/*************************************************************************************** * Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) * Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.frontend.icache import chisel3._ import chisel3.util._ import freechips.rocketchip.diplomacy.IdRange import freechips.rocketchip.diplomacy.LazyModule import freechips.rocketchip.diplomacy.LazyModuleImp import freechips.rocketchip.tilelink._ import freechips.rocketchip.util.BundleFieldBase import huancun.AliasField import huancun.PrefetchField import org.chipsalliance.cde.config.Parameters import utility._ import utils._ import xiangshan._ import xiangshan.cache._ import xiangshan.cache.mmu.TlbRequestIO import xiangshan.frontend._ case class ICacheParameters( nSets: Int = 256, nWays: Int = 4, rowBits: Int = 64, nTLBEntries: Int = 32, tagECC: Option[String] = None, dataECC: Option[String] = None, replacer: Option[String] = Some("random"), PortNumber: Int = 2, nFetchMshr: Int = 4, nPrefetchMshr: Int = 10, nWayLookupSize: Int = 32, DataCodeUnit: Int = 64, ICacheDataBanks: Int = 8, ICacheDataSRAMWidth: Int = 66, // TODO: hard code, need delete partWayNum: Int = 4, nMMIOs: Int = 1, blockBytes: Int = 64 ) extends L1CacheParameters { val setBytes = nSets * blockBytes val aliasBitsOpt = DCacheParameters().aliasBitsOpt // if(setBytes > pageSize) Some(log2Ceil(setBytes / pageSize)) else None val reqFields: Seq[BundleFieldBase] = Seq( PrefetchField(), ReqSourceField() ) ++ aliasBitsOpt.map(AliasField) val echoFields: Seq[BundleFieldBase] = Nil def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) def replacement = ReplacementPolicy.fromString(replacer, nWays, nSets) } trait HasICacheParameters extends HasL1CacheParameters with HasInstrMMIOConst with HasIFUConst { val cacheParams = icacheParameters def ICacheSets = cacheParams.nSets def ICacheWays = cacheParams.nWays def PortNumber = cacheParams.PortNumber def nFetchMshr = cacheParams.nFetchMshr def nPrefetchMshr = cacheParams.nPrefetchMshr def nWayLookupSize = cacheParams.nWayLookupSize def DataCodeUnit = cacheParams.DataCodeUnit def ICacheDataBanks = cacheParams.ICacheDataBanks def ICacheDataSRAMWidth = cacheParams.ICacheDataSRAMWidth def partWayNum = cacheParams.partWayNum def ICacheMetaBits = tagBits // FIXME: unportable: maybe use somemethod to get width def ICacheMetaCodeBits = 1 // FIXME: unportable: maybe use cacheParams.tagCode.somemethod to get width def ICacheMetaEntryBits = ICacheMetaBits + ICacheMetaCodeBits def ICacheDataBits = blockBits / ICacheDataBanks def ICacheDataCodeSegs = math.ceil(ICacheDataBits / DataCodeUnit).toInt // split data to segments for ECC checking def ICacheDataCodeBits = ICacheDataCodeSegs * 1 // FIXME: unportable: maybe use cacheParams.dataCode.somemethod to get width def ICacheDataEntryBits = ICacheDataBits + ICacheDataCodeBits def ICacheBankVisitNum = 32 * 8 / ICacheDataBits + 1 def highestIdxBit = log2Ceil(nSets) - 1 require((ICacheDataBanks >= 2) && isPow2(ICacheDataBanks)) require(ICacheDataSRAMWidth >= ICacheDataEntryBits) require(isPow2(ICacheSets), s"nSets($ICacheSets) must be