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val bank_idx = Seq(bank_0_idx, bank_1_idx) val write_bank_0 = io.write.valid && !io.write.bits.bankIdx val write_bank_1 = io.write.valid && io.write.bits.bankIdx val write_meta_bits = Wire(UInt(metaEntryBits.W)) val tagArrays = (0 until 2) map { bank => val tagArray = Module(new SRAMTemplate( UInt(metaEntryBits.W), set=nSets/2, way=nWays, shouldReset = true, holdRead = true, singlePort = true )) //meta connection if(bank == 0) { tagArray.io.r.req.valid := port_0_read_0 || port_1_read_0 tagArray.io.r.req.bits.apply(setIdx=bank_0_idx(highestIdxBit,1)) tagArray.io.w.req.valid := write_bank_0 tagArray.io.w.req.bits.apply(data=write_meta_bits, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } else { tagArray.io.r.req.valid := port_0_read_1 || port_1_read_1 tagArray.io.r.req.bits.apply(setIdx=bank_1_idx(highestIdxBit,1)) tagArray.io.w.req.valid := write_bank_1 tagArray.io.w.req.bits.apply(data=write_meta_bits, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } tagArray } val read_set_idx_next = RegEnable(io.read.bits.vSetIdx, io.read.fire) val valid_array = RegInit(VecInit(Seq.fill(nWays)(0.U(nSets.W)))) val valid_metas = Wire(Vec(PortNumber, Vec(nWays, Bool()))) // valid read (0 until PortNumber).foreach( i => (0 until nWays).foreach( way => valid_metas(i)(way) := valid_array(way)(read_set_idx_next(i)) )) io.readResp.entryValid := valid_metas io.read.ready := !io.write.valid && !io.fencei && tagArrays.map(_.io.r.req.ready).reduce(_&&_) //Parity Decode val read_metas = Wire(Vec(2,Vec(nWays,new ICacheMetadata()))) for((tagArray,i) <- tagArrays.zipWithIndex){ val read_meta_bits = tagArray.io.r.resp.asTypeOf(Vec(nWays,UInt(metaEntryBits.W))) val read_meta_decoded = read_meta_bits.map{ way_bits => cacheParams.tagCode.decode(way_bits)} val read_meta_wrong = read_meta_decoded.map{ way_bits_decoded => way_bits_decoded.error} val read_meta_corrected = VecInit(read_meta_decoded.map{ way_bits_decoded => way_bits_decoded.corrected}) read_metas(i) := read_meta_corrected.asTypeOf(Vec(nWays,new ICacheMetadata())) (0 until nWays).map{ w => io.readResp.errors(i)(w) := RegNext(read_meta_wrong(w)) && RegNext(RegNext(io.read.fire))} } //Parity Encode val write = io.write.bits write_meta_bits := cacheParams.tagCode.encode(ICacheMetadata(tag = write.phyTag).asUInt) // valid write val way_num = OHToUInt(io.write.bits.waymask) when (io.write.valid) { valid_array(way_num) := valid_array(way_num).bitSet(io.write.bits.virIdx, true.B) } XSPerfAccumulate("meta_refill_num", io.write.valid) io.readResp.metaData <> DontCare when(port_0_read_0_reg){ io.readResp.metaData(0) := read_metas(0) }.elsewhen(port_0_read_1_reg){ io.readResp.metaData(0) := read_metas(1) } when(port_1_read_0_reg){ io.readResp.metaData(1) := read_metas(0) }.elsewhen(port_1_read_1_reg){ io.readResp.metaData(1) := read_metas(1) } io.write.ready := true.B // TODO : has bug ? should be !io.cacheOp.req.valid // deal with customized cache op require(nWays <= 32) io.cacheOp.resp.bits := DontCare val cacheOpShouldResp = WireInit(false.B) when(io.cacheOp.req.valid){ when( CacheInstrucion.isReadTag(io.cacheOp.req.bits.opCode) || CacheInstrucion.isReadTagECC(io.cacheOp.req.bits.opCode) ){ for (i <- 0 until 2) { tagArrays(i).io.r.req.valid := true.B tagArrays(i).io.r.req.bits.apply(setIdx = io.cacheOp.req.bits.index) } cacheOpShouldResp := true.B } when(CacheInstrucion.isWriteTag(io.cacheOp.req.bits.opCode)){ for (i <- 0 until 2) { tagArrays(i).io.w.req.valid := true.B tagArrays(i).io.w.req.bits.apply( data = io.cacheOp.req.bits.write_tag_low, setIdx = io.cacheOp.req.bits.index, waymask = UIntToOH(io.cacheOp.req.bits.wayNum(4, 0)) ) } cacheOpShouldResp := true.B } // TODO // when(CacheInstrucion.isWriteTagECC(io.cacheOp.req.bits.opCode)){ // for (i <- 0 until readPorts) { // array(i).io.ecc_write.valid := true.B // array(i).io.ecc_write.bits.idx := io.cacheOp.req.bits.index // array(i).io.ecc_write.bits.way_en := UIntToOH(io.cacheOp.req.bits.wayNum(4, 0)) // array(i).io.ecc_write.bits.ecc := io.cacheOp.req.bits.write_tag_ecc // } // cacheOpShouldResp := true.B // } } io.cacheOp.resp.valid := RegNext(io.cacheOp.req.valid && cacheOpShouldResp) io.cacheOp.resp.bits.read_tag_low := Mux(io.cacheOp.resp.valid, tagArrays(0).io.r.resp.asTypeOf(Vec(nWays, UInt(tagBits.W)))(io.cacheOp.req.bits.wayNum), 0.U ) io.cacheOp.resp.bits.read_tag_ecc := DontCare // TODO // TODO: deal with duplicated array // fencei logic : reset valid_array when (io.fencei) { (0 until nWays).foreach( way => valid_array(way) := 0.U ) } } class ICacheDataArray(implicit p: Parameters) extends ICacheArray { def getECCFromEncUnit(encUnit: UInt) = { require(encUnit.getWidth == encDataUnitBits) if (encDataUnitBits == dataCodeUnit) { 0.U.asTypeOf(UInt(1.W)) } else { encUnit(encDataUnitBits - 1, dataCodeUnit) } } def getECCFromBlock(cacheblock: UInt) = { // require(cacheblock.getWidth == blockBits) VecInit((0 until dataCodeUnitNum).map { w => val unit = cacheblock(dataCodeUnit * (w + 1) - 1, dataCodeUnit * w) getECCFromEncUnit(cacheParams.dataCode.encode(unit)) }) } val io=IO{new Bundle{ val write = Flipped(DecoupledIO(new ICacheDataWriteBundle)) val read = Flipped(DecoupledIO(Vec(partWayNum, new ICacheReadBundle))) val readResp = Output(new ICacheDataRespBundle) val cacheOp = Flipped(new L1CacheInnerOpIO) // customized cache op port }} val write_data_bits = Wire(UInt(blockBits.W)) val port_0_read_0_reg = RegEnable(io.read.valid && io.read.bits.head.port_0_read_0, io.read.fire) val port_0_read_1_reg = RegEnable(io.read.valid && io.read.bits.head.port_0_read_1, io.read.fire) val port_1_read_1_reg = RegEnable(io.read.valid && io.read.bits.head.port_1_read_1, io.read.fire) val port_1_read_0_reg = RegEnable(io.read.valid && io.read.bits.head.port_1_read_0, io.read.fire) val bank_0_idx_vec = io.read.bits.map(copy => Mux(io.read.valid && copy.port_0_read_0, copy.vSetIdx(0), copy.vSetIdx(1))) val bank_1_idx_vec = io.read.bits.map(copy => Mux(io.read.valid && copy.port_0_read_1, copy.vSetIdx(0), copy.vSetIdx(1))) val dataArrays = (0 until partWayNum).map{ i => val dataArray = Module(new ICachePartWayArray( UInt(blockBits.W), pWay, )) dataArray.io.read.req(0).valid := io.read.bits(i).read_bank_0 && io.read.valid dataArray.io.read.req(0).bits.ridx := bank_0_idx_vec(i)(highestIdxBit,1) dataArray.io.read.req(1).valid := io.read.bits(i).read_bank_1 && io.read.valid dataArray.io.read.req(1).bits.ridx := bank_1_idx_vec(i)(highestIdxBit,1) dataArray.io.write.valid := io.write.valid dataArray.io.write.bits.wdata := write_data_bits dataArray.io.write.bits.widx := io.write.bits.virIdx(highestIdxBit,1) dataArray.io.write.bits.wbankidx := io.write.bits.bankIdx dataArray.io.write.bits.wmask := io.write.bits.waymask.asTypeOf(Vec(partWayNum, Vec(pWay, Bool())))(i) dataArray } val read_datas = Wire(Vec(2,Vec(nWays,UInt(blockBits.W) ))) (0 until PortNumber).map { port => (0 until nWays).map { w => read_datas(port)(w) := dataArrays(w / pWay).io.read.resp.rdata(port).asTypeOf(Vec(pWay, UInt(blockBits.W)))(w % pWay) } } io.readResp.datas(0) := Mux( port_0_read_1_reg, read_datas(1) , read_datas(0)) io.readResp.datas(1) := Mux( port_1_read_0_reg, read_datas(0) , read_datas(1)) val write_data_code = Wire(UInt(dataCodeEntryBits.W)) val write_bank_0 = WireInit(io.write.valid && !io.write.bits.bankIdx) val write_bank_1 = WireInit(io.write.valid && io.write.bits.bankIdx) val bank_0_idx = bank_0_idx_vec.last val bank_1_idx = bank_1_idx_vec.last val codeArrays = (0 until 2) map { i => val codeArray = Module(new SRAMTemplate( UInt(dataCodeEntryBits.W), set=nSets/2, way=nWays, shouldReset = true, holdRead = true, singlePort = true )) if(i == 0) { codeArray.io.r.req.valid := io.read.valid && io.read.bits.last.read_bank_0 codeArray.io.r.req.bits.apply(setIdx=bank_0_idx(highestIdxBit,1)) codeArray.io.w.req.valid := write_bank_0 codeArray.io.w.req.bits.apply(data=write_data_code, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } else { codeArray.io.r.req.valid := io.read.valid && io.read.bits.last.read_bank_1 codeArray.io.r.req.bits.apply(setIdx=bank_1_idx(highestIdxBit,1)) codeArray.io.w.req.valid := write_bank_1 codeArray.io.w.req.bits.apply(data=write_data_code, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } codeArray } io.read.ready := !io.write.valid && dataArrays.map(_.io.read.req.map(_.ready).reduce(_&&_)).reduce(_&&_) && codeArrays.map(_.io.r.req.ready).reduce(_ && _) //Parity Decode val read_codes = Wire(Vec(2,Vec(nWays,UInt(dataCodeEntryBits.W) ))) for(((dataArray,codeArray),i) <- dataArrays.zip(codeArrays).zipWithIndex){ read_codes(i) := codeArray.io.r.resp.asTypeOf(Vec(nWays,UInt(dataCodeEntryBits.W))) } //Parity Encode val write = io.write.bits val write_data = WireInit(write.data) write_data_code := getECCFromBlock(write_data).asUInt write_data_bits := write_data io.readResp.codes(0) := Mux( port_0_read_1_reg, read_codes(1) , read_codes(0)) io.readResp.codes(1) := Mux( port_1_read_0_reg, read_codes(0) , read_codes(1)) io.write.ready := true.B // deal with customized cache op require(nWays <= 32) io.cacheOp.resp.bits := DontCare io.cacheOp.resp.valid := false.B val cacheOpShouldResp = WireInit(false.B) val dataresp = Wire(Vec(nWays,UInt(blockBits.W) )) dataresp := DontCare