/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.frontend import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import xiangshan._ import utils._ import utility._ import scala.math.min import xiangshan.backend.decode.ImmUnion trait HasBPUConst extends HasXSParameter { val MaxMetaBaseLength = if (!env.FPGAPlatform) 512 else 219 // TODO: Reduce meta length val MaxMetaLength = if (HasHExtension) MaxMetaBaseLength + 4 else MaxMetaBaseLength val MaxBasicBlockSize = 32 val LHistoryLength = 32 // val numBr = 2 val useBPD = true val useLHist = true val numBrSlot = numBr-1 val totalSlot = numBrSlot + 1 val numDup = 4 def BP_STAGES = (0 until 3).map(_.U(2.W)) def BP_S1 = BP_STAGES(0) def BP_S2 = BP_STAGES(1) def BP_S3 = BP_STAGES(2) def dup_seq[T](src: T, num: Int = numDup) = Seq.tabulate(num)(n => src) def dup[T <: Data](src: T, num: Int = numDup) = VecInit(Seq.tabulate(num)(n => src)) def dup_wire[T <: Data](src: T, num: Int = numDup) = Wire(Vec(num, src.cloneType)) def dup_idx = Seq.tabulate(numDup)(n => n.toString()) val numBpStages = BP_STAGES.length val debug = true // TODO: Replace log2Up by log2Ceil } trait HasBPUParameter extends HasXSParameter with HasBPUConst { val BPUDebug = true && !env.FPGAPlatform && env.EnablePerfDebug val EnableCFICommitLog = true val EnbaleCFIPredLog = true val EnableBPUTimeRecord = (EnableCFICommitLog || EnbaleCFIPredLog) && !env.FPGAPlatform val EnableCommit = false } class BPUCtrl(implicit p: Parameters) extends XSBundle { val ubtb_enable = Bool() val btb_enable = Bool() val bim_enable = Bool() val tage_enable = Bool() val sc_enable = Bool() val ras_enable = Bool() val loop_enable = Bool() } trait BPUUtils extends HasXSParameter { // circular shifting def circularShiftLeft(source: UInt, len: Int, shamt: UInt): UInt = { val res = Wire(UInt(len.W)) val higher = source << shamt val lower = source >> (len.U - shamt) res := higher | lower res } def circularShiftRight(source: UInt, len: Int, shamt: UInt): UInt = { val res = Wire(UInt(len.W)) val higher = source << (len.U - shamt) val lower = source >> shamt res := higher | lower res } // To be verified def satUpdate(old: UInt, len: Int, taken: Bool): UInt = { val oldSatTaken = old === ((1 << len)-1).U val oldSatNotTaken = old === 0.U Mux(oldSatTaken && taken, ((1 << len)-1).U, Mux(oldSatNotTaken && !taken, 0.U, Mux(taken, old + 1.U, old - 1.U))) } def signedSatUpdate(old: SInt, len: Int, taken: Bool): SInt = { val oldSatTaken = old === ((1 << (len-1))-1).S val oldSatNotTaken = old === (-(1 << (len-1))).S Mux(oldSatTaken && taken, ((1 << (len-1))-1).S, Mux(oldSatNotTaken && !taken, (-(1 << (len-1))).S, Mux(taken, old + 1.S, old - 1.S))) } def getFallThroughAddr(start: UInt, carry: Bool, pft: UInt) = { val higher = start.head(VAddrBits-log2Ceil(PredictWidth)-instOffsetBits) Cat(Mux(carry, higher+1.U, higher), pft, 0.U(instOffsetBits.W)) } def foldTag(tag: UInt, l: Int): UInt = { val nChunks = (tag.getWidth + l - 1) / l val chunks = (0 until nChunks).map { i => tag(min((i+1)*l, tag.getWidth)-1, i*l) } ParallelXOR(chunks) } } class BasePredictorInput (implicit p: Parameters) extends XSBundle with HasBPUConst { def nInputs = 1 val s0_pc = Vec(numDup, UInt(VAddrBits.W)) val folded_hist = Vec(numDup, new AllFoldedHistories(foldedGHistInfos)) val ghist = UInt(HistoryLength.W) val resp_in = Vec(nInputs, new BranchPredictionResp) // val final_preds = Vec(numBpStages, new) // val toFtq_fire = Bool() // val s0_all_ready = Bool() } class BasePredictorOutput (implicit p: Parameters) extends BranchPredictionResp {} class BasePredictorIO (implicit p: Parameters) extends XSBundle with HasBPUConst { val reset_vector = Input(UInt(PAddrBits.W)) val in = Flipped(DecoupledIO(new BasePredictorInput)) // TODO: Remove DecoupledIO // val out = DecoupledIO(new BasePredictorOutput) val out = Output(new BasePredictorOutput) // val flush_out = Valid(UInt(VAddrBits.W)) val ctrl = Input(new BPUCtrl) val s0_fire = Input(Vec(numDup, Bool())) val s1_fire = Input(Vec(numDup, Bool())) val s2_fire = Input(Vec(numDup, Bool())) val s3_fire = Input(Vec(numDup, Bool())) val s2_redirect = Input(Vec(numDup, Bool())) val s3_redirect = Input(Vec(numDup, Bool())) val s1_ready = Output(Bool()) val s2_ready = Output(Bool()) val s3_ready = Output(Bool()) val update = Flipped(Valid(new BranchPredictionUpdate)) val redirect = Flipped(Valid(new BranchPredictionRedirect)) } abstract class BasePredictor(implicit p: Parameters) extends XSModule with HasBPUConst with BPUUtils with HasPerfEvents { val meta_size = 0 val spec_meta_size = 0 val is_fast_pred = false val io = IO(new BasePredictorIO()) io.out := io.in.bits.resp_in(0) io.out.last_stage_meta := 0.U io.in.ready := !io.redirect.valid io.s1_ready := true.B io.s2_ready := true.B io.s3_ready := true.B val reset_vector = DelayN(io.reset_vector, 5) val s0_pc_dup = WireInit(io.in.bits.s0_pc) // fetchIdx(io.f0_pc) val s1_pc_dup = s0_pc_dup.zip(io.s0_fire).map {case (s0_pc, s0_fire) => RegEnable(s0_pc, s0_fire)} val s2_pc_dup = s1_pc_dup.zip(io.s1_fire).map {case (s1_pc, s1_fire) => RegEnable(s1_pc, s1_fire)} val s3_pc_dup = s2_pc_dup.zip(io.s2_fire).map {case (s2_pc, s2_fire) => RegEnable(s2_pc, s2_fire)} when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { s1_pc_dup.map{case s1_pc => s1_pc := reset_vector} } io.out.s1.pc := s1_pc_dup io.out.s2.pc := s2_pc_dup io.out.s3.pc := s3_pc_dup val perfEvents: Seq[(String, UInt)] = Seq() def getFoldedHistoryInfo: Option[Set[FoldedHistoryInfo]] = None } class FakePredictor(implicit p: Parameters) extends BasePredictor { io.in.ready := true.B io.out.last_stage_meta := 0.U io.out := io.in.bits.resp_in(0) } class BpuToFtqIO(implicit p: Parameters) extends XSBundle { val resp = DecoupledIO(new BpuToFtqBundle()) } class PredictorIO(implicit p: Parameters) extends XSBundle { val bpu_to_ftq = new BpuToFtqIO() val ftq_to_bpu = Flipped(new FtqToBpuIO) val ctrl = Input(new BPUCtrl) val reset_vector = Input(UInt(PAddrBits.W)) } class Predictor(implicit p: Parameters) extends XSModule with HasBPUConst with HasPerfEvents with HasCircularQueuePtrHelper { val io = IO(new PredictorIO) val ctrl = DelayN(io.ctrl, 1) val predictors = Module(if (useBPD) new Composer else new FakePredictor) def numOfStage = 3 require(numOfStage > 1, "BPU numOfStage must be greater than 1") val topdown_stages = RegInit(VecInit(Seq.fill(numOfStage)(0.U.asTypeOf(new FrontendTopDownBundle)))) // following can only happen on s1 val controlRedirectBubble = Wire(Bool()) val ControlBTBMissBubble = Wire(Bool()) val TAGEMissBubble = Wire(Bool()) val SCMissBubble = Wire(Bool()) val ITTAGEMissBubble = Wire(Bool()) val RASMissBubble = Wire(Bool()) val memVioRedirectBubble = Wire(Bool()) val otherRedirectBubble = Wire(Bool()) val btbMissBubble = Wire(Bool()) otherRedirectBubble := false.B memVioRedirectBubble := false.B // override can happen between s1-s2 and s2-s3 val overrideBubble = Wire(Vec(numOfStage - 1, Bool())) def overrideStage = 1 // ftq update block can happen on s1, s2 and s3 val ftqUpdateBubble = Wire(Vec(numOfStage, Bool())) def ftqUpdateStage = 0 // ftq full stall only happens on s3 (last stage) val ftqFullStall = Wire(Bool()) // by default, no bubble event topdown_stages(0) := 0.U.asTypeOf(new FrontendTopDownBundle) // event movement driven by clock only for (i <- 0 until numOfStage - 1) { topdown_stages(i + 1) := topdown_stages(i) } // ctrl signal predictors.io.ctrl := ctrl predictors.io.reset_vector := io.reset_vector val reset_vector = DelayN(io.reset_vector, 5) val s0_fire_dup, s1_fire_dup, s2_fire_dup, s3_fire_dup = dup_wire(Bool()) val s1_valid_dup, s2_valid_dup, s3_valid_dup = dup_seq(RegInit(false.B)) val s1_ready_dup, s2_ready_dup, s3_ready_dup = dup_wire(Bool()) val s1_components_ready_dup, s2_components_ready_dup, s3_components_ready_dup = dup_wire(Bool()) val s0_pc_dup = dup(WireInit(0.U.asTypeOf(UInt(VAddrBits.W)))) val s0_pc_reg_dup = s0_pc_dup.map(x => RegNext(x)) when (RegNext(RegNext(reset.asBool) && !reset.asBool)) { s0_pc_reg_dup.map{case s0_pc => s0_pc := reset_vector} } val s1_pc = RegEnable(s0_pc_dup(0), s0_fire_dup(0)) val s2_pc = RegEnable(s1_pc, s1_fire_dup(0)) val s3_pc = RegEnable(s2_pc, s2_fire_dup(0)) val s0_folded_gh_dup = dup_wire(new AllFoldedHistories(foldedGHistInfos)) val s0_folded_gh_reg_dup = s0_folded_gh_dup.map(x => RegNext(x, init=0.U.asTypeOf(s0_folded_gh_dup(0)))) val s1_folded_gh_dup = RegEnable(s0_folded_gh_dup, 0.U.asTypeOf(s0_folded_gh_dup), s0_fire_dup(1)) val s2_folded_gh_dup = RegEnable(s1_folded_gh_dup, 0.U.asTypeOf(s0_folded_gh_dup), s1_fire_dup(1)) val s3_folded_gh_dup = RegEnable(s2_folded_gh_dup, 0.U.asTypeOf(s0_folded_gh_dup), s2_fire_dup(1)) val s0_last_br_num_oh_dup = dup_wire(UInt((numBr+1).W)) val s0_last_br_num_oh_reg_dup = s0_last_br_num_oh_dup.map(x => RegNext(x, init=0.U)) val s1_last_br_num_oh_dup = RegEnable(s0_last_br_num_oh_dup, 0.U.asTypeOf(s0_last_br_num_oh_dup), s0_fire_dup(1)) val s2_last_br_num_oh_dup = RegEnable(s1_last_br_num_oh_dup, 0.U.asTypeOf(s0_last_br_num_oh_dup), s1_fire_dup(1)) val s3_last_br_num_oh_dup = RegEnable(s2_last_br_num_oh_dup, 0.U.asTypeOf(s0_last_br_num_oh_dup), s2_fire_dup(1)) val s0_ahead_fh_oldest_bits_dup = dup_wire(new AllAheadFoldedHistoryOldestBits(foldedGHistInfos)) val s0_ahead_fh_oldest_bits_reg_dup = s0_ahead_fh_oldest_bits_dup.map(x => RegNext(x, init=0.U.asTypeOf(s0_ahead_fh_oldest_bits_dup(0)))) val s1_ahead_fh_oldest_bits_dup = RegEnable(s0_ahead_fh_oldest_bits_dup, 0.U.asTypeOf(s0_ahead_fh_oldest_bits_dup), s0_fire_dup(1)) val s2_ahead_fh_oldest_bits_dup = RegEnable(s1_ahead_fh_oldest_bits_dup, 0.U.asTypeOf(s0_ahead_fh_oldest_bits_dup), s1_fire_dup(1)) val s3_ahead_fh_oldest_bits_dup = RegEnable(s2_ahead_fh_oldest_bits_dup, 0.U.asTypeOf(s0_ahead_fh_oldest_bits_dup), s2_fire_dup(1)) val npcGen_dup = Seq.tabulate(numDup)(n => new PhyPriorityMuxGenerator[UInt]) val foldedGhGen_dup = Seq.tabulate(numDup)(n => new PhyPriorityMuxGenerator[AllFoldedHistories]) val ghistPtrGen_dup = Seq.tabulate(numDup)(n => new PhyPriorityMuxGenerator[CGHPtr]) val lastBrNumOHGen_dup = Seq.tabulate(numDup)(n => new PhyPriorityMuxGenerator[UInt]) val aheadFhObGen_dup = Seq.tabulate(numDup)(n => new PhyPriorityMuxGenerator[AllAheadFoldedHistoryOldestBits]) val ghvBitWriteGens = Seq.tabulate(HistoryLength)(n => new PhyPriorityMuxGenerator[Bool]) // val ghistGen = new PhyPriorityMuxGenerator[UInt] val ghv = RegInit(0.U.asTypeOf(Vec(HistoryLength, Bool()))) val ghv_wire = WireInit(ghv) val s0_ghist = WireInit(0.U.asTypeOf(UInt(HistoryLength.W))) println(f"history buffer length ${HistoryLength}") val ghv_write_datas = Wire(Vec(HistoryLength, Bool())) val ghv_wens = Wire(Vec(HistoryLength, Bool())) val s0_ghist_ptr_dup = dup_wire(new CGHPtr) val s0_ghist_ptr_reg_dup = s0_ghist_ptr_dup.map(x => RegNext(x, init=0.U.asTypeOf(new CGHPtr))) val s1_ghist_ptr_dup = RegEnable(s0_ghist_ptr_dup, 0.U.asTypeOf(s0_ghist_ptr_dup), s0_fire_dup(1)) val s2_ghist_ptr_dup = RegEnable(s1_ghist_ptr_dup, 