package xiangshan.frontend import chisel3._ import chisel3.util._ import utils._ import xiangshan._ import xiangshan.backend.ALUOpType import xiangshan.backend.JumpOpType class TableAddr(val idxBits: Int, val banks: Int) extends XSBundle { def tagBits = VAddrBits - idxBits - 1 val tag = UInt(tagBits.W) val idx = UInt(idxBits.W) val offset = UInt(1.W) def fromUInt(x: UInt) = x.asTypeOf(UInt(VAddrBits.W)).asTypeOf(this) def getTag(x: UInt) = fromUInt(x).tag def getIdx(x: UInt) = fromUInt(x).idx def getBank(x: UInt) = getIdx(x)(log2Up(banks) - 1, 0) def getBankIdx(x: UInt) = getIdx(x)(idxBits - 1, log2Up(banks)) } class Stage1To2IO extends XSBundle { val pc = Output(UInt(VAddrBits.W)) val btb = new Bundle { val hits = Output(UInt(PredictWidth.W)) val targets = Output(Vec(PredictWidth, UInt(VAddrBits.W))) } val jbtac = new Bundle { val hitIdx = Output(UInt(PredictWidth.W)) val target = Output(UInt(VAddrBits.W)) } val tage = new Bundle { val hits = Output(UInt(PredictWidth.W)) val takens = Output(Vec(PredictWidth, Bool())) } val hist = Output(Vec(PredictWidth, UInt(HistoryLength.W))) val btbPred = ValidIO(new BranchPrediction) } class BPUStage1 extends XSModule { val io = IO(new Bundle() { val in = new Bundle { val pc = Flipped(Decoupled(UInt(VAddrBits.W))) } // from backend val redirectInfo = Input(new RedirectInfo) // from Stage3 val flush = Input(Bool()) val s3RollBackHist = Input(UInt(HistoryLength.W)) val s3Taken = Input(Bool()) // to ifu, quick prediction result val s1OutPred = ValidIO(new BranchPrediction) // to Stage2 val out = Decoupled(new Stage1To2IO) }) io.in.pc.ready := true.B // flush Stage1 when io.flush val flushS1 = BoolStopWatch(io.flush, io.in.pc.fire(), startHighPriority = true) val s1OutPredLatch = RegEnable(io.s1OutPred.bits, RegNext(io.in.pc.fire())) val outLatch = RegEnable(io.out.bits, RegNext(io.in.pc.fire())) val s1Valid = RegInit(false.B) when (io.flush) { s1Valid := true.B }.elsewhen (io.in.pc.fire()) { s1Valid := true.B }.elsewhen (io.out.fire()) { s1Valid := false.B } io.out.valid := s1Valid // global history register val ghr = RegInit(0.U(HistoryLength.W)) // modify updateGhr and newGhr when updating ghr val updateGhr = WireInit(false.B) val newGhr = WireInit(0.U(HistoryLength.W)) when (updateGhr) { ghr := newGhr } // use hist as global history!!! val hist = Mux(updateGhr, newGhr, ghr) // Tage predictor val tage = if(EnableBPD) Module(new Tage) else Module(new FakeTAGE) tage.io.req.valid := io.in.pc.fire() tage.io.req.bits.pc := io.in.pc.bits tage.io.req.bits.hist := hist tage.io.redirectInfo <> io.redirectInfo io.s1OutPred.bits.tageMeta := tage.io.meta // latch pc for 1 cycle latency when reading SRAM val pcLatch = RegEnable(io.in.pc.bits, io.in.pc.fire()) // TODO: pass real mask in // val maskLatch = RegEnable(btb.io.in.mask, io.in.pc.fire()) val maskLatch = Fill(PredictWidth, 1.U(1.W)) val r = io.redirectInfo.redirect val updateFetchpc = r.pc - (r.fetchIdx << 1.U) // BTB val btb = Module(new BTB) btb.io.in.pc <> io.in.pc btb.io.in.pcLatch := pcLatch // TODO: pass real mask in btb.io.in.mask := Fill(PredictWidth, 1.U(1.W)) btb.io.redirectValid := io.redirectInfo.valid btb.io.flush := io.flush // btb.io.update.fetchPC := updateFetchpc // btb.io.update.fetchIdx := r.fetchIdx btb.io.update.pc := r.pc btb.io.update.hit := r.btbHit