/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ // package xiangshan.frontend // // import chipsalliance.rocketchip.config.Parameters // import chisel3._ // import chisel3.util._ // import xiangshan._ // import utils._ // import chisel3.experimental.chiselName // // import scala.math.min // // trait HasSCParameter extends HasTageParameter { // val SCHistLens = 0 :: TableInfo.map{ case (_,h,_) => h}.toList // val SCNTables = 6 // val SCCtrBits = 6 // val SCNRows = 1024 // val SCTableInfo = Seq.fill(SCNTables)((SCNRows, SCCtrBits)) zip SCHistLens map {case ((n, cb), h) => (n, cb, h)} // } // // class SCReq(implicit p: Parameters) extends TageReq // // abstract class SCBundle(implicit p: Parameters) extends TageBundle with HasSCParameter {} // abstract class SCModule(implicit p: Parameters) extends TageModule with HasSCParameter {} // // class SCResp(val ctrBits: Int = 6)(implicit p: Parameters) extends SCBundle { // val ctr = Vec(2, SInt(ctrBits.W)) // } // // class SCUpdate(val ctrBits: Int = 6)(implicit p: Parameters) extends SCBundle { // val pc = UInt(VAddrBits.W) // val hist = UInt(HistoryLength.W) // val mask = Vec(TageBanks, Bool()) // val oldCtrs = Vec(TageBanks, SInt(ctrBits.W)) // val tagePreds = Vec(TageBanks, Bool()) // val takens = Vec(TageBanks, Bool()) // } // // class SCTableIO(val ctrBits: Int = 6)(implicit p: Parameters) extends SCBundle { // val req = Input(Valid(new SCReq)) // val resp = Output(Vec(TageBanks, new SCResp(ctrBits))) // val update = Input(new SCUpdate(ctrBits)) // } // // @chiselName // class SCTable(val nRows: Int, val ctrBits: Int, val histLen: Int)(implicit p: Parameters) // extends SCModule with HasFoldedHistory { // val io = IO(new SCTableIO(ctrBits)) // // val table = Module(new SRAMTemplate(SInt(ctrBits.W), set=nRows, way=2*TageBanks, shouldReset=true, holdRead=true, singlePort=false)) // // def getIdx(hist: UInt, pc: UInt) = { // (compute_folded_hist(hist, log2Ceil(nRows)) ^ (pc >> (instOffsetBits+log2Ceil(TageBanks))))(log2Ceil(nRows)-1,0) // } // // def ctrUpdate(ctr: SInt, cond: Bool): SInt = signedSatUpdate(ctr, ctrBits, cond) // // val if2_idx = getIdx(io.req.bits.hist, io.req.bits.pc) // val if3_idx = RegEnable(if2_idx, enable=io.req.valid) // // val table_r = // VecInit((0 until TageBanks).map(b => VecInit((0 to 1).map(i => table.io.r.resp.data(b*2+i))))) // // // val if2_mask = io.req.bits.mask // val if3_mask = RegEnable(if2_mask, enable=io.req.valid) // // val update_idx = getIdx(io.update.hist, io.update.pc) // val update_wdatas = // VecInit((0 until TageBanks).map(w => // ctrUpdate(io.update.oldCtrs(w), io.update.takens(w)))) // // table.io.r.req.valid := io.req.valid // table.io.r.req.bits.setIdx := if2_idx // // val updateWayMask = // VecInit((0 until TageBanks).map(b => // VecInit((0 to 1).map(i => // (io.update.mask(b) && i.U === io.update.tagePreds(b).asUInt))))).asUInt // // table.io.w.apply( // valid = io.update.mask.asUInt.orR, // data = VecInit((0 until TageBanks*2).map(i => update_wdatas(i/2))), // setIdx = update_idx, // waymask = updateWayMask // ) // // (0 until TageBanks).map(b => { // io.resp(b).ctr := table_r(b) // }) // // val wrBypassEntries = 4 // // val wrbypass_idxs = RegInit(0.U.asTypeOf(Vec(wrBypassEntries, UInt(log2Ceil(nRows).W)))) // val wrbypass_ctrs = RegInit(0.U.asTypeOf(Vec(wrBypassEntries, Vec(2*TageBanks, SInt(ctrBits.W))))) // val wrbypass_ctr_valids = RegInit(0.U.asTypeOf(Vec(wrBypassEntries, Vec(2*TageBanks, Bool())))) // val