0.U.asTypeOf(s0_ghist_ptr_dup), s1_fire_dup(1)) val s3_ghist_ptr_dup = RegEnable(s2_ghist_ptr_dup, 0.U.asTypeOf(s0_ghist_ptr_dup), s2_fire_dup(1)) def getHist(ptr: CGHPtr): UInt = (Cat(ghv_wire.asUInt, ghv_wire.asUInt) >> (ptr.value+1.U))(HistoryLength-1, 0) s0_ghist := getHist(s0_ghist_ptr_dup(0)) val resp = predictors.io.out val toFtq_fire = io.bpu_to_ftq.resp.valid && io.bpu_to_ftq.resp.ready val s1_flush_dup, s2_flush_dup, s3_flush_dup = dup_wire(Bool()) val s2_redirect_dup, s3_redirect_dup = dup_wire(Bool()) // predictors.io := DontCare predictors.io.in.valid := s0_fire_dup(0) predictors.io.in.bits.s0_pc := s0_pc_dup predictors.io.in.bits.ghist := s0_ghist predictors.io.in.bits.folded_hist := s0_folded_gh_dup predictors.io.in.bits.resp_in(0) := (0.U).asTypeOf(new BranchPredictionResp) // predictors.io.in.bits.resp_in(0).s1.pc := s0_pc // predictors.io.in.bits.toFtq_fire := toFtq_fire // predictors.io.out.ready := io.bpu_to_ftq.resp.ready val redirect_req = io.ftq_to_bpu.redirect val do_redirect_dup = dup_seq(RegNext(redirect_req, init=0.U.asTypeOf(io.ftq_to_bpu.redirect))) // Pipeline logic s2_redirect_dup.map(_ := false.B) s3_redirect_dup.map(_ := false.B) s3_flush_dup.map(_ := redirect_req.valid) // flush when redirect comes for (((s2_flush, s3_flush), s3_redirect) <- s2_flush_dup zip s3_flush_dup zip s3_redirect_dup) s2_flush := s3_flush || s3_redirect for (((s1_flush, s2_flush), s2_redirect) <- s1_flush_dup zip s2_flush_dup zip s2_redirect_dup) s1_flush := s2_flush || s2_redirect s1_components_ready_dup.map(_ := predictors.io.s1_ready) for (((s1_ready, s1_fire), s1_valid) <- s1_ready_dup zip s1_fire_dup zip s1_valid_dup) s1_ready := s1_fire || !s1_valid for (((s0_fire, s1_components_ready), s1_ready) <- s0_fire_dup zip s1_components_ready_dup zip s1_ready_dup) s0_fire := s1_components_ready && s1_ready predictors.io.s0_fire := s0_fire_dup s2_components_ready_dup.map(_ := predictors.io.s2_ready) for (((s2_ready, s2_fire), s2_valid) <- s2_ready_dup zip s2_fire_dup zip s2_valid_dup) s2_ready := s2_fire || !s2_valid for ((((s1_fire, s2_components_ready), s2_ready), s1_valid) <- s1_fire_dup zip s2_components_ready_dup zip s2_ready_dup zip s1_valid_dup) s1_fire := s1_valid && s2_components_ready && s2_ready && io.bpu_to_ftq.resp.ready s3_components_ready_dup.map(_ := predictors.io.s3_ready) for (((s3_ready, s3_fire), s3_valid) <- s3_ready_dup zip s3_fire_dup zip s3_valid_dup) s3_ready := s3_fire || !s3_valid for ((((s2_fire, s3_components_ready), s3_ready), s2_valid) <- s2_fire_dup zip s3_components_ready_dup zip s3_ready_dup zip s2_valid_dup) s2_fire := s2_valid && s3_components_ready && s3_ready for ((((s0_fire, s1_flush), s1_fire), s1_valid) <- s0_fire_dup zip s1_flush_dup zip s1_fire_dup zip s1_valid_dup) { when (redirect_req.valid) { s1_valid := false.B } .elsewhen(s0_fire) { s1_valid := true.B } .elsewhen(s1_flush) { s1_valid := false.B } .elsewhen(s1_fire) { s1_valid := false.B } } predictors.io.s1_fire := s1_fire_dup s2_fire_dup := s2_valid_dup for (((((s1_fire, s2_flush), s2_fire), s2_valid), s1_flush) <- s1_fire_dup zip s2_flush_dup zip s2_fire_dup zip s2_valid_dup zip s1_flush_dup) { when (s2_flush) { s2_valid := false.B } .elsewhen(s1_fire) { s2_valid := !s1_flush } .elsewhen(s2_fire) { s2_valid := false.B } } predictors.io.s2_fire := s2_fire_dup predictors.io.s2_redirect := s2_redirect_dup s3_fire_dup := s3_valid_dup for (((((s2_fire, s3_flush), s3_fire), s3_valid), s2_flush) <- s2_fire_dup zip s3_flush_dup zip s3_fire_dup zip s3_valid_dup zip s2_flush_dup) { when (s3_flush) { s3_valid := false.B } .elsewhen(s2_fire) { s3_valid := !s2_flush } .elsewhen(s3_fire) { s3_valid := false.B } } predictors.io.s3_fire := s3_fire_dup predictors.io.s3_redirect := s3_redirect_dup io.bpu_to_ftq.resp.valid := s1_valid_dup(2) && s2_components_ready_dup(2) && s2_ready_dup(2) || s2_fire_dup(2) && s2_redirect_dup(2) || s3_fire_dup(2) && s3_redirect_dup(2) io.bpu_to_ftq.resp.bits := predictors.io.out io.bpu_to_ftq.resp.bits.last_stage_spec_info.folded_hist := s3_folded_gh_dup(2) io.bpu_to_ftq.resp.bits.last_stage_spec_info.histPtr := s3_ghist_ptr_dup(2) io.bpu_to_ftq.resp.bits.last_stage_spec_info.lastBrNumOH := s3_last_br_num_oh_dup(2) io.bpu_to_ftq.resp.bits.last_stage_spec_info.afhob := s3_ahead_fh_oldest_bits_dup(2) val full_pred_diff = WireInit(false.B) val full_pred_diff_stage = WireInit(0.U) val full_pred_diff_offset = WireInit(0.U) for (i <- 0 until numDup - 1) { when (io.bpu_to_ftq.resp.valid && ((io.bpu_to_ftq.resp.bits.s1.full_pred(i).asTypeOf(UInt()) =/= io.bpu_to_ftq.resp.bits.s1.full_pred(i+1).asTypeOf(UInt()) && io.bpu_to_ftq.resp.bits.s1.full_pred(i).hit) || (io.bpu_to_ftq.resp.bits.s2.full_pred(i).asTypeOf(UInt()) =/= io.bpu_to_ftq.resp.bits.s2.full_pred(i+1).asTypeOf(UInt()) && io.bpu_to_ftq.resp.bits.s2.full_pred(i).hit) || (io.bpu_to_ftq.resp.bits.s3.full_pred(i).asTypeOf(UInt()) =/= io.bpu_to_ftq.resp.bits.s3.full_pred(i+1).asTypeOf(UInt()) && io.bpu_to_ftq.resp.bits.s3.full_pred(i).hit))) { full_pred_diff := true.B full_pred_diff_offset := i.U when (io.bpu_to_ftq.resp.bits.s1.full_pred(i).asTypeOf(UInt()) =/= io.bpu_to_ftq.resp.bits.s1.full_pred(i+1).asTypeOf(UInt())) { full_pred_diff_stage := 1.U } .elsewhen (io.bpu_to_ftq.resp.bits.s2.full_pred(i).asTypeOf(UInt()) =/= io.bpu_to_ftq.resp.bits.s2.full_pred(i+1).asTypeOf(UInt())) { full_pred_diff_stage := 2.U } .otherwise { full_pred_diff_stage := 3.U } } } XSError(full_pred_diff, "Full prediction