/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.frontend import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import xiangshan._ import xiangshan.frontend.icache._ import utils._ import utility._ import scala.math._ import java.util.ResourceBundle.Control class FrontendTopDownBundle(implicit p: Parameters) extends XSBundle { val reasons = Vec(TopDownCounters.NumStallReasons.id, Bool()) val stallWidth = UInt(log2Ceil(PredictWidth).W) } class FetchRequestBundle(implicit p: Parameters) extends XSBundle with HasICacheParameters { //fast path: Timing critical val startAddr = UInt(VAddrBits.W) val nextlineStart = UInt(VAddrBits.W) val nextStartAddr = UInt(VAddrBits.W) //slow path val ftqIdx = new FtqPtr val ftqOffset = ValidUndirectioned(UInt(log2Ceil(PredictWidth).W)) val topdown_info = new FrontendTopDownBundle def crossCacheline = startAddr(blockOffBits - 1) === 1.U def fromFtqPcBundle(b: Ftq_RF_Components) = { this.startAddr := b.startAddr this.nextlineStart := b.nextLineAddr when (b.fallThruError) { val nextBlockHigherTemp = Mux(startAddr(log2Ceil(PredictWidth)+instOffsetBits), b.nextLineAddr, b.startAddr) val nextBlockHigher = nextBlockHigherTemp(VAddrBits-1, log2Ceil(PredictWidth)+instOffsetBits+1) this.nextStartAddr := Cat(nextBlockHigher, startAddr(log2Ceil(PredictWidth)+instOffsetBits) ^ 1.U(1.W), startAddr(log2Ceil(PredictWidth)+instOffsetBits-1, instOffsetBits), 0.U(instOffsetBits.W) ) } this } override def toPrintable: Printable = { p"[start] ${Hexadecimal(startAddr)} [next] ${Hexadecimal(nextlineStart)}" + p"[tgt] ${Hexadecimal(nextStartAddr)} [ftqIdx] $ftqIdx [jmp] v:${ftqOffset.valid}" + p" offset: ${ftqOffset.bits}\n" } } class FtqICacheInfo(implicit p: Parameters)extends XSBundle with HasICacheParameters{ val startAddr = UInt(VAddrBits.W) val nextlineStart = UInt(VAddrBits.W) val ftqIdx = new FtqPtr def crossCacheline = startAddr(blockOffBits - 1) === 1.U def fromFtqPcBundle(b: Ftq_RF_Components) = { this.startAddr := b.startAddr this.nextlineStart := b.nextLineAddr this } } class IFUICacheIO(implicit p: Parameters)extends XSBundle with HasICacheParameters{ val icacheReady = Output(Bool()) val resp = Vec(PortNumber, ValidIO(new ICacheMainPipeResp)) val topdownIcacheMiss = Output(Bool()) val topdownItlbMiss = Output(Bool()) } class FtqToICacheRequestBundle(implicit p: Parameters)extends XSBundle with HasICacheParameters{ val pcMemRead = Vec(5, new FtqICacheInfo) val readValid = Vec(5, Bool()) } class PredecodeWritebackBundle(implicit p:Parameters) extends XSBundle { val pc = Vec(PredictWidth, UInt(VAddrBits.W)) val pd = Vec(PredictWidth, new PreDecodeInfo) // TODO: redefine Predecode val ftqIdx = new FtqPtr val ftqOffset = UInt(log2Ceil(PredictWidth).W) val misOffset = ValidUndirectioned(UInt(log2Ceil(PredictWidth).W)) val cfiOffset = ValidUndirectioned(UInt(log2Ceil(PredictWidth).W)) val target = UInt(VAddrBits.W) val jalTarget = UInt(VAddrBits.W) val instrRange = Vec(PredictWidth, Bool()) } class mmioCommitRead(implicit p: Parameters) extends XSBundle { val mmioFtqPtr = Output(new FtqPtr) val mmioLastCommit = Input(Bool()) } class FetchToIBuffer(implicit p: Parameters) extends XSBundle { val instrs = Vec(PredictWidth, UInt(32.W)) val valid = UInt(PredictWidth.W) val enqEnable = UInt(PredictWidth.W) val pd = Vec(PredictWidth, new PreDecodeInfo) val pc = Vec(PredictWidth, UInt(VAddrBits.W)) val foldpc = Vec(PredictWidth, UInt(MemPredPCWidth.W)) val