/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.frontend.icache import chipsalliance.rocketchip.config.Parameters import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy.{IdRange, LazyModule, LazyModuleImp, TransferSizes} import freechips.rocketchip.tilelink._ import freechips.rocketchip.util.BundleFieldBase import huancun.{AliasField, PreferCacheField, PrefetchField,DirtyField} import xiangshan._ import xiangshan.frontend._ import xiangshan.cache._ import utils._ import xiangshan.cache.mmu.BlockTlbRequestIO case class ICacheParameters( nSets: Int = 256, nWays: Int = 8, rowBits: Int = 64, nTLBEntries: Int = 32, tagECC: Option[String] = None, dataECC: Option[String] = None, replacer: Option[String] = Some("random"), nMissEntries: Int = 2, nReleaseEntries: Int = 2, nProbeEntries: Int = 2, nMMIOs: Int = 1, blockBytes: Int = 64 )extends L1CacheParameters { val setBytes = nSets * blockBytes val aliasBitsOpt = if(setBytes > pageSize) Some(log2Ceil(setBytes / pageSize)) else None val reqFields: Seq[BundleFieldBase] = Seq( PrefetchField(), PreferCacheField() ) ++ aliasBitsOpt.map(AliasField) val echoFields: Seq[BundleFieldBase] = Seq(DirtyField()) def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) def replacement = ReplacementPolicy.fromString(replacer,nWays,nSets) } trait HasICacheParameters extends HasL1CacheParameters with HasInstrMMIOConst with HasIFUConst{ val cacheParams = icacheParameters val dataCodeUnit = 8 val dataUnitNum = blockBits/dataCodeUnit def highestIdxBit = log2Ceil(nSets) - 1 def dataCodeBits = cacheParams.dataCode.width(dataCodeUnit) def dataEntryBits = dataCodeBits * dataUnitNum val ICacheSets = cacheParams.nSets val ICacheWays = cacheParams.nWays val ICacheSameVPAddrLength = 12 val ReplaceIdWid = 5 val ICacheWordOffset = 0 val ICacheSetOffset = ICacheWordOffset + log2Up(blockBytes) val ICacheAboveIndexOffset = ICacheSetOffset + log2Up(ICacheSets) val ICacheTagOffset = ICacheAboveIndexOffset min ICacheSameVPAddrLength def ReplacePipeKey = 0 def mainPipeKey = 1 def ReleaseKey = 2 def MissQueueKey = 3 def ProbeKey = 4 def PortNumber = 2 def nMissEntries = cacheParams.nMissEntries def generatePipeControl(lastFire: Bool, thisFire: Bool, thisFlush: Bool, lastFlush: Bool): Bool = { val valid = RegInit(false.B) when(thisFlush) {valid := false.B} .elsewhen(lastFire && !lastFlush) {valid := true.B} .elsewhen(thisFire) {valid := false.B} valid } def ResultHoldBypass[T<:Data](data: T, valid: Bool): T = { Mux(valid, data, RegEnable(data, valid)) } require(isPow2(nMissEntries), s"nMissEntries($nMissEntries) must be pow2") require(isPow2(nSets), s"nSets($nSets) must be pow2") require(isPow2(nWays), s"nWays($nWays) must be pow2") } abstract class ICacheBundle(implicit p: Parameters) extends XSBundle with HasICacheParameters abstract class ICacheModule(implicit p: Parameters) extends XSModule with HasICacheParameters abstract class ICacheArray(implicit p: Parameters) extends XSModule with HasICacheParameters class ICacheMetadata(implicit p: Parameters) extends ICacheBundle { val coh = new ClientMetadata val tag = UInt(tagBits.W) } object ICacheMetadata { def apply(tag: Bits, coh: ClientMetadata)(implicit p: Parameters) = { val meta = Wire(new L1Metadata) meta.tag := tag meta.coh := coh meta } } class ICacheMetaArray()(implicit p: Parameters) extends ICacheArray { def onReset = ICacheMetadata(0.U, ClientMetadata.onReset) val metaBits = onReset.getWidth val metaEntryBits = cacheParams.tagCode.width(metaBits) val io=IO{new Bundle{ val write = Flipped(DecoupledIO(new ICacheMetaWriteBundle)) val read = Flipped(DecoupledIO(new ICacheReadBundle)) val readResp = Output(new ICacheMetaRespBundle) val fencei = Input(Bool()) val cacheOp = Flipped(new DCacheInnerOpIO) // customized cache op port }} io.read.ready := !io.write.valid val port_0_read_0 = io.read.valid && !io.read.bits.vSetIdx(0)(0) val port_0_read_1 = io.read.valid && io.read.bits.vSetIdx(0)(0) val port_1_read_1 = io.read.valid && io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_1_read_0 = io.read.valid && !io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_0_read_0_reg = RegEnable(next = port_0_read_0, enable = io.read.fire()) val port_0_read_1_reg = RegEnable(next = port_0_read_1, enable = io.read.fire()) val port_1_read_1_reg = RegEnable(next = port_1_read_1, enable = io.read.fire()) val port_1_read_0_reg = RegEnable(next = port_1_read_0, enable = io.read.fire()) val bank_0_idx = Mux(port_0_read_0, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val bank_1_idx = Mux(port_0_read_1, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val write_bank_0 = io.write.valid && !io.write.bits.bankIdx val write_bank_1 = io.write.valid && io.write.bits.bankIdx val write_meta_bits = Wire(UInt(metaEntryBits.W)) val tagArrays = (0 until 2) map { bank => val tagArray = Module(new SRAMTemplate( UInt(metaEntryBits.W), set=nSets/2, way=nWays, shouldReset = true, holdRead = true, singlePort = true )) //meta connection if(bank == 0) { tagArray.io.r.req.valid := port_0_read_0 || port_1_read_0 tagArray.io.r.req.bits.apply(setIdx=bank_0_idx(highestIdxBit,1)) tagArray.io.w.req.valid := write_bank_0 tagArray.io.w.req.bits.apply(data=write_meta_bits, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } else { tagArray.io.r.req.valid := port_0_read_1 || port_1_read_1 tagArray.io.r.req.bits.apply(setIdx=bank_1_idx(highestIdxBit,1)) tagArray.io.w.req.valid := write_bank_1 tagArray.io.w.req.bits.apply(data=write_meta_bits, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } tagArray } //Parity Decode val read_metas = Wire(Vec(2,Vec(nWays,new ICacheMetadata()))) for((tagArray,i) <- tagArrays.zipWithIndex){ val read_meta_bits = tagArray.io.r.resp.asTypeOf(Vec(nWays,UInt(metaEntryBits.W))) val read_meta_decoded = read_meta_bits.map{ way_bits => cacheParams.tagCode.decode(way_bits)} val read_meta_wrong = read_meta_decoded.map{ way_bits_decoded => way_bits_decoded.error} val read_meta_corrected = VecInit(read_meta_decoded.map{ way_bits_decoded => way_bits_decoded.corrected}) read_metas(i) := read_meta_corrected.asTypeOf(Vec(nWays,new ICacheMetadata())) (0 until nWays).map{ w => io.readResp.errors(i)(w) := RegNext(io.read.fire()) && read_meta_wrong(w)} } //Parity Encode val write = io.write.bits write_meta_bits := cacheParams.tagCode.encode(ICacheMetadata(tag = write.phyTag, coh = write.coh).asUInt) // when(io.write.valid){ // printf("[time:%d ] idx:%x ptag:%x waymask:%x coh:%x\n", GTimer().asUInt, write.virIdx, write.phyTag, write.waymask, write.coh.asUInt) // } val readIdxNext = RegEnable(next = io.read.bits.vSetIdx, enable = io.read.fire()) val validArray = RegInit(0.U((nSets * nWays).W)) val validMetas = VecInit((0 until 2).map{ bank => val validMeta = Cat((0 until nWays).map{w => validArray( Cat(readIdxNext(bank), w.U(log2Ceil(nWays).W)) )}.reverse).asUInt validMeta }) val wayNum = OHToUInt(io.write.bits.waymask) val validPtr = Cat(io.write.bits.virIdx, wayNum) when(io.write.valid){ validArray := validArray.bitSet(validPtr, true.B) } when(io.fencei){ validArray := 0.U } io.readResp.metaData <> DontCare when(port_0_read_0_reg){ io.readResp.metaData(0) := read_metas(0) }.elsewhen(port_0_read_1_reg){ io.readResp.metaData(0) := read_metas(1) } when(port_1_read_0_reg){ io.readResp.metaData(1) := read_metas(0) }.elsewhen(port_1_read_1_reg){ io.readResp.metaData(1) := read_metas(1) } (io.readResp.valid zip validMetas).map {case (io, reg) => io := reg.asTypeOf(Vec(nWays,Bool()))} io.write.ready := true.B // deal with customized cache op require(nWays <= 32) io.cacheOp.resp.bits := DontCare val cacheOpShouldResp = WireInit(false.B) when(io.cacheOp.req.valid){ when( CacheInstrucion.isReadTag(io.cacheOp.req.bits.opCode) || CacheInstrucion.isReadTagECC(io.cacheOp.req.bits.opCode) ){ for (i <- 0 until 2) { tagArrays(i).io.r.req.valid := true.B tagArrays(i).io.r.req.bits.apply(setIdx = io.cacheOp.req.bits.index) } cacheOpShouldResp := true.B } when(CacheInstrucion.isWriteTag(io.cacheOp.req.bits.opCode)){ for (i <- 0 until 2) { tagArrays(i).io.w.req.valid := true.B tagArrays(i).io.w.req.bits.apply( data = io.cacheOp.req.bits.write_tag_low, setIdx = io.cacheOp.req.bits.index, waymask = UIntToOH(io.cacheOp.req.bits.wayNum(4, 0)) ) } cacheOpShouldResp := true.B } // TODO // when(CacheInstrucion.isWriteTagECC(io.cacheOp.req.bits.opCode)){ // for (i <- 0 until readPorts) { // array(i).io.ecc_write.valid := true.B // array(i).io.ecc_write.bits.idx := io.cacheOp.req.bits.index // array(i).io.ecc_write.bits.way_en := UIntToOH(io.cacheOp.req.bits.wayNum(4, 0)) // array(i).io.ecc_write.bits.ecc := io.cacheOp.req.bits.write_tag_ecc // } // cacheOpShouldResp := true.B // } } io.cacheOp.resp.valid := RegNext(io.cacheOp.req.valid && cacheOpShouldResp) io.cacheOp.resp.bits.read_tag_low := Mux(io.cacheOp.resp.valid, tagArrays(0).io.r.resp.asTypeOf(Vec(nWays, UInt(tagBits.W)))(io.cacheOp.req.bits.wayNum), 0.U ) io.cacheOp.resp.bits.read_tag_ecc := DontCare // TODO // TODO: deal with duplicated array } class ICacheDataArray(implicit p: Parameters) extends ICacheArray { val io=IO{new Bundle{ val write = Flipped(DecoupledIO(new ICacheDataWriteBundle)) val read = Flipped(DecoupledIO(new ICacheReadBundle)) val readResp = Output(new ICacheDataRespBundle) val cacheOp = Flipped(new DCacheInnerOpIO) // customized cache op port }} io.read.ready := !io.write.valid val port_0_read_0 = io.read.valid && !io.read.bits.vSetIdx(0)(0) val port_0_read_1 = io.read.valid && io.read.bits.vSetIdx(0)(0) val port_1_read_1 = io.read.valid && io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_1_read_0 = io.read.valid && !io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_0_read_1_reg = RegEnable(next = port_0_read_1, enable = io.read.fire()) val port_1_read_0_reg = RegEnable(next = port_1_read_0, enable = io.read.fire()) val bank_0_idx = Mux(port_0_read_0, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val bank_1_idx = Mux(port_0_read_1, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val write_bank_0 = io.write.valid && !io.write.bits.bankIdx val write_bank_1 = io.write.valid && io.write.bits.bankIdx val write_data_bits = Wire(UInt(dataEntryBits.W)) val dataArrays = (0 until 2) map { i => val dataArray = Module(new SRAMTemplate( UInt(dataEntryBits.W), set=nSets/2, way=nWays, shouldReset = true, holdRead = true, singlePort = true )) if(i == 0) { dataArray.io.r.req.valid := port_0_read_0 || port_1_read_0 dataArray.io.r.req.bits.apply(setIdx=bank_0_idx(highestIdxBit,1)) dataArray.io.w.req.valid := write_bank_0 dataArray.io.w.req.bits.apply(data=write_data_bits, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } else { dataArray.io.r.req.valid := port_0_read_1 || port_1_read_1 dataArray.io.r.req.bits.apply(setIdx=bank_1_idx(highestIdxBit,1)) dataArray.io.w.req.valid := write_bank_1 dataArray.io.w.req.bits.apply(data=write_data_bits, setIdx=io.write.bits.virIdx(highestIdxBit,1), waymask=io.write.bits.waymask) } dataArray } //Parity Decode val read_datas = Wire(Vec(2,Vec(nWays,UInt(blockBits.W) ))) for((dataArray,i) <- dataArrays.zipWithIndex){ val read_data_bits = dataArray.io.r.resp.asTypeOf(Vec(nWays,Vec(dataUnitNum, UInt(dataCodeBits.W)))) val read_data_decoded = read_data_bits.map{way_bits => way_bits.map(unit => cacheParams.dataCode.decode(unit))} val read_data_wrong = VecInit(read_data_decoded.map{way_bits_decoded => VecInit(way_bits_decoded.map(unit_decoded => unit_decoded.error ))}) val read_data_corrected = VecInit(read_data_decoded.map{way_bits_decoded => VecInit(way_bits_decoded.map(unit_decoded => unit_decoded.corrected )).asUInt}) read_datas(i) := read_data_corrected.asTypeOf(Vec(nWays,UInt(blockBits.W))) (0 until nWays).map{ w => io.readResp.errors(i)(w) := RegNext(io.read.fire()) && read_data_wrong(w).asUInt.orR } } //Parity Encode val write = io.write.bits val write_data = write.data.asTypeOf(Vec(dataUnitNum, UInt(dataCodeUnit.W))) val write_data_encoded = VecInit(write_data.map( unit_bits => cacheParams.dataCode.encode(unit_bits) )) write_data_bits := write_data_encoded.asUInt io.readResp.datas(0) := Mux( port_0_read_1_reg, read_datas(1) , read_datas(0)) io.readResp.datas(1) := Mux( port_1_read_0_reg, read_datas(0) , read_datas(1)) io.write.ready := true.B // deal with customized cache op require(nWays <= 32) io.cacheOp.resp.bits := DontCare val cacheOpShouldResp = WireInit(false.B) when(io.cacheOp.req.valid){ when( CacheInstrucion.isReadData(io.cacheOp.req.bits.opCode) || CacheInstrucion.isReadDataECC(io.cacheOp.req.bits.opCode) ){ (0 until 2).map(i => { dataArrays(i).io.r.req.valid := true.B dataArrays(i).io.r.req.bits.apply(setIdx = io.cacheOp.req.bits.index) }) cacheOpShouldResp := true.B } when(CacheInstrucion.isWriteData(io.cacheOp.req.bits.opCode)){ (0 until 2).map(i => { dataArrays(i).io.w.req.valid := io.cacheOp.req.bits.bank_num === i.U dataArrays(i).io.w.req.bits.apply( data = io.cacheOp.req.bits.write_data_vec.asUInt, setIdx = io.cacheOp.req.bits.index, waymask = UIntToOH(io.cacheOp.req.bits.wayNum(4, 0)) ) }) cacheOpShouldResp := true.B } // when(CacheInstrucion.isWriteDataECC(io.cacheOp.req.bits.opCode)){ // for (bank_index <- 0 until DCacheBanks) { // val ecc_bank = ecc_banks(bank_index) // ecc_bank.io.w.req.valid := true.B // ecc_bank.io.w.req.bits.apply( // setIdx = io.cacheOp.req.bits.index, // data = io.cacheOp.req.bits.write_data_ecc, // waymask = UIntToOH(io.cacheOp.req.bits.wayNum(4, 0)) // ) // } // cacheOpShouldResp := true.B // } } io.cacheOp.resp.valid := RegNext(io.cacheOp.req.valid && cacheOpShouldResp) val dataresp = Mux(io.cacheOp.req.bits.bank_num(0).asBool, dataArrays(0).io.r.resp.data.asTypeOf(Vec(nWays, UInt(blockBits.W))), dataArrays(1).io.r.resp.data.asTypeOf(Vec(nWays, UInt(blockBits.W))) ) val numICacheLineWords = blockBits / 64 require(blockBits >= 64 && isPow2(blockBits)) for (wordIndex <- 0 until numICacheLineWords) { io.cacheOp.resp.bits.read_data_vec(wordIndex) := dataresp(io.cacheOp.req.bits.wayNum(4, 0))(64*(wordIndex+1)-1, 64*wordIndex) } // io.cacheOp.resp.bits.read_data_ecc := Mux(io.cacheOp.resp.valid, // bank_result(io.cacheOp.req.bits.bank_num).ecc, // 0.U // ) } class ICacheIO(implicit p: Parameters) extends ICacheBundle { val fencei = Input(Bool()) val stop = Input(Bool()) val csr = new L1CacheToCsrIO val fetch = Vec(PortNumber, new ICacheMainPipeBundle) val pmp = Vec(PortNumber, new ICachePMPBundle) val itlb = Vec(PortNumber, new BlockTlbRequestIO) val perfInfo = Output(new ICachePerfInfo) } class ICache()(implicit p: Parameters) extends LazyModule with HasICacheParameters { val clientParameters = TLMasterPortParameters.v1( Seq(TLMasterParameters.v1( name = "icache", sourceId = IdRange(0, cacheParams.nMissEntries + cacheParams.nReleaseEntries), supportsProbe = TransferSizes(blockBytes) )), requestFields = cacheParams.reqFields, echoFields = cacheParams.echoFields ) val clientNode = TLClientNode(Seq(clientParameters)) lazy val module = new ICacheImp(this) } class ICacheImp(outer: ICache) extends LazyModuleImp(outer) with HasICacheParameters { val io = IO(new ICacheIO) val (bus, edge) = outer.clientNode.out.head val metaArray = Module(new ICacheMetaArray) val dataArray = Module(new ICacheDataArray) val mainPipe = Module(new ICacheMainPipe) val missUnit = Module(new ICacheMissUnit(edge)) val releaseUnit = Module(new ReleaseUnit(edge)) val replacePipe = Module(new ReplacePipe) val probeQueue = Module(new ICacheProbeQueue(edge)) val meta_read_arb = Module(new Arbiter(new ICacheReadBundle, 2)) val data_read_arb = Module(new Arbiter(new ICacheReadBundle, 2)) val meta_write_arb = Module(new Arbiter(new ICacheMetaWriteBundle(), 2 )) val replace_req_arb = Module(new Arbiter(new ReplacePipeReq, 2)) meta_read_arb.io.in(ReplacePipeKey) <> replacePipe.io.meta_read meta_read_arb.io.in(mainPipeKey) <> mainPipe.io.metaArray.toIMeta metaArray.io.read <> meta_read_arb.io.out replacePipe.io.meta_response <> metaArray.io.readResp mainPipe.io.metaArray.fromIMeta <> metaArray.io.readResp data_read_arb.io.in(ReplacePipeKey) <> replacePipe.io.data_read data_read_arb.io.in(mainPipeKey) <> mainPipe.io.dataArray.toIData dataArray.io.read <> data_read_arb.io.out replacePipe.io.data_response <> dataArray.io.readResp mainPipe.io.dataArray.fromIData <> dataArray.io.readResp mainPipe.io.respStall := io.stop io.perfInfo := mainPipe.io.perfInfo meta_write_arb.io.in(ReplacePipeKey) <> replacePipe.io.meta_write meta_write_arb.io.in(mainPipeKey) <> missUnit.io.meta_write metaArray.io.write <> meta_write_arb.io.out dataArray.io.write <> missUnit.io.data_write io.itlb <> mainPipe.io.itlb io.pmp <> mainPipe.io.pmp for(i <- 0 until PortNumber){ io.fetch(i).resp <> mainPipe.io.fetch(i).resp missUnit.io.req(i) <> mainPipe.io.mshr(i).toMSHR