btb.io.update.misPred := io.redirectInfo.misPred // btb.io.update.writeWay := r.btbVictimWay btb.io.update.oldCtr := r.btbPredCtr btb.io.update.taken := r.taken btb.io.update.target := r.brTarget btb.io.update.btbType := r.btbType // TODO: add RVC logic btb.io.update.isRVC := r.isRVC // val btbHit = btb.io.out.hit val btbTaken = btb.io.out.taken val btbTakenIdx = btb.io.out.takenIdx val btbTakenTarget = btb.io.out.target // val btbWriteWay = btb.io.out.writeWay val btbNotTakens = btb.io.out.notTakens val btbCtrs = VecInit(btb.io.out.dEntries.map(_.pred)) val btbValids = btb.io.out.hits val btbTargets = VecInit(btb.io.out.dEntries.map(_.target)) val btbTypes = VecInit(btb.io.out.dEntries.map(_.btbType)) val btbIsRVCs = VecInit(btb.io.out.dEntries.map(_.isRVC)) val jbtac = Module(new JBTAC) jbtac.io.in.pc <> io.in.pc jbtac.io.in.pcLatch := pcLatch // TODO: pass real mask in jbtac.io.in.mask := Fill(PredictWidth, 1.U(1.W)) jbtac.io.in.hist := hist jbtac.io.redirectValid := io.redirectInfo.valid jbtac.io.flush := io.flush jbtac.io.update.fetchPC := updateFetchpc jbtac.io.update.fetchIdx := r.fetchIdx jbtac.io.update.misPred := io.redirectInfo.misPred jbtac.io.update.btbType := r.btbType jbtac.io.update.target := r.target jbtac.io.update.hist := r.hist jbtac.io.update.isRVC := r.isRVC val jbtacHit = jbtac.io.out.hit val jbtacTarget = jbtac.io.out.target val jbtacHitIdx = jbtac.io.out.hitIdx val jbtacIsRVC = jbtac.io.out.isRVC // calculate global history of each instr val firstHist = RegNext(hist) val histShift = Wire(Vec(PredictWidth, UInt(log2Up(PredictWidth).W))) val shift = Wire(Vec(PredictWidth, Vec(PredictWidth, UInt(1.W)))) (0 until PredictWidth).foreach(i => shift(i) := Mux(!btbNotTakens(i), 0.U, ~LowerMask(UIntToOH(i.U), PredictWidth)).asTypeOf(Vec(PredictWidth, UInt(1.W)))) for (j <- 0 until PredictWidth) { var tmp = 0.U for (i <- 0 until PredictWidth) { tmp = tmp + shift(i)(j) } histShift(j) := tmp } // update ghr updateGhr := io.s1OutPred.bits.redirect || RegNext(io.in.pc.fire) && ~io.s1OutPred.bits.redirect && (btbNotTakens.asUInt & maskLatch).orR || // TODO: use parallel or io.flush val brJumpIdx = Mux(!btbTaken, 0.U, UIntToOH(btbTakenIdx)) val indirectIdx = Mux(!jbtacHit, 0.U, UIntToOH(jbtacHitIdx)) // if backend redirects, restore history from backend; // if stage3 redirects, restore history from stage3; // if stage1 redirects, speculatively update history; // if none of above happens, check if stage1 has not-taken branches and shift zeroes accordingly newGhr := Mux(io.redirectInfo.flush(), (r.hist << 1.U) | !(r.btbType === BTBtype.B && !r.taken), Mux(io.flush, Mux(io.s3Taken, (io.s3RollBackHist << 1.U) | 1.U, io.s3RollBackHist), Mux(io.s1OutPred.bits.redirect, (PriorityMux(brJumpIdx | indirectIdx, io.s1OutPred.bits.hist) << 1.U | 1.U), io.s1OutPred.bits.hist(0) << PopCount(btbNotTakens.asUInt & maskLatch)))) def getInstrValid(i: Int): UInt = { val vec = Wire(Vec(PredictWidth, UInt(1.W))) for (j <- 0 until PredictWidth) { if (j <= i) vec(j) := 1.U else vec(j) := 0.U } vec.asUInt } // redirect based on BTB and JBTAC val takenIdx = LowestBit(brJumpIdx | indirectIdx, PredictWidth) // io.out.valid := RegNext(io.in.pc.fire()) && !io.flush // io.s1OutPred.valid := io.out.valid io.s1OutPred.valid := io.out.fire() when (RegNext(io.in.pc.fire())) { io.s1OutPred.bits.redirect := btbTaken || jbtacHit // io.s1OutPred.bits.instrValid := (maskLatch & Fill(PredictWidth, ~io.s1OutPred.bits.redirect || io.s1OutPred.bits.lateJump) | // PriorityMux(brJumpIdx | indirectIdx, (0 until PredictWidth).map(getInstrValid(_)))).asTypeOf(Vec(PredictWidth, Bool())) io.s1OutPred.bits.instrValid := (maskLatch & Fill(PredictWidth, ~io.s1OutPred.bits.redirect) | PriorityMux(brJumpIdx | indirectIdx, (0 until PredictWidth).map(getInstrValid(_)))).asTypeOf(Vec(PredictWidth, Bool())) for (i <- 0 until (PredictWidth - 1)) { when (!io.s1OutPred.bits.lateJump && (1.U << i) === takenIdx && (!btbIsRVCs(i) && btbValids(i) || !jbtacIsRVC && (1.U << i) === indirectIdx)) { io.s1OutPred.bits.instrValid(i+1) := maskLatch(i+1) } } io.s1OutPred.bits.target := Mux(takenIdx === 0.U, pcLatch + (PopCount(maskLatch) << 1.U), Mux(takenIdx === brJumpIdx, btbTakenTarget, jbtacTarget)) io.s1OutPred.bits.lateJump := btb.io.out.isRVILateJump || jbtac.io.out.isRVILateJump (0 until PredictWidth).map(i => io.s1OutPred.bits.hist(i) := firstHist << histShift(i)) // io.s1OutPred.bits.btbVictimWay := btbWriteWay io.s1OutPred.bits.predCtr := btbCtrs io.s1OutPred.bits.btbHit := btbValids io.s1OutPred.bits.tageMeta := tage.io.meta // TODO: enableBPD io.s1OutPred.bits.rasSp := DontCare io.s1OutPred.bits.rasTopCtr := DontCare }.otherwise { io.s1OutPred.bits := s1OutPredLatch } when (RegNext(io.in.pc.fire())) { io.out.bits.pc := pcLatch io.out.bits.btb.hits := btbValids.asUInt (0 until PredictWidth).map(i => io.out.bits.btb.targets(i) := btbTargets(i)) io.out.bits.jbtac.hitIdx := Mux(jbtacHit, UIntToOH(jbtacHitIdx), 0.U) // UIntToOH(jbtacHitIdx) io.out.bits.jbtac.target := jbtacTarget io.out.bits.tage <> tage.io.out // TODO: we don't need this repeatedly! io.out.bits.hist := io.s1OutPred.bits.hist io.out.bits.btbPred := io.s1OutPred }.otherwise { io.out.bits := outLatch } // debug info XSDebug("in:(%d %d) pc=%x ghr=%b\n", io.in.pc.valid, io.in.pc.ready, io.in.pc.bits, hist) XSDebug("outPred:(%d) pc=0x%x, redirect=%d instrValid=%b tgt=%x\n", io.s1OutPred.valid, pcLatch, io.s1OutPred.bits.redirect, io.s1OutPred.bits.instrValid.asUInt, io.s1OutPred.bits.target) XSDebug(io.flush && io.redirectInfo.flush(), "flush from backend: pc=%x tgt=%x brTgt=%x btbType=%b taken=%d oldHist=%b fetchIdx=%d isExcpt=%d\n", r.pc, r.target, r.brTarget, r.btbType, r.taken, r.hist, r.fetchIdx, r.isException) XSDebug(io.flush && !io.redirectInfo.flush(), "flush from Stage3: s3Taken=%d s3RollBackHist=%b\n", io.s3Taken, io.s3RollBackHist) } class Stage2To3IO extends Stage1To2IO { } class BPUStage2 extends XSModule { val io = IO(new Bundle() { // flush from Stage3 val flush = Input(Bool()) val in = Flipped(Decoupled(new Stage1To2IO)) val out = Decoupled(new Stage2To3IO) }) // flush Stage2 when Stage3 or banckend redirects val flushS2 = BoolStopWatch(io.flush, io.in.fire(), startHighPriority = true) val inLatch = RegInit(0.U.asTypeOf(io.in.bits)) when (io.in.fire()) { inLatch := io.in.bits } val validLatch = RegInit(false.B) when (io.flush) { validLatch := false.B }.elsewhen (io.in.fire()) { validLatch := true.B }.elsewhen (io.out.fire()) { validLatch := false.B } io.out.valid := !io.flush && !flushS2 && validLatch io.in.ready := !validLatch || io.out.fire() // do nothing io.out.bits := inLatch // debug info XSDebug("in:(%d %d) pc=%x out:(%d %d) pc=%x\n", io.in.valid, io.in.ready, io.in.bits.pc, io.out.valid, io.out.ready, io.out.bits.pc) XSDebug("validLatch=%d pc=%x\n", validLatch, inLatch.pc) XSDebug(io.flush, "flush!!!