ftqPtr = new FtqPtr val ftqOffset = Vec(PredictWidth, ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) val ipf = Vec(PredictWidth, Bool()) val igpf = Vec(PredictWidth, Bool()) val acf = Vec(PredictWidth, Bool()) val crossPageIPFFix = Vec(PredictWidth, Bool()) val triggered = Vec(PredictWidth, new TriggerCf) val topdown_info = new FrontendTopDownBundle } // class BitWiseUInt(val width: Int, val init: UInt) extends Module { // val io = IO(new Bundle { // val set // }) // } // Move from BPU abstract class GlobalHistory(implicit p: Parameters) extends XSBundle with HasBPUConst { def update(br_valids: Vec[Bool], real_taken_mask: Vec[Bool]): GlobalHistory } class ShiftingGlobalHistory(implicit p: Parameters) extends GlobalHistory { val predHist = UInt(HistoryLength.W) def update(shift: UInt, taken: Bool, hist: UInt = this.predHist): ShiftingGlobalHistory = { val g = Wire(new ShiftingGlobalHistory) g.predHist := (hist << shift) | taken g } def update(br_valids: Vec[Bool], real_taken_mask: Vec[Bool]): ShiftingGlobalHistory = { require(br_valids.length == numBr) require(real_taken_mask.length == numBr) val last_valid_idx = PriorityMux( br_valids.reverse :+ true.B, (numBr to 0 by -1).map(_.U(log2Ceil(numBr+1).W)) ) val first_taken_idx = PriorityEncoder(false.B +: real_taken_mask) val smaller = Mux(last_valid_idx < first_taken_idx, last_valid_idx, first_taken_idx ) val shift = smaller val taken = real_taken_mask.reduce(_||_) update(shift, taken, this.predHist) } // static read def read(n: Int): Bool = predHist.asBools(n) final def === (that: ShiftingGlobalHistory): Bool = { predHist === that.predHist } final def =/= (that: ShiftingGlobalHistory): Bool = !(this === that) } // circular global history pointer class CGHPtr(implicit p: Parameters) extends CircularQueuePtr[CGHPtr]( p => p(XSCoreParamsKey).HistoryLength ){ } object CGHPtr { def apply(f: Bool, v: UInt)(implicit p: Parameters): CGHPtr = { val ptr = Wire(new CGHPtr) ptr.flag := f ptr.value := v ptr } def inverse(ptr: CGHPtr)(implicit p: Parameters): CGHPtr = { apply(!ptr.flag, ptr.value) } } class CircularGlobalHistory(implicit p: Parameters) extends GlobalHistory { val buffer = Vec(HistoryLength, Bool()) type HistPtr = UInt def update(br_valids: Vec[Bool], real_taken_mask: Vec[Bool]): CircularGlobalHistory = { this } } class FoldedHistory(val len: Int, val compLen: Int, val max_update_num: Int)(implicit p: Parameters) extends XSBundle with HasBPUConst { require(compLen >= 1) require(len > 0) // require(folded_len <= len) require(compLen >= max_update_num) val folded_hist = UInt(compLen.W) def need_oldest_bits = len > compLen def info = (len, compLen) def oldest_bit_to_get_from_ghr = (0 until max_update_num).map(len - _ - 1) def oldest_bit_pos_in_folded = oldest_bit_to_get_from_ghr map (_ % compLen) def oldest_bit_wrap_around = oldest_bit_to_get_from_ghr map (_ / compLen > 0) def oldest_bit_start = oldest_bit_pos_in_folded.head def get_oldest_bits_from_ghr(ghr: Vec[Bool], histPtr: CGHPtr) = { // TODO: wrap inc for histPtr value oldest_bit_to_get_from_ghr.map(i => ghr((histPtr + (i+1).U).value)) } def circular_shift_left(src: UInt, shamt: Int) = { val srcLen = src.getWidth val src_doubled = Cat(src, src) val shifted = src_doubled(srcLen*2-1-shamt, srcLen-shamt) shifted } // slow path, read bits from ghr def update(ghr: Vec[Bool], histPtr: CGHPtr, num: Int, taken: Bool): FoldedHistory = { val oldest_bits = VecInit(get_oldest_bits_from_ghr(ghr, histPtr)) update(oldest_bits, num, taken) } // fast path, use pre-read oldest bits def update(ob: Vec[Bool], num: Int, taken: Bool): FoldedHistory = { // do xors for several bitsets at specified bits def bitsets_xor(len: Int, bitsets: Seq[Seq[Tuple2[Int, Bool]]]) = { val res = Wire(Vec(len, Bool())) // println(f"num bitsets: ${bitsets.length}") // println(f"bitsets $bitsets") val resArr = Array.fill(len)(List[Bool]()) for (bs <- bitsets) { for ((n, b) <- bs) { resArr(n) = b :: resArr(n) } } // println(f"${resArr.mkString}") // println(f"histLen: ${this.len}, foldedLen: $folded_len") for (i <- 0 until len) { // println(f"bit[$i], ${resArr(i).mkString}") if (resArr(i).length == 0) { println(f"[error] bits $i is not assigned in folded hist update logic! histlen:${this.len}, compLen:$compLen") } res(i) := resArr(i).foldLeft(false.B)(_^_) } res.asUInt } val new_folded_hist = if (need_oldest_bits) { val oldest_bits = ob require(oldest_bits.length == max_update_num) // mask off bits that do not update val oldest_bits_masked = oldest_bits.zipWithIndex.map{ case (ob, i) => ob && (i < num).B } // if a bit does not wrap around, it should not be xored when it exits val oldest_bits_set = (0 until max_update_num).filter(oldest_bit_wrap_around).map(i => (oldest_bit_pos_in_folded(i), oldest_bits_masked(i))) // println(f"old bits pos ${oldest_bits_set.map(_._1)}") // only the last bit could be 1, as we have at most one taken branch at a time val newest_bits_masked = VecInit((0 until max_update_num).map(i => taken && ((i+1) == num).B)).asUInt // if a bit does not wrap around, newest bits should not be xored onto it either val newest_bits_set = (0 until max_update_num).map(i => (compLen-1-i, newest_bits_masked(i))) // println(f"new bits set ${newest_bits_set.map(_._1)}") // val original_bits_masked = VecInit(folded_hist.asBools.zipWithIndex.map{ case (fb, i) => fb && !(num >= (len-i)).B }) val original_bits_set = (0 until compLen).map(i => (i, original_bits_masked(i))) // do xor then shift val xored = bitsets_xor(compLen, Seq(original_bits_set, oldest_bits_set, newest_bits_set)) circular_shift_left(xored, num) } else { // histLen too short to wrap around ((folded_hist << num) | taken)(compLen-1,0) } val fh = WireInit(this) fh.folded_hist := new_folded_hist fh } } class AheadFoldedHistoryOldestBits(val len: Int, val max_update_num: Int)(implicit p: Parameters) extends XSBundle { val bits = Vec(max_update_num*2, Bool()) // def info = (len, compLen) def getRealOb(brNumOH: UInt): Vec[Bool] = { val ob = Wire(Vec(max_update_num, Bool())) for (i <- 0 until max_update_num) { ob(i) := Mux1H(brNumOH, bits.drop(i).take(numBr+1)) } ob } } class AllAheadFoldedHistoryOldestBits(val gen: Seq[Tuple2[Int, Int]])(implicit p: Parameters) extends XSBundle with HasBPUConst { val afhob = MixedVec(gen.filter(t => t._1 > t._2).map{_._1} .toSet.toList.map(l => new AheadFoldedHistoryOldestBits(l, numBr))) // remove duplicates require(gen.toSet.toList.equals(gen)) def getObWithInfo(info: Tuple2[Int, Int]) = { val selected = afhob.filter(_.len == info._1) require(selected.length == 1) selected(0) } def read(ghv: Vec[Bool], ptr: CGHPtr) = { val hisLens = afhob.map(_.len) val bitsToRead = hisLens.flatMap(l => (0 until numBr*2).map(i => l-i-1)).toSet // remove duplicates val bitsWithInfo = bitsToRead.map(pos => (pos, ghv((ptr+(pos+1).U).value))) for (ob <- afhob) { for (i <- 0 until