mainPipe.io.mshr(i).fromMSHR <> missUnit.io.resp(i) } bus.b.ready := false.B bus.c.valid := false.B bus.c.bits := DontCare bus.e.valid := false.B bus.e.bits := DontCare metaArray.io.fencei := io.fencei bus.a <> missUnit.io.mem_acquire bus.e <> missUnit.io.mem_finish releaseUnit.io.req(0) <> replacePipe.io.release_req releaseUnit.io.req(1) <> DontCare//mainPipe.io.toReleaseUnit(1) bus.c <> releaseUnit.io.mem_release // connect bus d missUnit.io.mem_grant.valid := false.B missUnit.io.mem_grant.bits := DontCare releaseUnit.io.mem_grant.valid := false.B releaseUnit.io.mem_grant.bits := DontCare //Probe through bus b probeQueue.io.mem_probe <> bus.b replace_req_arb.io.in(ReplacePipeKey) <> probeQueue.io.pipe_req replace_req_arb.io.in(mainPipeKey) <> missUnit.io.release_req replacePipe.io.pipe_req <> replace_req_arb.io.out missUnit.io.release_resp <> replacePipe.io.pipe_resp /** Block set-conflict request */ val probeReqValid = probeQueue.io.pipe_req.valid val probeReqVidx = probeQueue.io.pipe_req.bits.vidx val hasVictim = VecInit(missUnit.io.victimInfor.map(_.valid)) val victimSetSeq = VecInit(missUnit.io.victimInfor.map(_.vidx)) val probeShouldBlock = VecInit(hasVictim.zip(victimSetSeq).map{case(valid, idx) => valid && probeReqValid && idx === probeReqVidx }).reduce(_||_) when(probeShouldBlock){ probeQueue.io.pipe_req.ready := false.B } val releaseReqValid = missUnit.io.release_req.valid val releaseReqVidx = missUnit.io.release_req.bits.vidx val hasConflict = VecInit(Seq( replacePipe.io.status.r1_set.valid, replacePipe.io.status.r2_set.valid )) val conflictIdx = VecInit(Seq( replacePipe.io.status.r1_set.bits, replacePipe.io.status.r2_set.bits )) val releaseShouldBlock = VecInit(hasConflict.zip(conflictIdx).map{case(valid, idx) => valid && releaseReqValid && idx === releaseReqVidx }).reduce(_||_) when(releaseShouldBlock){ missUnit.io.release_req.ready := false.B } (0 until PortNumber).map{i => mainPipe.io.fetch(i).req.valid := io.fetch(i).req.valid //&& !fetchShouldBlock(i) io.fetch(i).req.ready := mainPipe.io.fetch(i).req.ready //&& !fetchShouldBlock(i) mainPipe.io.fetch(i).req.bits := io.fetch(i).req.bits } // in L1ICache, we only expect GrantData and ReleaseAck bus.d.ready := false.B when ( bus.d.bits.opcode === TLMessages.GrantData) { missUnit.io.mem_grant <> bus.d } .elsewhen (bus.d.bits.opcode === TLMessages.ReleaseAck) { releaseUnit.io.mem_grant <> bus.d } .otherwise { assert (!bus.d.fire()) } val perfinfo = IO(new Bundle(){ val perfEvents = Output(new PerfEventsBundle(2)) }) val perfEvents = Seq( ("icache_miss_cnt ", false.B ), ("icache_miss_penty ", BoolStopWatch(start = false.B, stop = false.B || false.B, startHighPriority = true) ), ) // Customized csr cache op support val cacheOpDecoder = Module(new CSRCacheOpDecoder("icache", CacheInstrucion.COP_ID_ICACHE)) cacheOpDecoder.io.csr <> io.csr dataArray.io.cacheOp.req := cacheOpDecoder.io.cache.req metaArray.io.cacheOp.req := cacheOpDecoder.io.cache.req cacheOpDecoder.io.cache.resp.valid := dataArray.io.cacheOp.resp.valid || metaArray.io.cacheOp.resp.valid cacheOpDecoder.io.cache.resp.bits := Mux1H(List( dataArray.io.cacheOp.resp.valid -> dataArray.io.cacheOp.resp.bits, metaArray.io.cacheOp.resp.valid -> metaArray.io.cacheOp.resp.bits, )) assert(!((dataArray.io.cacheOp.resp.valid +& metaArray.io.cacheOp.resp.valid) > 1.U)) }