pow2") require(isPow2(ICacheWays), s"nWays($ICacheWays) must be pow2") def getBits(num: Int) = log2Ceil(num).W def generatePipeControl(lastFire: Bool, thisFire: Bool, thisFlush: Bool, lastFlush: Bool): Bool = { val valid = RegInit(false.B) when(thisFlush)(valid := false.B) .elsewhen(lastFire && !lastFlush)(valid := true.B) .elsewhen(thisFire)(valid := false.B) valid } def ResultHoldBypass[T <: Data](data: T, valid: Bool): T = Mux(valid, data, RegEnable(data, valid)) def ResultHoldBypass[T <: Data](data: T, init: T, valid: Bool): T = Mux(valid, data, RegEnable(data, init, valid)) def holdReleaseLatch(valid: Bool, release: Bool, flush: Bool): Bool = { val bit = RegInit(false.B) when(flush)(bit := false.B) .elsewhen(valid && !release)(bit := true.B) .elsewhen(release)(bit := false.B) bit || valid } def blockCounter(block: Bool, flush: Bool, threshold: Int): Bool = { val counter = RegInit(0.U(log2Up(threshold + 1).W)) when(block)(counter := counter + 1.U) when(flush)(counter := 0.U) counter > threshold.U } def InitQueue[T <: Data](entry: T, size: Int): Vec[T] = return RegInit(VecInit(Seq.fill(size)(0.U.asTypeOf(entry.cloneType)))) def encodeMetaECC(meta: UInt): UInt = { require(meta.getWidth == ICacheMetaBits) val code = cacheParams.tagCode.encode(meta) >> ICacheMetaBits code.asTypeOf(UInt(ICacheMetaCodeBits.W)) } def encodeDataECC(data: UInt): UInt = { require(data.getWidth == ICacheDataBits) val datas = data.asTypeOf(Vec(ICacheDataCodeSegs, UInt((ICacheDataBits / ICacheDataCodeSegs).W))) val codes = VecInit(datas.map(cacheParams.dataCode.encode(_) >> (ICacheDataBits / ICacheDataCodeSegs))) codes.asTypeOf(UInt(ICacheDataCodeBits.W)) } def getBankSel(blkOffset: UInt, valid: Bool = true.B): Vec[UInt] = { val bankIdxLow = Cat(0.U(1.W), blkOffset) >> log2Ceil(blockBytes / ICacheDataBanks) val bankIdxHigh = (Cat(0.U(1.W), blkOffset) + 32.U) >> log2Ceil(blockBytes / ICacheDataBanks) val bankSel = VecInit((0 until ICacheDataBanks * 2).map(i => (i.U >= bankIdxLow) && (i.U <= bankIdxHigh))) assert( !valid || PopCount(bankSel) === ICacheBankVisitNum.U, "The number of bank visits must be %d, but bankSel=0x%x", ICacheBankVisitNum.U, bankSel.asUInt ) bankSel.asTypeOf(UInt((ICacheDataBanks * 2).W)).asTypeOf(Vec(2, UInt(ICacheDataBanks.W))) } def getLineSel(blkOffset: UInt)(implicit p: Parameters): Vec[Bool] = { val bankIdxLow = blkOffset >> log2Ceil(blockBytes / ICacheDataBanks) val lineSel = VecInit((0 until ICacheDataBanks).map(i => i.U < bankIdxLow)) lineSel } def getBlkAddr(addr: UInt) = addr >> blockOffBits def getPhyTagFromBlk(addr: UInt): UInt = addr >> (pgUntagBits - blockOffBits) def getIdxFromBlk(addr: UInt) = addr(idxBits - 1, 0) def get_paddr_from_ptag(vaddr: UInt, ptag: UInt) = Cat(ptag, vaddr(pgUntagBits - 1, 0)) } abstract class ICacheBundle(implicit p: Parameters) extends XSBundle with HasICacheParameters abstract class ICacheModule(implicit p: Parameters) extends XSModule with HasICacheParameters abstract class ICacheArray(implicit p: Parameters) extends XSModule with HasICacheParameters class ICacheMetadata(implicit p: Parameters) extends ICacheBundle { val tag = UInt(tagBits.W) } object ICacheMetadata { def