numBr*2) { val pos = ob.len - i - 1 val bit_found = bitsWithInfo.filter(_._1 == pos).toList require(bit_found.length == 1) ob.bits(i) := bit_found(0)._2 } } } } class AllFoldedHistories(val gen: Seq[Tuple2[Int, Int]])(implicit p: Parameters) extends XSBundle with HasBPUConst { val hist = MixedVec(gen.map{case (l, cl) => new FoldedHistory(l, cl, numBr)}) // println(gen.mkString) require(gen.toSet.toList.equals(gen)) def getHistWithInfo(info: Tuple2[Int, Int]) = { val selected = hist.filter(_.info.equals(info)) require(selected.length == 1) selected(0) } def autoConnectFrom(that: AllFoldedHistories) = { require(this.hist.length <= that.hist.length) for (h <- this.hist) { h := that.getHistWithInfo(h.info) } } def update(ghv: Vec[Bool], ptr: CGHPtr, shift: Int, taken: Bool): AllFoldedHistories = { val res = WireInit(this) for (i <- 0 until this.hist.length) { res.hist(i) := this.hist(i).update(ghv, ptr, shift, taken) } res } def update(afhob: AllAheadFoldedHistoryOldestBits, lastBrNumOH: UInt, shift: Int, taken: Bool): AllFoldedHistories = { val res = WireInit(this) for (i <- 0 until this.hist.length) { val fh = this.hist(i) if (fh.need_oldest_bits) { val info = fh.info val selectedAfhob = afhob.getObWithInfo(info) val ob = selectedAfhob.getRealOb(lastBrNumOH) res.hist(i) := this.hist(i).update(ob, shift, taken) } else { val dumb = Wire(Vec(numBr, Bool())) // not needed dumb := DontCare res.hist(i) := this.hist(i).update(dumb, shift, taken) } } res } def display(cond: Bool) = { for (h <- hist) { XSDebug(cond, p"hist len ${h.len}, folded len ${h.compLen}, value ${Binary(h.folded_hist)}\n") } } } class TableAddr(val idxBits: Int, val banks: Int)(implicit p: Parameters) extends XSBundle{ def tagBits = VAddrBits - idxBits - instOffsetBits val tag = UInt(tagBits.W) val idx = UInt(idxBits.W) val offset = UInt(instOffsetBits.W) def fromUInt(x: UInt) = x.asTypeOf(UInt(VAddrBits.W)).asTypeOf(this) def getTag(x: UInt) = fromUInt(x).tag def getIdx(x: UInt) = fromUInt(x).idx def getBank(x: UInt) = if (banks > 1) getIdx(x)(log2Up(banks) - 1, 0) else 0.U def getBankIdx(x: UInt) = if (banks > 1) getIdx(x)(idxBits - 1, log2Up(banks)) else getIdx(x) } trait BasicPrediction extends HasXSParameter { def cfiIndex: ValidUndirectioned[UInt] def target(pc: UInt): UInt def lastBrPosOH: Vec[Bool] def brTaken: Bool def shouldShiftVec: Vec[Bool] def fallThruError: Bool } // selectByTaken selects some data according to takenMask // allTargets should be in a Vec, like [taken0, taken1, ..., not taken, not hit] object selectByTaken { def apply[T <: Data](takenMask: Vec[Bool], hit: Bool, allTargets: Vec[T]): T = { val selVecOH = takenMask.zipWithIndex.map { case (t, i) => !takenMask.take(i).fold(false.B)(_ || _) && t && hit } :+ (!takenMask.asUInt.orR && hit) :+ !hit Mux1H(selVecOH, allTargets) } } class FullBranchPrediction(implicit p: Parameters) extends XSBundle with HasBPUConst with BasicPrediction { val br_taken_mask = Vec(numBr, Bool()) val slot_valids = Vec(totalSlot, Bool()) val targets = Vec(totalSlot, UInt(VAddrBits.W)) val jalr_target = UInt(VAddrBits.W) // special path for indirect predictors val offsets = Vec(totalSlot, UInt(log2Ceil(PredictWidth).W)) val fallThroughAddr = UInt(VAddrBits.W) val fallThroughErr = Bool() val multiHit = Bool() val is_jal = Bool() val is_jalr = Bool() val is_call = Bool() val is_ret = Bool() val last_may_be_rvi_call = Bool() val is_br_sharing = Bool() // val