when(io.cacheOp.req.valid){ when( CacheInstrucion.isReadData(io.cacheOp.req.bits.opCode) ){ for (i <- 0 until partWayNum) { dataArrays(i).io.read.req.zipWithIndex.map{ case(port,i) => if(i ==0) port.valid := !io.cacheOp.req.bits.bank_num(0) else port.valid := io.cacheOp.req.bits.bank_num(0) port.bits.ridx := io.cacheOp.req.bits.index(highestIdxBit,1) } } cacheOpShouldResp := dataArrays.head.io.read.req.map(_.fire).reduce(_||_) dataresp :=Mux(io.cacheOp.req.bits.bank_num(0).asBool, read_datas(1), read_datas(0)) } when(CacheInstrucion.isWriteData(io.cacheOp.req.bits.opCode)){ for (i <- 0 until partWayNum) { dataArrays(i).io.write.valid := true.B dataArrays(i).io.write.bits.wdata := io.cacheOp.req.bits.write_data_vec.asTypeOf(write_data.cloneType) dataArrays(i).io.write.bits.wbankidx := io.cacheOp.req.bits.bank_num(0) dataArrays(i).io.write.bits.widx := io.cacheOp.req.bits.index(highestIdxBit,1) dataArrays(i).io.write.bits.wmask := UIntToOH(io.cacheOp.req.bits.wayNum(4, 0)).asTypeOf(Vec(partWayNum, Vec(pWay, Bool())))(i) } cacheOpShouldResp := true.B } } io.cacheOp.resp.valid := RegNext(cacheOpShouldResp) val numICacheLineWords = blockBits / 64 require(blockBits >= 64 && isPow2(blockBits)) for (wordIndex <- 0 until numICacheLineWords) { io.cacheOp.resp.bits.read_data_vec(wordIndex) := dataresp(io.cacheOp.req.bits.wayNum(4, 0))(64*(wordIndex+1)-1, 64*wordIndex) } } class ICacheIO(implicit p: Parameters) extends ICacheBundle { val hartId = Input(UInt(8.W)) val prefetch = Flipped(new FtqPrefechBundle) val stop = Input(Bool()) val fetch = new ICacheMainPipeBundle val toIFU = Output(Bool()) val pmp = Vec(PortNumber + prefetchPipeNum, new ICachePMPBundle) val itlb = Vec(PortNumber + prefetchPipeNum, new TlbRequestIO) val perfInfo = Output(new ICachePerfInfo) val error = new L1CacheErrorInfo /* Cache Instruction */ val csr = new L1CacheToCsrIO /* CSR control signal */ val csr_pf_enable = Input(Bool()) val csr_parity_enable = Input(Bool()) val fencei = Input(Bool()) } class ICache()(implicit p: Parameters) extends LazyModule with HasICacheParameters { override def shouldBeInlined: Boolean = false val clientParameters = TLMasterPortParameters.v1( Seq(TLMasterParameters.v1( name = "icache", sourceId = IdRange(0, cacheParams.nMissEntries + 1), )), requestFields = cacheParams.reqFields, echoFields = cacheParams.echoFields ) val clientNode = TLClientNode(Seq(clientParameters)) lazy val module = new ICacheImp(this) } class ICacheImp(outer: ICache) extends LazyModuleImp(outer) with HasICacheParameters with HasPerfEvents { val io = IO(new ICacheIO) println("ICache:") println(" ICacheSets: " + cacheParams.nSets) println(" ICacheWays: " + cacheParams.nWays) println(" ICacheBanks: " + PortNumber) println(" enableICachePrefetch: " + cacheParams.enableICachePrefetch) println(" prefetchToL1: " + cacheParams.prefetchToL1) println(" prefetchPipeNum: " + cacheParams.prefetchPipeNum) println(" nPrefetchEntries: " + cacheParams.nPrefetchEntries) println(" nPrefBufferEntries: " + cacheParams.nPrefBufferEntries) println(" maxIPFMoveConf: " + cacheParams.maxIPFMoveConf) val (bus, edge) = outer.clientNode.out.head val metaArray = Module(new ICacheMetaArray) val dataArray = Module(new ICacheDataArray) val prefetchMetaArray = Module(new ICacheBankedMetaArray(prefetchPipeNum)) // need add 1 port for IPF filter val mainPipe = Module(new ICacheMainPipe) val missUnit = Module(new ICacheMissUnit(edge)) val fdipPrefetch = Module(new FDIPPrefetch(edge)) fdipPrefetch.io.hartId := io.hartId fdipPrefetch.io.fencei := io.fencei fdipPrefetch.io.ftqReq <> io.prefetch fdipPrefetch.io.metaReadReq <> prefetchMetaArray.io.read(0) fdipPrefetch.io.metaReadResp <> prefetchMetaArray.io.readResp(0) fdipPrefetch.io.ICacheMissUnitInfo <> missUnit.io.ICacheMissUnitInfo fdipPrefetch.io.ICacheMainPipeInfo <> mainPipe.io.ICacheMainPipeInfo fdipPrefetch.io.IPFBufferRead <> mainPipe.io.IPFBufferRead fdipPrefetch.io.IPFReplacer <> mainPipe.io.IPFReplacer fdipPrefetch.io.PIQRead <> mainPipe.io.PIQRead fdipPrefetch.io.metaWrite <> DontCare fdipPrefetch.io.dataWrite <> DontCare // Meta Array. Priority: missUnit > fdipPrefetch if (prefetchToL1) { val meta_write_arb = Module(new Arbiter(new ICacheMetaWriteBundle(), 2)) meta_write_arb.io.in(0) <> missUnit.io.meta_write meta_write_arb.io.in(1) <> fdipPrefetch.io.metaWrite meta_write_arb.io.out <> metaArray.io.write // prefetch Meta Array. Connect meta_write_arb to ensure the data is same as metaArray prefetchMetaArray.io.write <> meta_write_arb.io.out } else { missUnit.io.meta_write <> metaArray.io.write missUnit.io.meta_write <> prefetchMetaArray.io.write // ensure together wirte to metaArray and prefetchMetaArray missUnit.io.meta_write.ready := metaArray.io.write.ready && prefetchMetaArray.io.write.ready } // Data Array. Priority: missUnit > fdipPrefetch if (prefetchToL1) { val data_write_arb = Module(new Arbiter(new ICacheDataWriteBundle(), 2)) data_write_arb.io.in(0) <> missUnit.io.data_write data_write_arb.io.in(1) <> fdipPrefetch.io.dataWrite data_write_arb.io.out <> dataArray.io.write } else { missUnit.io.data_write <> dataArray.io.write } mainPipe.io.dataArray.toIData <> dataArray.io.read mainPipe.io.dataArray.fromIData <> dataArray.io.readResp mainPipe.io.metaArray.toIMeta <> metaArray.io.read mainPipe.io.metaArray.fromIMeta <> metaArray.io.readResp mainPipe.io.metaArray.fromIMeta <> metaArray.io.readResp mainPipe.io.respStall := io.stop mainPipe.io.csr_parity_enable := io.csr_parity_enable mainPipe.io.hartId := io.hartId io.pmp(0) <> mainPipe.io.pmp(0) io.pmp(1) <> mainPipe.io.pmp(1) io.pmp(2) <> fdipPrefetch.io.pmp io.itlb(0) <> mainPipe.io.itlb(0) io.itlb(1) <> mainPipe.io.itlb(1) io.itlb(2) <> fdipPrefetch.io.iTLBInter //notify IFU that Icache pipeline is available io.toIFU := mainPipe.io.fetch.req.ready io.perfInfo := mainPipe.io.perfInfo io.fetch.resp <> mainPipe.io.fetch.resp io.fetch.topdownIcacheMiss := mainPipe.io.fetch.topdownIcacheMiss io.fetch.topdownItlbMiss := mainPipe.io.fetch.topdownItlbMiss for(i <- 0 until PortNumber){ missUnit.io.req(i) <> mainPipe.io.mshr(i).toMSHR mainPipe.io.mshr(i).fromMSHR <> missUnit.io.resp(i) } missUnit.io.hartId := io.hartId missUnit.io.fencei := io.fencei