apply(tag: Bits)(implicit p: Parameters) = { val meta = Wire(new ICacheMetadata) meta.tag := tag meta } } class ICacheMetaArray()(implicit p: Parameters) extends ICacheArray { class ICacheMetaEntry(implicit p: Parameters) extends ICacheBundle { val meta: ICacheMetadata = new ICacheMetadata val code: UInt = UInt(ICacheMetaCodeBits.W) } private object ICacheMetaEntry { def apply(meta: ICacheMetadata)(implicit p: Parameters): ICacheMetaEntry = { val entry = Wire(new ICacheMetaEntry) entry.meta := meta entry.code := encodeMetaECC(meta.asUInt) entry } } // sanity check require(ICacheMetaEntryBits == (new ICacheMetaEntry).getWidth) val io = IO(new Bundle { val write = Flipped(DecoupledIO(new ICacheMetaWriteBundle)) val read = Flipped(DecoupledIO(new ICacheReadBundle)) val readResp = Output(new ICacheMetaRespBundle) val fencei = Input(Bool()) }) val port_0_read_0 = io.read.valid && !io.read.bits.vSetIdx(0)(0) val port_0_read_1 = io.read.valid && io.read.bits.vSetIdx(0)(0) val port_1_read_1 = io.read.valid && io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_1_read_0 = io.read.valid && !io.read.bits.vSetIdx(1)(0) && io.read.bits.isDoubleLine val port_0_read_0_reg = RegEnable(port_0_read_0, 0.U.asTypeOf(port_0_read_0), io.read.fire) val port_0_read_1_reg = RegEnable(port_0_read_1, 0.U.asTypeOf(port_0_read_1), io.read.fire) val port_1_read_1_reg = RegEnable(port_1_read_1, 0.U.asTypeOf(port_1_read_1), io.read.fire) val port_1_read_0_reg = RegEnable(port_1_read_0, 0.U.asTypeOf(port_1_read_0), io.read.fire) val bank_0_idx = Mux(port_0_read_0, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val bank_1_idx = Mux(port_0_read_1, io.read.bits.vSetIdx(0), io.read.bits.vSetIdx(1)) val bank_idx = Seq(bank_0_idx, bank_1_idx) val write_bank_0 = io.write.valid && !io.write.bits.bankIdx val write_bank_1 = io.write.valid && io.write.bits.bankIdx val write_meta_bits = ICacheMetaEntry(meta = ICacheMetadata( tag = io.write.bits.phyTag ) ) val tagArrays = (0 until 2) map { bank => val tagArray = Module(new SRAMTemplate( new ICacheMetaEntry(), set = nSets / 2, way = nWays, shouldReset = true, holdRead = true, singlePort = true )) // meta connection if (bank == 0) { tagArray.io.r.req.valid := port_0_read_0 || port_1_read_0 tagArray.io.r.req.bits.apply(setIdx = bank_0_idx(highestIdxBit, 1)) tagArray.io.w.req.valid := write_bank_0 tagArray.io.w.req.bits.apply( data = write_meta_bits, setIdx = io.write.bits.virIdx(highestIdxBit, 1), waymask = io.write.bits.waymask ) } else { tagArray.io.r.req.valid := port_0_read_1 || port_1_read_1 tagArray.io.r.req.bits.apply(setIdx = bank_1_idx(highestIdxBit, 1)) tagArray.io.w.req.valid := write_bank_1 tagArray.io.w.req.bits.apply( data = write_meta_bits, setIdx = io.write.bits.virIdx(highestIdxBit, 1), waymask = io.write.bits.waymask ) } tagArray } val read_set_idx_next = RegEnable(io.read.bits.vSetIdx, 0.U.asTypeOf(io.read.bits.vSetIdx), io.read.fire) val valid_array = RegInit(VecInit(Seq.fill(nWays)(0.U(nSets.W)))) val valid_metas = Wire(Vec(PortNumber, Vec(nWays, Bool()))) // valid read (0 until PortNumber).foreach(i => (0 until nWays).foreach(way => valid_metas(i)(way) := valid_array(way)(read_set_idx_next(i)) ) ) io.readResp.entryValid := valid_metas io.read.ready := !io.write.valid && !io.fencei && tagArrays.map(_.io.r.req.ready).reduce(_ && _) // valid write val way_num = OHToUInt(io.write.bits.waymask) when(io.write.valid) { valid_array(way_num) := valid_array(way_num).bitSet(io.write.bits.virIdx, true.B) } XSPerfAccumulate("meta_refill_num", io.write.valid) io.readResp.metas <> DontCare io.readResp.codes <> DontCare val readMetaEntries = tagArrays.map(port => port.io.r.resp.asTypeOf(Vec(nWays, new ICacheMetaEntry()))) val readMetas = readMetaEntries.map(_.map(_.meta)) val readCodes = readMetaEntries.map(_.map(_.code)) // TEST: force ECC to fail by setting readCodes to 0 if (ICacheForceMetaECCError) { readCodes.foreach(_.foreach(_ := 0.U)) } when(port_0_read_0_reg) { io.readResp.metas(0) := readMetas(0) io.readResp.codes(0) := readCodes(0) }.elsewhen(port_0_read_1_reg) { io.readResp.metas(0) := readMetas(1) io.readResp.codes(0) := readCodes(1) } when(port_1_read_0_reg) { io.readResp.metas(1) := readMetas(0) io.readResp.codes(1) := readCodes(0) }.elsewhen(port_1_read_1_reg) { io.readResp.metas(1) := readMetas(1) io.readResp.codes(1) := readCodes(1) } io.write.ready := true.B // TODO : has bug ? should be !io.cacheOp.req.valid // fencei logic : reset valid_array when(io.fencei) { (0 until nWays).foreach(way => valid_array(way) := 0.U ) } } class ICacheDataArray(implicit p: Parameters) extends ICacheArray { class ICacheDataEntry(implicit p: Parameters) extends ICacheBundle { val data = UInt(ICacheDataBits.W) val code = UInt(ICacheDataCodeBits.W) } object ICacheDataEntry { def apply(data: UInt)(implicit p: Parameters) = { val entry = Wire(new ICacheDataEntry) entry.data := data entry.code := encodeDataECC(data) entry } } val io = IO { new Bundle { val write = Flipped(DecoupledIO(new ICacheDataWriteBundle)) // TODO: fix hard code val read = Flipped(Vec(4, DecoupledIO(new ICacheReadBundle))) val readResp = Output(new ICacheDataRespBundle) } } /** ****************************************************************************** * data array ****************************************************************************** */ val writeDatas = io.write.bits.data.asTypeOf(Vec(ICacheDataBanks, UInt(ICacheDataBits.W))) val writeEntries = writeDatas.map(ICacheDataEntry(_).asUInt) val bankSel = getBankSel(io.read(0).bits.blkOffset, io.read(0).valid) val lineSel = getLineSel(io.read(0).bits.blkOffset) val waymasks = io.read(0).bits.wayMask val masks = Wire(Vec(nWays, Vec(ICacheDataBanks, Bool()))) (0 until nWays).foreach { way => (0 until ICacheDataBanks).foreach { bank => masks(way)(bank) := Mux( lineSel(bank), waymasks(1)(way) && bankSel(1)(bank).asBool, waymasks(0)(way) && bankSel(0)(bank).asBool ) } } val dataArrays = (0 until nWays).map { way => (0 until ICacheDataBanks).map { bank => val sramBank = Module(new SRAMTemplateWithFixedWidth( UInt(ICacheDataEntryBits.W), set = nSets, width = ICacheDataSRAMWidth, shouldReset = true, holdRead = true, singlePort = true )) // read sramBank.io.r.req.valid := io.read(bank % 4).valid && masks(way)(bank) sramBank.io.r.req.bits.apply(setIdx = Mux(lineSel(bank), io.read(bank % 4).bits.vSetIdx(1), io.read(bank % 4).bits.vSetIdx(0)) ) // write sramBank.io.w.req.valid := io.write.valid && io.write.bits.waymask(way).asBool sramBank.io.w.req.bits.apply( data = writeEntries(bank), setIdx = io.write.bits.virIdx, // waymask is invalid when way of SRAMTemplate <= 1 waymask = 0.U ) sramBank } } /** ****************************************************************************** * read logic ****************************************************************************** */ val masksReg = RegEnable(masks, 0.U.asTypeOf(masks), io.read(0).valid) val readDataWithCode = (0 until ICacheDataBanks).map(bank => Mux1H(VecInit(masksReg.map(_(bank))).asTypeOf(UInt(nWays.W)), dataArrays.map(_(bank).io.r.resp.asUInt)) ) val readEntries = readDataWithCode.map(_.asTypeOf(new ICacheDataEntry())) val readDatas = VecInit(readEntries.map(_.data)) val readCodes = VecInit(readEntries.map(_.code)) // TEST: force ECC to fail by setting readCodes to 0 if (ICacheForceDataECCError) { readCodes.foreach(_ := 0.U) } /** ****************************************************************************** * IO ****************************************************************************** */ io.readResp.datas := readDatas io.readResp.codes := readCodes io.write.ready := true.B io.read.foreach(_.ready := !io.write.valid) } class ICacheReplacer(implicit p: Parameters) extends ICacheModule { val io = IO(new Bundle { val touch = Vec(PortNumber, Flipped(ValidIO(new ReplacerTouch))) val victim = Flipped(new ReplacerVictim) }) val replacers = Seq.fill(PortNumber)(ReplacementPolicy.fromString(cacheParams.replacer, nWays, nSets / PortNumber)) // touch val touch_sets = Seq.fill(PortNumber)(Wire(Vec(2, UInt(log2Ceil(nSets / 2).W)))) val touch_ways = Seq.fill(PortNumber)(Wire(Vec(2, Valid(UInt(log2Ceil(nWays).W))))) (0 until PortNumber).foreach { i => touch_sets(i)(0) := Mux( io.touch(i).bits.vSetIdx(0), io.touch(1).bits.vSetIdx(highestIdxBit, 1), io.touch(0).bits.vSetIdx(highestIdxBit, 1) ) touch_ways(i)(0).bits := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).bits.way, io.touch(0).bits.way) touch_ways(i)(0).valid := Mux(io.touch(i).bits.vSetIdx(0), io.touch(1).valid, io.touch(0).valid) } // victim io.victim.way := Mux( io.victim.vSetIdx.bits(0), replacers(1).way(io.victim.vSetIdx.bits(highestIdxBit, 1)), replacers(0).way(io.victim.vSetIdx.bits(highestIdxBit, 1)) ) // touch the victim in next cycle val victim_vSetIdx_reg = RegEnable(io.victim.vSetIdx.bits, 0.U.asTypeOf(io.victim.vSetIdx.bits), io.victim.vSetIdx.valid) val victim_way_reg = RegEnable(io.victim.way, 0.U.asTypeOf(io.victim.way), io.victim.vSetIdx.valid) (0 until PortNumber).foreach { i => touch_sets(i)(1) := victim_vSetIdx_reg(highestIdxBit, 1) touch_ways(i)(1).bits := victim_way_reg touch_ways(i)(1).valid := RegNext(io.victim.vSetIdx.valid) && (victim_vSetIdx_reg(0) === i.U) } ((replacers zip touch_sets) zip touch_ways).map { case ((r, s), w) => r.access(s, w) } } class ICacheIO(implicit p: Parameters) extends ICacheBundle { val hartId = Input(UInt(hartIdLen.W)) val ftqPrefetch = Flipped(new