call_is_rvc = Bool() val hit = Bool() val predCycle = if (!env.FPGAPlatform) Some(UInt(64.W)) else None def br_slot_valids = slot_valids.init def tail_slot_valid = slot_valids.last def br_valids = { VecInit(br_slot_valids :+ (tail_slot_valid && is_br_sharing)) } def taken_mask_on_slot = { VecInit( (br_slot_valids zip br_taken_mask.init).map{ case (t, v) => t && v } :+ ( tail_slot_valid && ( is_br_sharing && br_taken_mask.last || !is_br_sharing ) ) ) } def real_slot_taken_mask(): Vec[Bool] = { VecInit(taken_mask_on_slot.map(_ && hit)) } // len numBr def real_br_taken_mask(): Vec[Bool] = { VecInit( taken_mask_on_slot.map(_ && hit).init :+ (br_taken_mask.last && tail_slot_valid && is_br_sharing && hit) ) } // the vec indicating if ghr should shift on each branch def shouldShiftVec = VecInit(br_valids.zipWithIndex.map{ case (v, i) => v && !real_br_taken_mask.take(i).reduceOption(_||_).getOrElse(false.B)}) def lastBrPosOH = VecInit((!hit || !br_valids.reduce(_||_)) +: // not hit or no brs in entry (0 until numBr).map(i => br_valids(i) && !real_br_taken_mask.take(i).reduceOption(_||_).getOrElse(false.B) && // no brs taken in front it (real_br_taken_mask()(i) || !br_valids.drop(i+1).reduceOption(_||_).getOrElse(false.B)) && // no brs behind it hit ) ) def brTaken = (br_valids zip br_taken_mask).map{ case (a, b) => a && b && hit}.reduce(_||_) def target(pc: UInt): UInt = { selectByTaken(taken_mask_on_slot, hit, allTarget(pc)) } // allTarget return a Vec of all possible target of a BP stage // in the following order: [taken_target0, taken_target1, ..., fallThroughAddr, not hit (plus fetch width)] // // This exposes internal targets for timing optimization, // since usually targets are generated quicker than taken def allTarget(pc: UInt): Vec[UInt] = { VecInit(targets :+ fallThroughAddr :+ (pc + (FetchWidth * 4).U)) } def fallThruError: Bool = hit && fallThroughErr def ftbMultiHit: Bool = hit && multiHit def hit_taken_on_jmp = !real_slot_taken_mask().init.reduce(_||_) && real_slot_taken_mask().last && !is_br_sharing def hit_taken_on_call = hit_taken_on_jmp && is_call def hit_taken_on_ret = hit_taken_on_jmp && is_ret def hit_taken_on_jalr = hit_taken_on_jmp && is_jalr def cfiIndex = { val cfiIndex = Wire(ValidUndirectioned(UInt(log2Ceil(PredictWidth).W))) cfiIndex.valid := real_slot_taken_mask().asUInt.orR // when no takens, set cfiIndex to PredictWidth-1 cfiIndex.bits := ParallelPriorityMux(real_slot_taken_mask(), offsets) | Fill(log2Ceil(PredictWidth), (!real_slot_taken_mask().asUInt.orR).asUInt) cfiIndex } def taken = br_taken_mask.reduce(_||_) || slot_valids.last // || (is_jal || is_jalr) def fromFtbEntry( entry: FTBEntry, pc: UInt, last_stage_pc: Option[Tuple2[UInt, Bool]] = None, last_stage_entry: Option[Tuple2[FTBEntry, Bool]] = None ) = { slot_valids := entry.brSlots.map(_.valid) :+ entry.tailSlot.valid targets := entry.getTargetVec(pc, last_stage_pc) // Use previous stage pc for better timing jalr_target := targets.last offsets := entry.getOffsetVec is_jal := entry.tailSlot.valid && entry.isJal is_jalr := entry.tailSlot.valid && entry.isJalr is_call := entry.tailSlot.valid && entry.isCall is_ret := entry.tailSlot.valid && entry.isRet last_may_be_rvi_call := entry.last_may_be_rvi_call is_br_sharing := entry.tailSlot.valid && entry.tailSlot.sharing predCycle.map(_ := GTimer()) val startLower = Cat(0.U(1.W), pc(instOffsetBits+log2Ceil(PredictWidth)-1, instOffsetBits)) val