difference detected!") npcGen_dup.zip(s0_pc_reg_dup).map{ case (gen, reg) => gen.register(true.B, reg, Some("stallPC"), 0)} foldedGhGen_dup.zip(s0_folded_gh_reg_dup).map{ case (gen, reg) => gen.register(true.B, reg, Some("stallFGH"), 0)} ghistPtrGen_dup.zip(s0_ghist_ptr_reg_dup).map{ case (gen, reg) => gen.register(true.B, reg, Some("stallGHPtr"), 0)} lastBrNumOHGen_dup.zip(s0_last_br_num_oh_reg_dup).map{ case (gen, reg) => gen.register(true.B, reg, Some("stallBrNumOH"), 0)} aheadFhObGen_dup.zip(s0_ahead_fh_oldest_bits_reg_dup).map{ case (gen, reg) => gen.register(true.B, reg, Some("stallAFHOB"), 0)} // assign pred cycle for profiling io.bpu_to_ftq.resp.bits.s1.full_pred.map(_.predCycle.map(_ := GTimer())) io.bpu_to_ftq.resp.bits.s2.full_pred.map(_.predCycle.map(_ := GTimer())) io.bpu_to_ftq.resp.bits.s3.full_pred.map(_.predCycle.map(_ := GTimer())) // History manage // s1 val s1_possible_predicted_ghist_ptrs_dup = s1_ghist_ptr_dup.map(ptr => (0 to numBr).map(ptr - _.U)) val s1_predicted_ghist_ptr_dup = s1_possible_predicted_ghist_ptrs_dup.zip(resp.s1.lastBrPosOH).map{ case (ptr, oh) => Mux1H(oh, ptr)} val s1_possible_predicted_fhs_dup = for (((((fgh, afh), br_num_oh), t), br_pos_oh) <- s1_folded_gh_dup zip s1_ahead_fh_oldest_bits_dup zip s1_last_br_num_oh_dup zip resp.s1.brTaken zip resp.s1.lastBrPosOH) yield (0 to numBr).map(i => fgh.update(afh, br_num_oh, i, t & br_pos_oh(i)) ) val s1_predicted_fh_dup = resp.s1.lastBrPosOH.zip(s1_possible_predicted_fhs_dup).map{ case (oh, fh) => Mux1H(oh, fh)} val s1_ahead_fh_ob_src_dup = dup_wire(new AllAheadFoldedHistoryOldestBits(foldedGHistInfos)) s1_ahead_fh_ob_src_dup.zip(s1_ghist_ptr_dup).map{ case (src, ptr) => src.read(ghv, ptr)} if (EnableGHistDiff) { val s1_predicted_ghist = WireInit(getHist(s1_predicted_ghist_ptr_dup(0)).asTypeOf(Vec(HistoryLength, Bool()))) for (i <- 0 until numBr) { when (resp.s1.shouldShiftVec(0)(i)) { s1_predicted_ghist(i) := resp.s1.brTaken(0) && (i==0).B } } when (s1_valid_dup(0)) { s0_ghist := s1_predicted_ghist.asUInt } } val s1_ghv_wens = (0 until HistoryLength).map(n => (0 until numBr).map(b => (s1_ghist_ptr_dup(0)).value === (CGHPtr(false.B, n.U) + b.U).value && resp.s1.shouldShiftVec(0)(b) && s1_valid_dup(0))) val s1_ghv_wdatas = (0 until HistoryLength).map(n => Mux1H( (0 until numBr).map(b => ( (s1_ghist_ptr_dup(0)).value === (CGHPtr(false.B, n.U) + b.U).value && resp.s1.shouldShiftVec(0)(b), resp.s1.brTaken(0) && resp.s1.lastBrPosOH(0)(b+1) )) ) ) for (((npcGen, s1_valid), s1_target) <- npcGen_dup zip s1_valid_dup zip resp.s1.getTarget) npcGen.register(s1_valid, s1_target, Some("s1_target"), 4) for (((foldedGhGen, s1_valid), s1_predicted_fh) <- foldedGhGen_dup zip s1_valid_dup zip s1_predicted_fh_dup) foldedGhGen.register(s1_valid, s1_predicted_fh, Some("s1_FGH"), 4) for (((ghistPtrGen, s1_valid), s1_predicted_ghist_ptr) <- ghistPtrGen_dup zip s1_valid_dup zip s1_predicted_ghist_ptr_dup) ghistPtrGen.register(s1_valid, s1_predicted_ghist_ptr, Some("s1_GHPtr"), 4) for (((lastBrNumOHGen, s1_valid), s1_brPosOH) <- lastBrNumOHGen_dup zip s1_valid_dup zip resp.s1.lastBrPosOH.map(_.asUInt)) lastBrNumOHGen.register(s1_valid, s1_brPosOH, Some("s1_BrNumOH"), 4) for (((aheadFhObGen, s1_valid), s1_ahead_fh_ob_src) <- aheadFhObGen_dup zip s1_valid_dup zip s1_ahead_fh_ob_src_dup) aheadFhObGen.register(s1_valid, s1_ahead_fh_ob_src, Some("s1_AFHOB"), 4) ghvBitWriteGens.zip(s1_ghv_wens).zipWithIndex.map{case ((b, w), i) => b.register(w.reduce(_||_), s1_ghv_wdatas(i), Some(s"s1_new_bit_$i"), 4) } class PreviousPredInfo extends Bundle { val hit = Vec(numDup, Bool()) val target = Vec(numDup, UInt(VAddrBits.W)) val lastBrPosOH = Vec(numDup, Vec(numBr+1, Bool())) val taken = Vec(numDup, Bool()) val takenMask = Vec(numDup, Vec(numBr, Bool())) val cfiIndex = Vec(numDup, UInt(log2Ceil(PredictWidth).W)) } def preds_needs_redirect_vec_dup(x: PreviousPredInfo, y: BranchPredictionBundle) = { // Timing optimization // We first compare all target with previous stage target, // then select the difference by taken & hit // Usually target is generated quicker than taken, so do target compare before select can help timing val targetDiffVec: IndexedSeq[Vec[Bool]] = x.target.zip(y.getAllTargets).map { case (xTarget, yAllTarget) => VecInit(yAllTarget.map(_ =/= xTarget)) } // [numDup][all Target comparison] val targetDiff : IndexedSeq[Bool] = targetDiffVec.zip(x.hit).zip(x.takenMask).map { case ((diff, hit), takenMask) => selectByTaken(takenMask, hit, diff) } // [numDup] val lastBrPosOHDiff: IndexedSeq[Bool] = x.lastBrPosOH.zip(y.lastBrPosOH).map { case (oh1, oh2) => oh1.asUInt =/= oh2.asUInt } val takenDiff : IndexedSeq[Bool] = x.taken.zip(y.taken).map { case (t1, t2) => t1 =/= t2 } val takenOffsetDiff: IndexedSeq[Bool] = x.cfiIndex.zip(y.cfiIndex).zip(x.taken).zip(y.taken).map { case (((i1, i2), xt), yt) => xt && yt && i1 =/= i2.bits } VecInit( for ((((tgtd, lbpohd), tkd), tod) <- targetDiff zip lastBrPosOHDiff zip takenDiff zip takenOffsetDiff) yield VecInit(tgtd, lbpohd, tkd, tod) // x.shouldShiftVec.asUInt =/= y.shouldShiftVec.asUInt, // x.brTaken =/= y.brTaken ) } // s2 val s2_possible_predicted_ghist_ptrs_dup = s2_ghist_ptr_dup.map(ptr => (0 to numBr).map(ptr - _.U)) val s2_predicted_ghist_ptr_dup = s2_possible_predicted_ghist_ptrs_dup.zip(resp.s2.lastBrPosOH).map{ case (ptr, oh) => Mux1H(oh, ptr)} val s2_possible_predicted_fhs_dup = for ((((fgh, afh), br_num_oh), full_pred) <- s2_folded_gh_dup zip s2_ahead_fh_oldest_bits_dup