missUnit.io.fdip_acquire <> fdipPrefetch.io.mem_acquire missUnit.io.fdip_grant <> fdipPrefetch.io.mem_grant bus.b.ready := false.B bus.c.valid := false.B bus.c.bits := DontCare bus.e.valid := false.B bus.e.bits := DontCare bus.a <> missUnit.io.mem_acquire // connect bus d missUnit.io.mem_grant.valid := false.B missUnit.io.mem_grant.bits := DontCare //Parity error port val errors = mainPipe.io.errors io.error <> RegNext(Mux1H(errors.map(e => e.valid -> e))) mainPipe.io.fetch.req <> io.fetch.req bus.d.ready := false.B missUnit.io.mem_grant <> bus.d // fencei connect metaArray.io.fencei := io.fencei prefetchMetaArray.io.fencei := io.fencei val perfEvents = Seq( ("icache_miss_cnt ", false.B), ("icache_miss_penty", BoolStopWatch(start = false.B, stop = false.B || false.B, startHighPriority = true)), ) generatePerfEvent() // Customized csr cache op support val cacheOpDecoder = Module(new CSRCacheOpDecoder("icache", CacheInstrucion.COP_ID_ICACHE)) cacheOpDecoder.io.csr <> io.csr dataArray.io.cacheOp.req := cacheOpDecoder.io.cache.req metaArray.io.cacheOp.req := cacheOpDecoder.io.cache.req prefetchMetaArray.io.cacheOp.req := cacheOpDecoder.io.cache.req cacheOpDecoder.io.cache.resp.valid := dataArray.io.cacheOp.resp.valid || metaArray.io.cacheOp.resp.valid cacheOpDecoder.io.cache.resp.bits := Mux1H(List( dataArray.io.cacheOp.resp.valid -> dataArray.io.cacheOp.resp.bits, metaArray.io.cacheOp.resp.valid -> metaArray.io.cacheOp.resp.bits, )) cacheOpDecoder.io.error := io.error assert(!((dataArray.io.cacheOp.resp.valid +& metaArray.io.cacheOp.resp.valid) > 1.U)) } class ICachePartWayReadBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheBundle { val req = Flipped(Vec(PortNumber, Decoupled(new Bundle{ val ridx = UInt((log2Ceil(nSets) - 1).W) }))) val resp = Output(new Bundle{ val rdata = Vec(PortNumber,Vec(pWay, gen)) }) } class ICacheWriteBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheBundle { val wdata = gen val widx = UInt((log2Ceil(nSets) - 1).W) val wbankidx = Bool() val wmask = Vec(pWay, Bool()) } class ICachePartWayArray[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheArray { //including part way data val io = IO{new Bundle { val read = new ICachePartWayReadBundle(gen,pWay) val write = Flipped(ValidIO(new ICacheWriteBundle(gen, pWay))) }} io.read.req.map(_.ready := !io.write.valid) val srams = (0 until PortNumber) map { bank => val sramBank = Module(new SRAMTemplate( gen, set=nSets/2, way=pWay, shouldReset = true, holdRead = true, singlePort = true )) sramBank.io.r.req.valid := io.read.req(bank).valid sramBank.io.r.req.bits.apply(setIdx= io.read.req(bank).bits.ridx) if(bank == 0) sramBank.io.w.req.valid := io.write.valid && !io.write.bits.wbankidx else sramBank.io.w.req.valid := io.write.valid && io.write.bits.wbankidx sramBank.io.w.req.bits.apply(data=io.write.bits.wdata, setIdx=io.write.bits.widx, waymask=io.write.bits.wmask.asUInt) sramBank } io.read.req.map(_.ready := !io.write.valid && srams.map(_.io.r.req.ready).reduce(_&&_)) io.read.resp.rdata := VecInit(srams.map(bank => bank.io.r.resp.asTypeOf(Vec(pWay,gen)))) }