wrbypass_enq_idx = RegInit(0.U(log2Ceil(wrBypassEntries).W)) // // when (reset.asBool) { // wrbypass_ctr_valids := 0.U.asTypeOf(Vec(wrBypassEntries, Vec(2*TageBanks, Bool()))) // } // // val wrbypass_hits = VecInit((0 until wrBypassEntries) map (i => wrbypass_idxs(i) === update_idx)) // val wrbypass_hit = wrbypass_hits.asUInt.orR // val wrbypass_hit_idx = ParallelPriorityEncoder(wrbypass_hits) // // for (w <- 0 until TageBanks) { // val ctrPos = (w << 1).U | io.update.tagePreds(w).asUInt // val altPos = (w << 1).U | ~io.update.tagePreds(w).asUInt // val bypass_ctr = wrbypass_ctrs(wrbypass_hit_idx)(ctrPos) // val hit_and_valid = wrbypass_hit && wrbypass_ctr_valids(wrbypass_hit_idx)(ctrPos) // val oldCtr = Mux(hit_and_valid, wrbypass_ctrs(wrbypass_hit_idx)(ctrPos), io.update.oldCtrs(w)) // update_wdatas(w) := ctrUpdate(oldCtr, io.update.takens(w)) // // when (io.update.mask.reduce(_||_)) { // when (wrbypass_hit) { // when (io.update.mask(w)) { // wrbypass_ctrs(wrbypass_hit_idx)(ctrPos) := update_wdatas(w) // wrbypass_ctr_valids(wrbypass_hit_idx)(ctrPos) := true.B // } // }.otherwise { // // reset valid bit first // wrbypass_ctr_valids(wrbypass_enq_idx)(ctrPos) := false.B // wrbypass_ctr_valids(wrbypass_enq_idx)(altPos) := false.B // when (io.update.mask(w)) { // wrbypass_ctr_valids(wrbypass_enq_idx)(ctrPos) := true.B // wrbypass_ctrs(wrbypass_enq_idx)(w) := update_wdatas(w) // } // } // } // } // // when (io.update.mask.reduce(_||_) && !wrbypass_hit) { // wrbypass_idxs(wrbypass_enq_idx) := update_idx // wrbypass_enq_idx := (wrbypass_enq_idx + 1.U)(log2Ceil(wrBypassEntries)-1,0) // } // // // if (BPUDebug && debug) { // val u = io.update // XSDebug(io.req.valid, // p"scTableReq: pc=0x${Hexadecimal(io.req.bits.pc)}, " + // p"if2_idx=${if2_idx}, hist=${Hexadecimal(io.req.bits.hist)}, " + // p"if2_mask=${Binary(if2_mask)}\n") // for (i <- 0 until TageBanks) { // XSDebug(RegNext(io.req.valid), // p"scTableResp[${i.U}]: if3_idx=${if3_idx}," + // p"ctr:${io.resp(i).ctr}, if3_mask=${Binary(if3_mask)}\n") // XSDebug(io.update.mask(i), // p"update Table: pc:${Hexadecimal(u.pc)}, hist:${Hexadecimal(u.hist)}, " + // p"bank:${i}, tageTaken:${u.tagePreds(i)}, taken:${u.takens(i)}, oldCtr:${u.oldCtrs(i)}\n") // val ctrPos = (i << 1).U | io.update.tagePreds(i).asUInt // val hitCtr = wrbypass_ctrs(wrbypass_hit_idx)(ctrPos) // XSDebug(wrbypass_hit && wrbypass_ctr_valids(wrbypass_hit_idx)(ctrPos) && io.update.mask(i), // p"bank $i wrbypass hit wridx:$wrbypass_hit_idx, idx:$update_idx, ctr:$hitCtr" + // p"taken:${io.update.takens(i)} newCtr:${update_wdatas(i)}\n") // } // } // // } // // class SCThreshold(val ctrBits: Int = 6)(implicit p: Parameters) extends SCBundle { // val ctr = UInt(ctrBits.W) // def satPos(ctr: UInt = this.ctr) = ctr === ((1.U << ctrBits) - 1.U) // def satNeg(ctr: UInt = this.ctr) = ctr === 0.U // def neutralVal = (1.U << (ctrBits - 1)) // val thres = UInt(8.W) // def initVal = 6.U // def minThres = 6.U // def maxThres = 31.U // def update(cause: Bool): SCThreshold = { // val res = Wire(new SCThreshold(this.ctrBits)) // val newCtr = satUpdate(this.ctr, this.ctrBits, cause) // val newThres = Mux(res.satPos(newCtr) && this.thres <= maxThres, this.thres + 2.U, // Mux(res.satNeg(newCtr) && this.thres >= minThres, this.thres - 2.U, // this.thres)) // res.thres := newThres // res.ctr := Mux(res.satPos(newCtr) || res.satNeg(newCtr), res.neutralVal, newCtr) // // XSDebug(true.B, p"scThres Update: cause${cause} newCtr ${newCtr} newThres ${newThres}\n") // res // } // } // // object SCThreshold { // def apply(bits: Int)(implicit p: Parameters) = { // val t = Wire(new SCThreshold(ctrBits=bits)) // t.ctr := t.neutralVal // t.thres := t.initVal // t // } // } // // // trait HasSC extends HasSCParameter { this: Tage => // val scTables = SCTableInfo.map { // case (nRows, ctrBits, histLen) => { // val t = Module(new SCTable(nRows/TageBanks, ctrBits, histLen)) // val req = t.io.req // req.valid := io.pc.valid // req.bits.pc := io.pc.bits // req.bits.hist := io.hist // req.bits.mask := io.inMask // if (!EnableSC) {t.io.update := DontCare} // t // } // } // // val scThresholds = List.fill(TageBanks)(RegInit(SCThreshold(5))) // val useThresholds = VecInit(scThresholds map (_.thres)) // val updateThresholds = VecInit(useThresholds map (t => (t << 3) +& 21.U)) // // val if3_scResps = VecInit(scTables.map(t => t.io.resp)) // // val scUpdateMask = WireInit(0.U.asTypeOf(Vec(SCNTables, Vec(TageBanks, Bool())))) // val scUpdateTagePreds = Wire(Vec(TageBanks, Bool())) // val scUpdateTakens = Wire(Vec(TageBanks, Bool())) // val scUpdateOldCtrs = Wire(Vec(TageBanks, Vec(SCNTables, SInt(SCCtrBits.W)))) // scUpdateTagePreds := DontCare // scUpdateTakens := DontCare // scUpdateOldCtrs := DontCare // // val updateSCMetas = VecInit(u.metas.map(_.tageMeta.scMeta)) // // val if4_sc_used, if4_conf, if4_unconf, if4_agree, if4_disagree = // 0.U.asTypeOf(Vec(TageBanks, Bool())) // val update_sc_used, update_conf, update_unconf, update_agree, update_disagree = // 0.U.asTypeOf(Vec(TageBanks, Bool())) // val update_on_mispred, update_on_unconf, sc_misp_tage_corr, sc_corr_tage_misp = // 0.U.asTypeOf(Vec(TageBanks, Bool())) // // // for sc ctrs // def getCentered(ctr: SInt): SInt = (ctr << 1).asSInt + 1.S // // for tage ctrs // def getPvdrCentered(ctr: UInt): SInt = ((((ctr.zext -& 4.S) << 1).asSInt + 1.S) << 3).asSInt // // for (w <- 0 until TageBanks) { // val scMeta = io.meta(w).scMeta // scMeta := DontCare // // do summation in if3 // val if3_scTableSums = VecInit( // (0 to 1) map { i => // ParallelSingedExpandingAdd(if3_scResps map (r => getCentered(r(w).ctr(i)))) // TODO: rewrite with wallace tree // } // ) // // val providerCtr = if3_providerCtrs(w) // val if3_pvdrCtrCentered = getPvdrCentered(providerCtr) // val if3_totalSums = VecInit(if3_scTableSums.map(_ +& if3_pvdrCtrCentered)) // val if3_sumAbs = VecInit(if3_totalSums.map(_.abs.asUInt)) // val if3_sumBelowThresholds = VecInit(if3_sumAbs map (_ <= useThresholds(w))) // val if3_scPreds = VecInit(if3_totalSums.map (_ >= 0.S)) // // val if4_sumBelowThresholds = RegEnable(if3_sumBelowThresholds, s3_fire) // val if4_scPreds = RegEnable(if3_scPreds, s3_fire) // val if4_sumAbs = RegEnable(if3_sumAbs, s3_fire) // // val if4_scCtrs = RegEnable(VecInit(if3_scResps.map(r => r(w).ctr(if3_tageTakens(w).asUInt))), s3_fire) // val if4_chooseBit = if4_tageTakens(w) // scMeta.tageTaken := if4_tageTakens(w) // scMeta.scUsed := if4_provideds(w) // scMeta.scPred := if4_scPreds(if4_chooseBit) // scMeta.ctrs := if4_scCtrs // // when (if4_provideds(w)) { // if4_sc_used(w) := true.B // if4_unconf(w) := if4_sumBelowThresholds(if4_chooseBit) // if4_conf(w) := !if4_sumBelowThresholds(if4_chooseBit) // // Use prediction from Statistical Corrector // XSDebug(p"---------tage${w} provided so that sc used---------\n") // XSDebug(p"scCtrs:$if4_scCtrs, prdrCtr:${if4_providerCtrs(w)}, sumAbs:$if4_sumAbs, tageTaken:${if4_chooseBit}\n") // when (!if4_sumBelowThresholds(if4_chooseBit)) { // when (ctrl.sc_enable) { // val pred = if4_scPreds(if4_chooseBit) // val debug_pc = Cat(packetIdx(debug_pc_s3), w.U, 0.U(instOffsetBits.W)) // XSDebug(p"pc(${Hexadecimal(debug_pc)}) SC(${w.U}) overriden pred to ${pred}\n") // if4_agree(w) := if4_tageTakens(w) === pred // if4_disagree(w) := if4_tageTakens(w) =/= pred // io.resp.takens(w) := pred // } // } // } // // val updateSCMeta = updateSCMetas(w) // val updateTageMeta = updateMetas(w) // when (updateValids(w) && updateSCMeta.scUsed.asBool) { // val scPred = updateSCMeta.scPred // val tagePred = updateSCMeta.tageTaken // val taken = u.takens(w) // val scOldCtrs = updateSCMeta.ctrs // val pvdrCtr = updateTageMeta.providerCtr // val sum = ParallelSingedExpandingAdd(scOldCtrs.map(getCentered)) +& getPvdrCentered(pvdrCtr) // val sumAbs = sum.abs.asUInt // scUpdateTagePreds(w) := tagePred // scUpdateTakens(w) := taken // (scUpdateOldCtrs(w) zip scOldCtrs).foreach{case (t, c) => t := c} // // update_sc_used(w) := true.B // update_unconf(w) := sumAbs < useThresholds(w) // update_conf(w) := sumAbs >= useThresholds(w) // update_agree(w) := scPred === tagePred // update_disagree(w) := scPred =/= tagePred // sc_corr_tage_misp(w) := scPred === taken && tagePred =/= taken && update_conf(w) // sc_misp_tage_corr(w) := scPred =/= taken && tagePred === taken && update_conf(w) // // val thres = useThresholds(w) // when (scPred =/= tagePred && sumAbs >= thres - 4.U && sumAbs <= thres - 2.U) { // val newThres = scThresholds(w).update(scPred =/= taken) // scThresholds(w) := newThres // XSDebug(p"scThres $w update: old ${useThresholds(w)} --> new ${newThres.thres}\n") // } // // val updateThres = updateThresholds(w) // when (scPred =/= taken || sumAbs < updateThres) { // scUpdateMask.foreach(t => t(w) := true.B) // XSDebug(sum < 0.S, // p"scUpdate: bank(${w}), scPred(${scPred}), tagePred(${tagePred}), " + // p"scSum(-$sumAbs), mispred: sc(${scPred =/= taken}), tage(${updateTageMisPreds(w)})\n" // ) // XSDebug(sum >= 0.S, // p"scUpdate: bank(${w}), scPred(${scPred}), tagePred(${tagePred}), " + // p"scSum(+$sumAbs), mispred: sc(${scPred =/= taken}), tage(${updateTageMisPreds(w)})\n" // ) // XSDebug(p"bank(${w}), update: sc: ${updateSCMeta}\n") // update_on_mispred(w) := scPred =/= taken // update_on_unconf(w) := scPred === taken // } // } // } // // tage_perf("sc_conf", PopCount(if4_conf), PopCount(update_conf)) // tage_perf("sc_unconf", PopCount(if4_unconf), PopCount(update_unconf)) // tage_perf("sc_agree", PopCount(if4_agree), PopCount(update_agree)) // tage_perf("sc_disagree", PopCount(if4_disagree), PopCount(update_disagree)) // tage_perf("sc_used", PopCount(if4_sc_used), PopCount(update_sc_used)) // XSPerfAccumulate("sc_update_on_mispred", PopCount(update_on_mispred)) // XSPerfAccumulate("sc_update_on_unconf", PopCount(update_on_unconf)) // XSPerfAccumulate("sc_mispred_but_tage_correct", PopCount(sc_misp_tage_corr)) // XSPerfAccumulate("sc_correct_and_tage_wrong", PopCount(sc_corr_tage_misp)) // // for (i <- 0 until SCNTables) { // scTables(i).io.update.mask := RegNext(scUpdateMask(i)) // scTables(i).io.update.tagePreds := RegNext(scUpdateTagePreds) // scTables(i).io.update.takens := RegNext(scUpdateTakens) // scTables(i).io.update.oldCtrs := RegNext(VecInit(scUpdateOldCtrs.map(_(i)))) // scTables(i).io.update.pc := RegNext(u.ftqPC) // scTables(i).io.update.hist := RegNext(updateHist) // } // }