FtqToPrefetchIO) val softPrefetch = Vec(backendParams.LduCnt, Flipped(Valid(new SoftIfetchPrefetchBundle))) val stop = Input(Bool()) val fetch = new ICacheMainPipeBundle val toIFU = Output(Bool()) val pmp = Vec(2 * PortNumber, new ICachePMPBundle) val itlb = Vec(PortNumber, new TlbRequestIO) val perfInfo = Output(new ICachePerfInfo) val error = ValidIO(new L1CacheErrorInfo) /* CSR control signal */ val csr_pf_enable = Input(Bool()) val csr_parity_enable = Input(Bool()) val fencei = Input(Bool()) val flush = Input(Bool()) } class ICache()(implicit p: Parameters) extends LazyModule with HasICacheParameters { override def shouldBeInlined: Boolean = false val clientParameters = TLMasterPortParameters.v1( Seq(TLMasterParameters.v1( name = "icache", sourceId = IdRange(0, cacheParams.nFetchMshr + cacheParams.nPrefetchMshr + 1) )), requestFields = cacheParams.reqFields, echoFields = cacheParams.echoFields ) val clientNode = TLClientNode(Seq(clientParameters)) lazy val module = new ICacheImp(this) } class ICacheImp(outer: ICache) extends LazyModuleImp(outer) with HasICacheParameters with HasPerfEvents { val io = IO(new ICacheIO) println("ICache:") println(" TagECC: " + cacheParams.tagECC) println(" DataECC: " + cacheParams.dataECC) println(" ICacheSets: " + cacheParams.nSets) println(" ICacheWays: " + cacheParams.nWays) println(" PortNumber: " + cacheParams.PortNumber) println(" nFetchMshr: " + cacheParams.nFetchMshr) println(" nPrefetchMshr: " + cacheParams.nPrefetchMshr) println(" nWayLookupSize: " + cacheParams.nWayLookupSize) println(" DataCodeUnit: " + cacheParams.DataCodeUnit) println(" ICacheDataBanks: " + cacheParams.ICacheDataBanks) println(" ICacheDataSRAMWidth: " + cacheParams.ICacheDataSRAMWidth) val (bus, edge) = outer.clientNode.out.head val metaArray = Module(new ICacheMetaArray) val dataArray = Module(new ICacheDataArray) val mainPipe = Module(new ICacheMainPipe) val missUnit = Module(new ICacheMissUnit(edge)) val replacer = Module(new ICacheReplacer) val prefetcher = Module(new IPrefetchPipe) val wayLookup = Module(new WayLookup) dataArray.io.write <> missUnit.io.data_write dataArray.io.read <> mainPipe.io.dataArray.toIData dataArray.io.readResp <> mainPipe.io.dataArray.fromIData metaArray.io.fencei := io.fencei metaArray.io.write <> missUnit.io.meta_write metaArray.io.read <> prefetcher.io.metaRead.toIMeta metaArray.io.readResp <> prefetcher.io.metaRead.fromIMeta prefetcher.io.flush := io.flush prefetcher.io.csr_pf_enable := io.csr_pf_enable prefetcher.io.csr_parity_enable := io.csr_parity_enable prefetcher.io.MSHRResp := missUnit.io.fetch_resp prefetcher.io.flushFromBpu := io.ftqPrefetch.flushFromBpu // cache softPrefetch private val softPrefetchValid = RegInit(false.B) private val softPrefetch = RegInit(0.U.asTypeOf(new IPrefetchReq)) /* FIXME: * If there is already a pending softPrefetch request, it will be overwritten. * Also, if there are multiple softPrefetch requests in the same cycle, only the first one will be accepted. * We should implement a softPrefetchQueue (like ibuffer, multi-in, single-out) to solve this. * However, the impact on performance still needs to