zip s2_last_br_num_oh_dup zip resp.s2.full_pred) yield (0 to numBr).map(i => fgh.update(afh, br_num_oh, i, if (i > 0) full_pred.br_taken_mask(i-1) else false.B) ) val s2_predicted_fh_dup = resp.s2.lastBrPosOH.zip(s2_possible_predicted_fhs_dup).map{ case (oh, fh) => Mux1H(oh, fh)} val s2_ahead_fh_ob_src_dup = dup_wire(new AllAheadFoldedHistoryOldestBits(foldedGHistInfos)) s2_ahead_fh_ob_src_dup.zip(s2_ghist_ptr_dup).map{ case (src, ptr) => src.read(ghv, ptr)} if (EnableGHistDiff) { val s2_predicted_ghist = WireInit(getHist(s2_predicted_ghist_ptr_dup(0)).asTypeOf(Vec(HistoryLength, Bool()))) for (i <- 0 until numBr) { when (resp.s2.shouldShiftVec(0)(i)) { s2_predicted_ghist(i) := resp.s2.brTaken(0) && (i==0).B } } when(s2_redirect_dup(0)) { s0_ghist := s2_predicted_ghist.asUInt } } val s2_ghv_wens = (0 until HistoryLength).map(n => (0 until numBr).map(b => (s2_ghist_ptr_dup(0)).value === (CGHPtr(false.B, n.U) + b.U).value && resp.s2.shouldShiftVec(0)(b) && s2_redirect_dup(0))) val s2_ghv_wdatas = (0 until HistoryLength).map(n => Mux1H( (0 until numBr).map(b => ( (s2_ghist_ptr_dup(0)).value === (CGHPtr(false.B, n.U) + b.U).value && resp.s2.shouldShiftVec(0)(b), resp.s2.full_pred(0).real_br_taken_mask()(b) )) ) ) val s1_pred_info = Wire(new PreviousPredInfo) s1_pred_info.hit := resp.s1.full_pred.map(_.hit) s1_pred_info.target := resp.s1.getTarget s1_pred_info.lastBrPosOH := resp.s1.lastBrPosOH s1_pred_info.taken := resp.s1.taken s1_pred_info.takenMask := resp.s1.full_pred.map(_.taken_mask_on_slot) s1_pred_info.cfiIndex := resp.s1.cfiIndex.map { case x => x.bits } val previous_s1_pred_info = RegEnable(s1_pred_info, 0.U.asTypeOf(new PreviousPredInfo), s1_fire_dup(0)) val s2_redirect_s1_last_pred_vec_dup = preds_needs_redirect_vec_dup(previous_s1_pred_info, resp.s2) for (((s2_redirect, s2_fire), s2_redirect_s1_last_pred_vec) <- s2_redirect_dup zip s2_fire_dup zip s2_redirect_s1_last_pred_vec_dup) s2_redirect := s2_fire && s2_redirect_s1_last_pred_vec.reduce(_||_) for (((npcGen, s2_redirect), s2_target) <- npcGen_dup zip s2_redirect_dup zip resp.s2.getTarget) npcGen.register(s2_redirect, s2_target, Some("s2_target"), 5) for (((foldedGhGen, s2_redirect), s2_predicted_fh) <- foldedGhGen_dup zip s2_redirect_dup zip s2_predicted_fh_dup) foldedGhGen.register(s2_redirect, s2_predicted_fh, Some("s2_FGH"), 5) for (((ghistPtrGen, s2_redirect), s2_predicted_ghist_ptr) <- ghistPtrGen_dup zip s2_redirect_dup zip s2_predicted_ghist_ptr_dup) ghistPtrGen.register(s2_redirect, s2_predicted_ghist_ptr, Some("s2_GHPtr"), 5) for (((lastBrNumOHGen, s2_redirect), s2_brPosOH) <- lastBrNumOHGen_dup zip s2_redirect_dup zip resp.s2.lastBrPosOH.map(_.asUInt)) lastBrNumOHGen.register(s2_redirect, s2_brPosOH, Some("s2_BrNumOH"), 5) for (((aheadFhObGen, s2_redirect), s2_ahead_fh_ob_src) <- aheadFhObGen_dup zip s2_redirect_dup zip s2_ahead_fh_ob_src_dup) aheadFhObGen.register(s2_redirect, s2_ahead_fh_ob_src, Some("s2_AFHOB"), 5) ghvBitWriteGens.zip(s2_ghv_wens).zipWithIndex.map{case ((b, w), i) => b.register(w.reduce(_||_), s2_ghv_wdatas(i), Some(s"s2_new_bit_$i"), 5) } XSPerfAccumulate("s2_redirect_because_target_diff", s2_fire_dup(0) && s2_redirect_s1_last_pred_vec_dup(0)(0)) XSPerfAccumulate("s2_redirect_because_branch_num_diff", s2_fire_dup(0) && s2_redirect_s1_last_pred_vec_dup(0)(1)) XSPerfAccumulate("s2_redirect_because_direction_diff", s2_fire_dup(0) && s2_redirect_s1_last_pred_vec_dup(0)(2)) XSPerfAccumulate("s2_redirect_because_cfi_idx_diff", s2_fire_dup(0) && s2_redirect_s1_last_pred_vec_dup(0)(3)) // XSPerfAccumulate("s2_redirect_because_shouldShiftVec_diff", s2_fire && s2_redirect_s1_last_pred_vec(4)) // XSPerfAccumulate("s2_redirect_because_brTaken_diff", s2_fire && s2_redirect_s1_last_pred_vec(5)) XSPerfAccumulate("s2_redirect_because_fallThroughError", s2_fire_dup(0) && resp.s2.fallThruError(0)) XSPerfAccumulate("s2_redirect_when_taken", s2_redirect_dup(0) && resp.s2.taken(0) && resp.s2.full_pred(0).hit) XSPerfAccumulate("s2_redirect_when_not_taken", s2_redirect_dup(0) && !resp.s2.taken(0) && resp.s2.full_pred(0).hit) XSPerfAccumulate("s2_redirect_when_not_hit", s2_redirect_dup(0) && !resp.s2.full_pred(0).hit) // s3 val s3_possible_predicted_ghist_ptrs_dup = s3_ghist_ptr_dup.map(ptr => (0 to numBr).map(ptr - _.U)) val s3_predicted_ghist_ptr_dup = s3_possible_predicted_ghist_ptrs_dup.zip(resp.s3.lastBrPosOH).map{ case (ptr, oh) => Mux1H(oh, ptr)} val s3_possible_predicted_fhs_dup = for ((((fgh, afh), br_num_oh), full_pred) <- s3_folded_gh_dup zip s3_ahead_fh_oldest_bits_dup zip s3_last_br_num_oh_dup zip resp.s3.full_pred) yield (0 to numBr).map(i => fgh.update(afh, br_num_oh, i, if (i > 0) full_pred.br_taken_mask(i-1) else false.B) ) val s3_predicted_fh_dup = resp.s3.lastBrPosOH.zip(s3_possible_predicted_fhs_dup).map{ case (oh, fh) => Mux1H(oh, fh)} val s3_ahead_fh_ob_src_dup = dup_wire(new AllAheadFoldedHistoryOldestBits(foldedGHistInfos)) s3_ahead_fh_ob_src_dup.zip(s3_ghist_ptr_dup).map{ case (src, ptr) => src.read(ghv, ptr)} if (EnableGHistDiff) { val s3_predicted_ghist = WireInit(getHist(s3_predicted_ghist_ptr_dup(0)).asTypeOf(Vec(HistoryLength, Bool()))) for (i <- 0 until numBr) { when (resp.s3.shouldShiftVec(0)(i)) { s3_predicted_ghist(i) := resp.s3.brTaken(0) && (i==0).B } } when(s3_redirect_dup(0)) { s0_ghist := s3_predicted_ghist.asUInt } } val s3_ghv_wens = (0 until HistoryLength).map(n => (0 until numBr).map(b => (s3_ghist_ptr_dup(0)).value === (CGHPtr(false.B, n.U) + b.U).value && resp.s3.shouldShiftVec(0)(b) && s3_redirect_dup(0))) val s3_ghv_wdatas = (0 until HistoryLength).map(n => Mux1H( (0 until numBr).map(b => ( (s3_ghist_ptr_dup(0)).value === (CGHPtr(false.B, n.U) + b.U).value && resp.s3.shouldShiftVec(0)(b), resp.s3.full_pred(0).real_br_taken_mask()(b) )) ) ) val previous_s2_pred = RegEnable(resp.s2, 0.U.asTypeOf(resp.s2), s2_fire_dup(0)) val s3_redirect_on_br_taken_dup = resp.s3.full_pred.zip(previous_s2_pred.full_pred).map {case (fp1, fp2) => fp1.real_br_taken_mask().asUInt =/= fp2.real_br_taken_mask().asUInt} val s3_both_first_taken_dup = resp.s3.full_pred.zip(previous_s2_pred.full_pred).map {case (fp1, fp2) => fp1.real_br_taken_mask()(0) && fp2.real_br_taken_mask()(0)} val s3_redirect_on_target_dup = resp.s3.getTarget.zip(previous_s2_pred.getTarget).map {case (t1, t2) => t1 =/= t2} val s3_redirect_on_jalr_target_dup = resp.s3.full_pred.zip(previous_s2_pred.full_pred).map {case (fp1, fp2) => fp1.hit_taken_on_jalr && fp1.jalr_target =/= fp2.jalr_target} val s3_redirect_on_fall_thru_error_dup = resp.s3.fallThruError for ((((((s3_redirect, s3_fire), s3_redirect_on_br_taken), s3_redirect_on_target), s3_redirect_on_fall_thru_error), s3_both_first_taken) <- s3_redirect_dup zip s3_fire_dup zip s3_redirect_on_br_taken_dup zip s3_redirect_on_target_dup zip s3_redirect_on_fall_thru_error_dup zip s3_both_first_taken_dup) { s3_redirect := s3_fire && ( (s3_redirect_on_br_taken && !s3_both_first_taken) || s3_redirect_on_target || s3_redirect_on_fall_thru_error ) } XSPerfAccumulate(f"s3_redirect_on_br_taken", s3_fire_dup(0) && s3_redirect_on_br_taken_dup(0)) XSPerfAccumulate(f"s3_redirect_on_jalr_target", s3_fire_dup(0) && s3_redirect_on_jalr_target_dup(0)) XSPerfAccumulate(f"s3_redirect_on_others", s3_redirect_dup(0) && !(s3_redirect_on_br_taken_dup(0) || s3_redirect_on_jalr_target_dup(0))) for (((npcGen, s3_redirect), s3_target) <- npcGen_dup zip s3_redirect_dup zip resp.s3.getTarget) npcGen.register(s3_redirect, s3_target, Some("s3_target"), 3) for (((foldedGhGen, s3_redirect), s3_predicted_fh) <- foldedGhGen_dup zip s3_redirect_dup zip s3_predicted_fh_dup) foldedGhGen.register(s3_redirect, s3_predicted_fh, Some("s3_FGH"), 3) for (((ghistPtrGen, s3_redirect), s3_predicted_ghist_ptr) <- ghistPtrGen_dup zip s3_redirect_dup zip s3_predicted_ghist_ptr_dup) ghistPtrGen.register(s3_redirect, s3_predicted_ghist_ptr, Some("s3_GHPtr"), 3) for (((lastBrNumOHGen, s3_redirect), s3_brPosOH) <- lastBrNumOHGen_dup zip s3_redirect_dup zip resp.s3.lastBrPosOH.map(_.asUInt)) lastBrNumOHGen.register(s3_redirect, s3_brPosOH, Some("s3_BrNumOH"), 3) for (((aheadFhObGen, s3_redirect), s3_ahead_fh_ob_src) <- aheadFhObGen_dup zip s3_redirect_dup zip s3_ahead_fh_ob_src_dup) aheadFhObGen.register(s3_redirect, s3_ahead_fh_ob_src, Some("s3_AFHOB"), 3) ghvBitWriteGens.zip(s3_ghv_wens).zipWithIndex.map{case ((b, w), i) => b.register(w.reduce(_||_), s3_ghv_wdatas(i), Some(s"s3_new_bit_$i"), 3) } // Send signal tell Ftq override val s2_ftq_idx = RegEnable(io.ftq_to_bpu.enq_ptr, s1_fire_dup(0)) val s3_ftq_idx = RegEnable(s2_ftq_idx, s2_fire_dup(0)) for (((to_ftq_s1_valid, s1_fire), s1_flush) <- io.bpu_to_ftq.resp.bits.s1.valid zip s1_fire_dup zip s1_flush_dup) { to_ftq_s1_valid := s1_fire && !s1_flush } io.bpu_to_ftq.resp.bits.s1.hasRedirect.map(_ := false.B) io.bpu_to_ftq.resp.bits.s1.ftq_idx := DontCare for (((to_ftq_s2_valid, s2_fire), s2_flush) <- io.bpu_to_ftq.resp.bits.s2.valid zip s2_fire_dup zip s2_flush_dup) { to_ftq_s2_valid := s2_fire && !s2_flush } io.bpu_to_ftq.resp.bits.s2.hasRedirect.zip(s2_redirect_dup).map {case (hr, r) => hr := r} io.bpu_to_ftq.resp.bits.s2.ftq_idx := s2_ftq_idx for (((to_ftq_s3_valid, s3_fire), s3_flush) <- io.bpu_to_ftq.resp.bits.s3.valid zip s3_fire_dup zip s3_flush_dup) { to_ftq_s3_valid := s3_fire && !s3_flush } io.bpu_to_ftq.resp.bits.s3.hasRedirect.zip(s3_redirect_dup).map {case (hr, r) => hr := r} io.bpu_to_ftq.resp.bits.s3.ftq_idx := s3_ftq_idx predictors.io.update := RegNext(io.ftq_to_bpu.update) predictors.io.update.bits.ghist := RegNext(getHist(io.ftq_to_bpu.update.bits.spec_info.histPtr)) val redirect_dup = do_redirect_dup.map(_.bits) predictors.io.redirect := do_redirect_dup(0) // Redirect logic val shift_dup = redirect_dup.map(_.cfiUpdate.shift) val addIntoHist_dup = redirect_dup.map(_.cfiUpdate.addIntoHist) // TODO: remove these below val shouldShiftVec_dup = shift_dup.map(shift => Mux(shift === 0.U, VecInit(0.U((1 << (log2Ceil(numBr) + 1)).W).asBools), VecInit((LowerMask(1.U << (shift-1.U))).asBools))) // TODO end val afhob_dup = redirect_dup.map(_.cfiUpdate.afhob) val lastBrNumOH_dup = redirect_dup.map(_.cfiUpdate.lastBrNumOH) val isBr_dup = redirect_dup.map(_.cfiUpdate.pd.isBr) val taken_dup = redirect_dup.map(_.cfiUpdate.taken) val real_br_taken_mask_dup = for (((shift, taken), addIntoHist) <- shift_dup zip taken_dup zip addIntoHist_dup) yield (0 until numBr).map(i => shift === (i+1).U && taken && addIntoHist ) val oldPtr_dup = redirect_dup.map(_.cfiUpdate.histPtr) val oldFh_dup = redirect_dup.map(_.cfiUpdate.folded_hist) val updated_ptr_dup = oldPtr_dup.zip(shift_dup).map {case (oldPtr, shift) => oldPtr - shift} val updated_fh_dup = for ((((((oldFh, afhob), lastBrNumOH), taken), addIntoHist), shift) <- oldFh_dup zip afhob_dup zip lastBrNumOH_dup zip taken_dup zip addIntoHist_dup zip shift_dup) yield VecInit((0 to numBr).map(i => oldFh.update(afhob, lastBrNumOH, i, taken && addIntoHist)))(shift) val thisBrNumOH_dup = shift_dup.map(shift => UIntToOH(shift, numBr+1)) val thisAheadFhOb_dup = dup_wire(new AllAheadFoldedHistoryOldestBits(foldedGHistInfos)) thisAheadFhOb_dup.zip(oldPtr_dup).map {case (afhob, oldPtr) => afhob.read(ghv, oldPtr)} val redirect_ghv_wens = (0 until HistoryLength).map(n => (0 until numBr).map(b => oldPtr_dup(0).value === (CGHPtr(false.B, n.U) + b.U).value && shouldShiftVec_dup(0)(b) && do_redirect_dup(0).valid)) val redirect_ghv_wdatas = (0 until HistoryLength).map(n => Mux1H( (0 until numBr).map(b => oldPtr_dup(0).value === (CGHPtr(false.B, n.U) + b.U).value && shouldShiftVec_dup(0)(b)), real_br_taken_mask_dup(0) ) ) if (EnableGHistDiff) { val updated_ghist = WireInit(getHist(updated_ptr_dup(0)).asTypeOf(Vec(HistoryLength, Bool()))) for (i <- 0 until numBr) { when (shift_dup(0) >= (i+1).U) { updated_ghist(i) := taken_dup(0) && addIntoHist_dup(0) && (i==0).B } } when(do_redirect_dup(0).valid) { s0_ghist := updated_ghist.asUInt } } // Commit time history checker if (EnableCommitGHistDiff) { val commitGHist = RegInit(0.U.asTypeOf(Vec(HistoryLength, Bool()))) val commitGHistPtr = RegInit(0.U.asTypeOf(new CGHPtr)) def getCommitHist(ptr: CGHPtr): UInt = (Cat(commitGHist.asUInt, commitGHist.asUInt) >> (ptr.value+1.U))(HistoryLength-1, 0) val updateValid : Bool = io.ftq_to_bpu.update.valid val branchValidMask : UInt = io.ftq_to_bpu.update.bits.ftb_entry.brValids.asUInt val branchCommittedMask: Vec[Bool] = io.ftq_to_bpu.update.bits.br_committed val misPredictMask : UInt = io.ftq_to_bpu.update.bits.mispred_mask.asUInt val takenMask : UInt = io.ftq_to_bpu.update.bits.br_taken_mask.asUInt | io.ftq_to_bpu.update.bits.ftb_entry.always_taken.asUInt // Always taken branch is recorded in history val takenIdx : UInt = (PriorityEncoder(takenMask) + 1.U((log2Ceil(numBr)+1).W)).asUInt val misPredictIdx : UInt = (PriorityEncoder(misPredictMask) + 1.U((log2Ceil(numBr)+1).W)).asUInt val shouldShiftMask: UInt = Mux(takenMask.orR, LowerMask(takenIdx).asUInt, ((1 << numBr) - 1).asUInt) & Mux(misPredictMask.orR, LowerMask(misPredictIdx).asUInt, ((1 << numBr) - 1).asUInt) & branchCommittedMask.asUInt val updateShift : UInt = Mux(updateValid && branchValidMask.orR, PopCount(branchValidMask & shouldShiftMask), 0.U) // Maintain the commitGHist for (i <- 0 until numBr) { when(updateShift >= (i + 1).U) { val ptr: CGHPtr = commitGHistPtr - i.asUInt commitGHist(ptr.value) := takenMask(i) } } when(updateValid) { commitGHistPtr := commitGHistPtr - updateShift } // Calculate true history using Parallel XOR def computeFoldedHist(hist: UInt, compLen: Int)(histLen: Int): UInt = { if (histLen > 0) { val nChunks = (histLen + compLen - 1) / compLen val hist_chunks = (0 until nChunks) map { i => hist(min((i + 1) * compLen, histLen) - 1, i * compLen) } ParallelXOR(hist_chunks) } else 0.U } // Do differential val predictFHistAll: AllFoldedHistories = io.ftq_to_bpu.update.bits.spec_info.folded_hist TageTableInfos.map { case (nRows, histLen, _) => { val nRowsPerBr = nRows / numBr val commitTrueHist: UInt = computeFoldedHist(getCommitHist(commitGHistPtr), log2Ceil(nRowsPerBr))(histLen) val predictFHist : UInt = predictFHistAll. getHistWithInfo((histLen, min(histLen, log2Ceil(nRowsPerBr)))).folded_hist XSWarn(updateValid && predictFHist =/= commitTrueHist, p"predict time ghist: ${predictFHist} is different from commit time: ${commitTrueHist}\n") } } } // val updatedGh = oldGh.update(shift, taken && addIntoHist) for ((npcGen, do_redirect) <- npcGen_dup zip do_redirect_dup) npcGen.register(do_redirect.valid, do_redirect.bits.cfiUpdate.target, Some("redirect_target"), 2) for (((foldedGhGen, do_redirect), updated_fh) <- foldedGhGen_dup zip do_redirect_dup zip updated_fh_dup) foldedGhGen.register(do_redirect.valid, updated_fh, Some("redirect_FGHT"), 2) for (((ghistPtrGen, do_redirect), updated_ptr) <- ghistPtrGen_dup zip do_redirect_dup zip updated_ptr_dup) ghistPtrGen.register(do_redirect.valid, updated_ptr, Some("redirect_GHPtr"), 2) for (((lastBrNumOHGen, do_redirect), thisBrNumOH) <- lastBrNumOHGen_dup zip do_redirect_dup zip thisBrNumOH_dup) lastBrNumOHGen.register(do_redirect.valid, thisBrNumOH, Some("redirect_BrNumOH"), 2) for (((aheadFhObGen, do_redirect), thisAheadFhOb) <- aheadFhObGen_dup zip do_redirect_dup zip thisAheadFhOb_dup) aheadFhObGen.register(do_redirect.valid, thisAheadFhOb, Some("redirect_AFHOB"), 2) ghvBitWriteGens.zip(redirect_ghv_wens).zipWithIndex.map{case ((b, w), i) => b.register(w.reduce(_||_), redirect_ghv_wdatas(i), Some(s"redirect_new_bit_$i"), 2) } // no need to assign s0_last_pred // val need_reset = RegNext(reset.asBool) && !reset.asBool // Reset // npcGen.register(need_reset, resetVector.U, Some("reset_pc"), 1) // foldedGhGen.register(need_reset, 0.U.asTypeOf(s0_folded_gh), Some("reset_FGH"), 1) // ghistPtrGen.register(need_reset, 0.U.asTypeOf(new CGHPtr), Some("reset_GHPtr"), 1) s0_pc_dup.zip(npcGen_dup).map {case (s0_pc, npcGen) => s0_pc := npcGen()} s0_folded_gh_dup.zip(foldedGhGen_dup).map {case (s0_folded_gh, foldedGhGen) => s0_folded_gh := foldedGhGen()} s0_ghist_ptr_dup.zip(ghistPtrGen_dup).map {case (s0_ghist_ptr, ghistPtrGen) => s0_ghist_ptr := ghistPtrGen()} s0_ahead_fh_oldest_bits_dup.zip(aheadFhObGen_dup).map {case (s0_ahead_fh_oldest_bits, aheadFhObGen) => s0_ahead_fh_oldest_bits := aheadFhObGen()} s0_last_br_num_oh_dup.zip(lastBrNumOHGen_dup).map {case (s0_last_br_num_oh, lastBrNumOHGen) => s0_last_br_num_oh := lastBrNumOHGen()} (ghv_write_datas zip ghvBitWriteGens).map{case (wd, d) => wd := d()} for (i <- 0 until HistoryLength) { ghv_wens(i) := Seq(s1_ghv_wens, s2_ghv_wens, s3_ghv_wens, redirect_ghv_wens).map(_(i).reduce(_||_)).reduce(_||_) when (ghv_wens(i)) { ghv(i) := ghv_write_datas(i) } } // TODO: signals for memVio and other Redirects controlRedirectBubble := do_redirect_dup(0).valid && do_redirect_dup(0).bits.ControlRedirectBubble ControlBTBMissBubble := do_redirect_dup(0).bits.ControlBTBMissBubble TAGEMissBubble := do_redirect_dup(0).bits.TAGEMissBubble SCMissBubble := do_redirect_dup(0).bits.SCMissBubble ITTAGEMissBubble := do_redirect_dup(0).bits.ITTAGEMissBubble RASMissBubble := do_redirect_dup(0).bits.RASMissBubble memVioRedirectBubble := do_redirect_dup(0).valid && do_redirect_dup(0).bits.MemVioRedirectBubble otherRedirectBubble := do_redirect_dup(0).valid && do_redirect_dup(0).bits.OtherRedirectBubble btbMissBubble := do_redirect_dup(0).valid && do_redirect_dup(0).bits.BTBMissBubble overrideBubble(0) := s2_redirect_dup(0) overrideBubble(1) := s3_redirect_dup(0) ftqUpdateBubble(0) := !s1_components_ready_dup(0) ftqUpdateBubble(1) := !s2_components_ready_dup(0) ftqUpdateBubble(2) := !s3_components_ready_dup(0) ftqFullStall := !io.bpu_to_ftq.resp.ready io.bpu_to_ftq.resp.bits.topdown_info := topdown_stages(numOfStage - 1) // topdown handling logic here when (controlRedirectBubble) { /* for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.ControlRedirectBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.ControlRedirectBubble.id) := true.B */ when (ControlBTBMissBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B } .elsewhen (TAGEMissBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.TAGEMissBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.TAGEMissBubble.id) := true.B } .elsewhen (SCMissBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.SCMissBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.SCMissBubble.id) := true.B } .elsewhen (ITTAGEMissBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.ITTAGEMissBubble.id) := true.B } .elsewhen (RASMissBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.RASMissBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.RASMissBubble.id) := true.B } } when (memVioRedirectBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.MemVioRedirectBubble.id) := true.B } when (otherRedirectBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.OtherRedirectBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.OtherRedirectBubble.id) := true.B } when (btbMissBubble) { for (i <- 0 until numOfStage) topdown_stages(i).reasons(TopDownCounters.BTBMissBubble.id) := true.B io.bpu_to_ftq.resp.bits.topdown_info.reasons(TopDownCounters.BTBMissBubble.id) := true.B } for (i <- 0 until numOfStage) { if (i < numOfStage - overrideStage) { when (overrideBubble(i)) { for (j <- 0 to i) topdown_stages(j).reasons(TopDownCounters.OverrideBubble.id) := true.B } } if (i < numOfStage - ftqUpdateStage) { when (ftqUpdateBubble(i)) { topdown_stages(i).reasons(TopDownCounters.FtqUpdateBubble.id) := true.B } } } when (ftqFullStall) { topdown_stages(0).reasons(TopDownCounters.FtqFullStall.id) := true.B } XSError(isBefore(redirect_dup(0).cfiUpdate.histPtr, s3_ghist_ptr_dup(0)) && do_redirect_dup(0).valid, p"s3_ghist_ptr ${s3_ghist_ptr_dup(0)} exceeds redirect histPtr ${redirect_dup(0).cfiUpdate.histPtr}\n") XSError(isBefore(redirect_dup(0).cfiUpdate.histPtr, s2_ghist_ptr_dup(0)) && do_redirect_dup(0).valid, p"s2_ghist_ptr ${s2_ghist_ptr_dup(0)} exceeds redirect histPtr ${redirect_dup(0).cfiUpdate.histPtr}\n") XSError(isBefore(redirect_dup(0).cfiUpdate.histPtr, s1_ghist_ptr_dup(0)) && do_redirect_dup(0).valid, p"s1_ghist_ptr ${s1_ghist_ptr_dup(0)} exceeds redirect histPtr ${redirect_dup(0).cfiUpdate.histPtr}\n") XSDebug(RegNext(reset.asBool) && !reset.asBool, "Reseting...\n") XSDebug(io.ftq_to_bpu.update.valid, p"Update from ftq\n") XSDebug(io.ftq_to_bpu.redirect.valid, p"Redirect from ftq\n") XSDebug("[BP0] fire=%d pc=%x\n", s0_fire_dup(0), s0_pc_dup(0)) XSDebug("[BP1] v=%d r=%d cr=%d fire=%d flush=%d pc=%x\n", s1_valid_dup(0), s1_ready_dup(0), s1_components_ready_dup(0), s1_fire_dup(0), s1_flush_dup(0), s1_pc) XSDebug("[BP2] v=%d r=%d cr=%d fire=%d redirect=%d flush=%d pc=%x\n", s2_valid_dup(0), s2_ready_dup(0), s2_components_ready_dup(0), s2_fire_dup(0), s2_redirect_dup(0), s2_flush_dup(0), s2_pc) XSDebug("[BP3] v=%d r=%d cr=%d fire=%d redirect=%d flush=%d pc=%x\n", s3_valid_dup(0), s3_ready_dup(0), s3_components_ready_dup(0), s3_fire_dup(0), s3_redirect_dup(0), s3_flush_dup(0), s3_pc) XSDebug("[FTQ] ready=%d\n", io.bpu_to_ftq.resp.ready) XSDebug("resp.s1.target=%x\n", resp.s1.getTarget(0)) XSDebug("resp.s2.target=%x\n", resp.s2.getTarget(0)) // XSDebug("s0_ghist: %b\n", s0_ghist.predHist) // XSDebug("s1_ghist: %b\n", s1_ghist.predHist) // XSDebug("s2_ghist: %b\n", s2_ghist.predHist) // XSDebug("s2_predicted_ghist: %b\n", s2_predicted_ghist.predHist) XSDebug(p"s0_ghist_ptr: ${s0_ghist_ptr_dup(0)}\n") XSDebug(p"s1_ghist_ptr: ${s1_ghist_ptr_dup(0)}\n") XSDebug(p"s2_ghist_ptr: ${s2_ghist_ptr_dup(0)}\n") XSDebug(p"s3_ghist_ptr: ${s3_ghist_ptr_dup(0)}\n") io.ftq_to_bpu.update.bits.display(io.ftq_to_bpu.update.valid) io.ftq_to_bpu.redirect.bits.display(io.ftq_to_bpu.redirect.valid) XSPerfAccumulate("s2_redirect", s2_redirect_dup(0)) XSPerfAccumulate("s3_redirect", s3_redirect_dup(0)) XSPerfAccumulate("s1_not_valid", !s1_valid_dup(0)) val perfEvents = predictors.asInstanceOf[Composer].getPerfEvents generatePerfEvent() }