endLowerwithCarry = Cat(entry.carry, entry.pftAddr) fallThroughErr := startLower >= endLowerwithCarry || endLowerwithCarry > (startLower + (PredictWidth).U) fallThroughAddr := Mux(fallThroughErr, pc + (FetchWidth * 4).U, entry.getFallThrough(pc, last_stage_entry)) } def display(cond: Bool): Unit = { XSDebug(cond, p"[taken_mask] ${Binary(br_taken_mask.asUInt)} [hit] $hit\n") } } class SpeculativeInfo(implicit p: Parameters) extends XSBundle with HasBPUConst with BPUUtils { val histPtr = new CGHPtr val ssp = UInt(log2Up(RasSize).W) val sctr = UInt(RasCtrSize.W) val TOSW = new RASPtr val TOSR = new RASPtr val NOS = new RASPtr val topAddr = UInt(VAddrBits.W) } class BranchPredictionBundle(implicit p: Parameters) extends XSBundle with HasBPUConst with BPUUtils { val pc = Vec(numDup, UInt(VAddrBits.W)) val valid = Vec(numDup, Bool()) val hasRedirect = Vec(numDup, Bool()) val ftq_idx = new FtqPtr val full_pred = Vec(numDup, new FullBranchPrediction) def target(pc: UInt) = VecInit(full_pred.map(_.target(pc))) def targets(pc: Vec[UInt]) = VecInit(pc.zipWithIndex.map{case (pc, idx) => full_pred(idx).target(pc)}) def allTargets(pc: Vec[UInt]) = VecInit(pc.zipWithIndex.map{case (pc, idx) => full_pred(idx).allTarget(pc)}) def cfiIndex = VecInit(full_pred.map(_.cfiIndex)) def lastBrPosOH = VecInit(full_pred.map(_.lastBrPosOH)) def brTaken = VecInit(full_pred.map(_.brTaken)) def shouldShiftVec = VecInit(full_pred.map(_.shouldShiftVec)) def fallThruError = VecInit(full_pred.map(_.fallThruError)) def ftbMultiHit = VecInit(full_pred.map(_.ftbMultiHit)) def taken = VecInit(cfiIndex.map(_.valid)) def getTarget = targets(pc) def getAllTargets = allTargets(pc) def display(cond: Bool): Unit = { XSDebug(cond, p"[pc] ${Hexadecimal(pc(0))}\n") full_pred(0).display(cond) } } class BranchPredictionResp(implicit p: Parameters) extends XSBundle with HasBPUConst { val s1 = new BranchPredictionBundle val s2 = new BranchPredictionBundle val s3 = new BranchPredictionBundle val s1_uftbHit = Bool() val s1_uftbHasIndirect = Bool() val s1_ftbCloseReq = Bool() val last_stage_meta = UInt(MaxMetaLength.W) val last_stage_spec_info = new Ftq_Redirect_SRAMEntry val last_stage_ftb_entry = new FTBEntry val topdown_info = new FrontendTopDownBundle def selectedResp ={ val res = PriorityMux(Seq( ((s3.valid(3) && s3.hasRedirect(3)) -> s3), ((s2.valid(3) && s2.hasRedirect(3)) -> s2), (s1.valid(3) -> s1) )) res } def selectedRespIdxForFtq = PriorityMux(Seq( ((s3.valid(3) && s3.hasRedirect(3)) -> BP_S3), ((s2.valid(3) && s2.hasRedirect(3)) -> BP_S2), (s1.valid(3) -> BP_S1) )) def lastStage = s3 } class BpuToFtqBundle(implicit p: Parameters) extends BranchPredictionResp {} class BranchPredictionUpdate(implicit p: Parameters) extends XSBundle with HasBPUConst { val pc = UInt(VAddrBits.W) val spec_info = new SpeculativeInfo val ftb_entry = new FTBEntry() val cfi_idx = ValidUndirectioned(UInt(log2Ceil(PredictWidth).W)) val br_taken_mask = Vec(numBr, Bool()) val br_committed = Vec(numBr, Bool()) // High only when br valid && br committed val jmp_taken = Bool() val mispred_mask = Vec(numBr+1, Bool()) val pred_hit = Bool() val false_hit = Bool() val new_br_insert_pos = Vec(numBr, Bool()) val old_entry = Bool() val meta = UInt(MaxMetaLength.W) val full_target = UInt(VAddrBits.W) val from_stage = UInt(2.W) val ghist = UInt(HistoryLength.W) def is_jal = ftb_entry.tailSlot.valid && ftb_entry.isJal def is_jalr = ftb_entry.tailSlot.valid && ftb_entry.isJalr def is_call = ftb_entry.tailSlot.valid && ftb_entry.isCall def is_ret = ftb_entry.tailSlot.valid && ftb_entry.isRet def is_call_taken = is_call && jmp_taken && cfi_idx.valid && cfi_idx.bits === ftb_entry.tailSlot.offset def is_ret_taken = is_ret && jmp_taken && cfi_idx.valid && cfi_idx.bits === ftb_entry.tailSlot.offset def display(cond: Bool) = { XSDebug(cond, p"-----------BranchPredictionUpdate-----------\n") XSDebug(cond, p"[mispred_mask] ${Binary(mispred_mask.asUInt)} [false_hit] $false_hit\n") XSDebug(cond, p"[new_br_insert_pos] ${Binary(new_br_insert_pos.asUInt)}\n") XSDebug(cond, p"--------------------------------------------\n") } } class BranchPredictionRedirect(implicit p: Parameters) extends Redirect with HasBPUConst { // override def toPrintable: Printable = { // p"-----------BranchPredictionRedirect----------- " + // p"-----------cfiUpdate----------- " + // p"[pc] ${Hexadecimal(cfiUpdate.pc)} " + // p"[predTaken] ${cfiUpdate.predTaken}, [taken] ${cfiUpdate.taken}, [isMisPred] ${cfiUpdate.isMisPred} " + // p"[target] ${Hexadecimal(cfiUpdate.target)} " + // p"------------------------------- " + // p"[robPtr] f=${robIdx.flag} v=${robIdx.value} " + // p"[ftqPtr] f=${ftqIdx.flag} v=${ftqIdx.value} " + // p"[ftqOffset] ${ftqOffset} " + // p"[level] ${level}, [interrupt] ${interrupt} " + // p"[stFtqIdx] f=${stFtqIdx.flag} v=${stFtqIdx.value} " + // p"[stFtqOffset] ${stFtqOffset} " + // p"\n" // } // TODO: backend should pass topdown signals here // must not change its parent since BPU has used asTypeOf(this type) from its parent class require(isInstanceOf[Redirect]) val BTBMissBubble = Bool() def ControlRedirectBubble = debugIsCtrl // if mispred br not in ftb, count as BTB miss def ControlBTBMissBubble = ControlRedirectBubble && !cfiUpdate.br_hit && !cfiUpdate.jr_hit def TAGEMissBubble = ControlRedirectBubble && cfiUpdate.br_hit && !cfiUpdate.sc_hit def SCMissBubble = ControlRedirectBubble && cfiUpdate.br_hit && cfiUpdate.sc_hit def ITTAGEMissBubble = ControlRedirectBubble && cfiUpdate.jr_hit && !cfiUpdate.pd.isRet def RASMissBubble = ControlRedirectBubble && cfiUpdate.jr_hit && cfiUpdate.pd.isRet def MemVioRedirectBubble = debugIsMemVio def OtherRedirectBubble = !debugIsCtrl && !debugIsMemVio def connectRedirect(source: Redirect): Unit = { for ((name, data) <- this.elements) { if (source.elements.contains(name)) { data := source.elements(name) } } } def display(cond: Bool): Unit = { XSDebug(cond, p"-----------BranchPredictionRedirect----------- \n") XSDebug(cond, p"-----------cfiUpdate----------- \n") XSDebug(cond, p"[pc] ${Hexadecimal(cfiUpdate.pc)}\n") // XSDebug(cond, p"[hist] ${Binary(cfiUpdate.hist.predHist)}\n") XSDebug(cond, p"[br_hit] ${cfiUpdate.br_hit} [isMisPred] ${cfiUpdate.isMisPred}\n") XSDebug(cond, p"[pred_taken] ${cfiUpdate.predTaken} [taken] ${cfiUpdate.taken} [isMisPred] ${cfiUpdate.isMisPred}\n") XSDebug(cond, p"[target] ${Hexadecimal(cfiUpdate.target)} \n") XSDebug(cond, p"[shift] ${cfiUpdate.shift}\n") XSDebug(cond, p"------------------------------- \n") XSDebug(cond, p"[robPtr] f=${robIdx.flag} v=${robIdx.value}\n") XSDebug(cond, p"[ftqPtr] f=${ftqIdx.flag} v=${ftqIdx.value} \n") XSDebug(cond, p"[ftqOffset] ${ftqOffset} \n") XSDebug(cond, p"[stFtqIdx] f=${stFtqIdx.flag} v=${stFtqIdx.value}\n") XSDebug(cond, p"[stFtqOffset] ${stFtqOffset}\n") XSDebug(cond, p"---------------------------------------------- \n") } }