be assessed. * Considering that the frequency of prefetch.i may not be high, let's start with a temporary dummy solution. */ when(io.softPrefetch.map(_.valid).reduce(_ || _)) { softPrefetchValid := true.B softPrefetch.fromSoftPrefetch(MuxCase( 0.U.asTypeOf(new SoftIfetchPrefetchBundle), io.softPrefetch.map(req => req.valid -> req.bits) )) }.elsewhen(prefetcher.io.req.fire) { softPrefetchValid := false.B } // pass ftqPrefetch private val ftqPrefetch = WireInit(0.U.asTypeOf(new IPrefetchReq)) ftqPrefetch.fromFtqICacheInfo(io.ftqPrefetch.req.bits) // software prefetch has higher priority prefetcher.io.req.valid := softPrefetchValid || io.ftqPrefetch.req.valid prefetcher.io.req.bits := Mux(softPrefetchValid, softPrefetch, ftqPrefetch) io.ftqPrefetch.req.ready := prefetcher.io.req.ready && !softPrefetchValid missUnit.io.hartId := io.hartId missUnit.io.fencei := io.fencei missUnit.io.flush := io.flush missUnit.io.fetch_req <> mainPipe.io.mshr.req missUnit.io.prefetch_req <> prefetcher.io.MSHRReq missUnit.io.mem_grant.valid := false.B missUnit.io.mem_grant.bits := DontCare missUnit.io.mem_grant <> bus.d mainPipe.io.flush := io.flush mainPipe.io.respStall := io.stop mainPipe.io.csr_parity_enable := io.csr_parity_enable mainPipe.io.hartId := io.hartId mainPipe.io.mshr.resp := missUnit.io.fetch_resp mainPipe.io.fetch.req <> io.fetch.req mainPipe.io.wayLookupRead <> wayLookup.io.read wayLookup.io.flush := io.flush wayLookup.io.write <> prefetcher.io.wayLookupWrite wayLookup.io.update := missUnit.io.fetch_resp replacer.io.touch <> mainPipe.io.touch replacer.io.victim <> missUnit.io.victim io.pmp(0) <> mainPipe.io.pmp(0) io.pmp(1) <> mainPipe.io.pmp(1) io.pmp(2) <> prefetcher.io.pmp(0) io.pmp(3) <> prefetcher.io.pmp(1) io.itlb(0) <> prefetcher.io.itlb(0) io.itlb(1) <> prefetcher.io.itlb(1) // notify IFU that Icache pipeline is available io.toIFU := mainPipe.io.fetch.req.ready io.perfInfo := mainPipe.io.perfInfo io.fetch.resp <> mainPipe.io.fetch.resp io.fetch.topdownIcacheMiss := mainPipe.io.fetch.topdownIcacheMiss io.fetch.topdownItlbMiss := mainPipe.io.fetch.topdownItlbMiss bus.b.ready := false.B bus.c.valid := false.B bus.c.bits := DontCare bus.e.valid := false.B bus.e.bits := DontCare bus.a <> missUnit.io.mem_acquire // Parity error port val errors = mainPipe.io.errors val errors_valid = errors.map(e => e.valid).reduce(_ | _) io.error.bits <> RegEnable( PriorityMux(errors.map(e => e.valid -> e.bits)), 0.U.asTypeOf(errors(0).bits), errors_valid ) io.error.valid := RegNext(errors_valid, false.B) XSPerfAccumulate( "softPrefetch_drop_not_ready", io.softPrefetch.map(_.valid).reduce(_ || _) && softPrefetchValid && !prefetcher.io.req.fire ) XSPerfAccumulate("softPrefetch_drop_multi_req", PopCount(io.softPrefetch.map(_.valid)) > 1.U) XSPerfAccumulate("softPrefetch_block_ftq", softPrefetchValid && io.ftqPrefetch.req.valid) val perfEvents = Seq( ("icache_miss_cnt ", false.B), ("icache_miss_penalty", BoolStopWatch(start = false.B, stop = false.B || false.B, startHighPriority = true)) ) generatePerfEvent() } class ICachePartWayReadBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheBundle { val req = Flipped(Vec( PortNumber, Decoupled(new Bundle { val ridx = UInt((log2Ceil(nSets) - 1).W) }) )) val resp = Output(new Bundle { val rdata = Vec(PortNumber, Vec(pWay, gen)) }) } class ICacheWriteBundle[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheBundle { val wdata = gen val widx = UInt((log2Ceil(nSets) - 1).W) val wbankidx = Bool() val wmask = Vec(pWay, Bool()) } class ICachePartWayArray[T <: Data](gen: T, pWay: Int)(implicit p: Parameters) extends ICacheArray { // including part way data val io = IO { new Bundle { val read = new ICachePartWayReadBundle(gen, pWay) val write = Flipped(ValidIO(new ICacheWriteBundle(gen, pWay))) } } io.read.req.map(_.ready := !io.write.valid) val srams = (0 until PortNumber) map { bank => val sramBank = Module(new SRAMTemplate( gen, set = nSets / 2, way = pWay, shouldReset = true, holdRead = true, singlePort = true )) sramBank.io.r.req.valid := io.read.req(bank).valid sramBank.io.r.req.bits.apply(setIdx = io.read.req(bank).bits.ridx) if (bank == 0) sramBank.io.w.req.valid := io.write.valid && !io.write.bits.wbankidx else sramBank.io.w.req.valid := io.write.valid && io.write.bits.wbankidx sramBank.io.w.req.bits.apply( data = io.write.bits.wdata, setIdx = io.write.bits.widx, waymask = io.write.bits.wmask.asUInt ) sramBank } io.read.req.map(_.ready := !io.write.valid && srams.map(_.io.r.req.ready).reduce(_ && _)) io.read.resp.rdata := VecInit(srams.map(bank => bank.io.r.resp.asTypeOf(Vec(pWay, gen)))) } // Automatically partition the SRAM based on the width of the data and the desired width. // final SRAM width = width * way class SRAMTemplateWithFixedWidth[T <: Data]( gen: T, set: Int, width: Int, way: Int = 1, shouldReset: Boolean = false, holdRead: Boolean = false, singlePort: Boolean = false, bypassWrite: Boolean = false ) extends Module { val dataBits = gen.getWidth val bankNum = math.ceil(dataBits.toDouble / width.toDouble).toInt val totalBits = bankNum * width val io = IO(new Bundle { val r = Flipped(new SRAMReadBus(gen, set, way)) val w = Flipped(new SRAMWriteBus(gen, set, way)) }) val wordType = UInt(width.W) val writeDatas = (0 until bankNum).map(bank => VecInit((0 until way).map(i => io.w.req.bits.data(i).asTypeOf(UInt(totalBits.W)).asTypeOf(Vec(bankNum, wordType))(bank) )) ) val srams = (0 until bankNum) map { bank => val sramBank = Module(new SRAMTemplate( wordType, set = set, way = way, shouldReset = shouldReset, holdRead = holdRead, singlePort = singlePort, bypassWrite = bypassWrite )) // read req sramBank.io.r.req.valid := io.r.req.valid sramBank.io.r.req.bits.setIdx := io.r.req.bits.setIdx // write req sramBank.io.w.req.valid := io.w.req.valid sramBank.io.w.req.bits.setIdx := io.w.req.bits.setIdx sramBank.io.w.req.bits.data := writeDatas(bank) sramBank.io.w.req.bits.waymask.map(_ := io.w.req.bits.waymask.get) sramBank } io.r.req.ready := !io.w.req.valid (0 until way).foreach { i => io.r.resp.data(i) := VecInit((0 until bankNum).map(bank => srams(bank).io.r.resp.data(i) )).asTypeOf(UInt(totalBits.W))(dataBits - 1, 0).asTypeOf(gen.cloneType) } io.r.req.ready := srams.head.io.r.req.ready io.w.req.ready := srams.head.io.w.req.ready }