\n") } class BPUStage3 extends XSModule { val io = IO(new Bundle() { val flush = Input(Bool()) val in = Flipped(Decoupled(new Stage2To3IO)) val out = Decoupled(new BranchPrediction) // from icache val predecode = Flipped(ValidIO(new Predecode)) // from backend val redirectInfo = Input(new RedirectInfo) // to Stage1 and Stage2 val flushBPU = Output(Bool()) // to Stage1, restore ghr in stage1 when flushBPU is valid val s1RollBackHist = Output(UInt(HistoryLength.W)) val s3Taken = Output(Bool()) }) val flushS3 = BoolStopWatch(io.flush, io.in.fire(), startHighPriority = true) val inLatch = RegInit(0.U.asTypeOf(io.in.bits)) val validLatch = RegInit(false.B) val predecodeLatch = RegInit(0.U.asTypeOf(io.predecode.bits)) val predecodeValidLatch = RegInit(false.B) when (io.in.fire()) { inLatch := io.in.bits } when (io.flush) { validLatch := false.B }.elsewhen (io.in.fire()) { validLatch := true.B }.elsewhen (io.out.fire()) { validLatch := false.B } when (io.predecode.valid) { predecodeLatch := io.predecode.bits } when (io.flush || io.out.fire()) { predecodeValidLatch := false.B }.elsewhen (io.predecode.valid) { predecodeValidLatch := true.B } val predecodeValid = io.predecode.valid || predecodeValidLatch val predecode = Mux(io.predecode.valid, io.predecode.bits, predecodeLatch) io.out.valid := validLatch && predecodeValid && !flushS3 && !io.flush io.in.ready := !validLatch || io.out.fire() // RAS // TODO: split retAddr and ctr def rasEntry() = new Bundle { val retAddr = UInt(VAddrBits.W) val ctr = UInt(8.W) // layer of nested call functions } val ras = RegInit(VecInit(Seq.fill(RasSize)(0.U.asTypeOf(rasEntry())))) val sp = Counter(RasSize) val rasTop = ras(sp.value) val rasTopAddr = rasTop.retAddr // get the first taken branch/jal/call/jalr/ret in a fetch line // brNotTakenIdx indicates all the not-taken branches before the first jump instruction val tageHits = inLatch.tage.hits val tageTakens = inLatch.tage.takens val btbTakens = inLatch.btbPred.bits.predCtr val brs = inLatch.btb.hits & Reverse(Cat(predecode.fuOpTypes.map { t => ALUOpType.isBranch(t) }).asUInt) & predecode.mask // val brTakens = brs & inLatch.tage.takens.asUInt val brTakens = if (EnableBPD) { // If tage hits, use tage takens, otherwise keep btbpreds // brs & Reverse(Cat(inLatch.tage.takens.map {t => Fill(2, t.asUInt)}).asUInt) XSDebug("tageHits=%b, tageTakens=%b\n", tageHits, tageTakens.asUInt) brs & Reverse(Cat((0 until PredictWidth).map(i => Mux(tageHits(i), tageTakens(i), btbTakens(i)(1))))) } else { brs & Reverse(Cat(inLatch.btbPred.bits.predCtr.map {c => c(1)}).asUInt) } val jals = inLatch.btb.hits & Reverse(Cat(predecode.fuOpTypes.map { t => t === JumpOpType.jal }).asUInt) & predecode.mask val calls = inLatch.btb.hits & predecode.mask & Reverse(Cat(predecode.fuOpTypes.map { t => t === JumpOpType.call }).asUInt) val jalrs = inLatch.jbtac.hitIdx & predecode.mask & Reverse(Cat(predecode.fuOpTypes.map { t => t === JumpOpType.jalr }).asUInt) val rets = predecode.mask & Reverse(Cat(predecode.fuOpTypes.map { t => t === JumpOpType.ret }).asUInt) val brTakenIdx = PriorityMux(brTakens, (0 until PredictWidth).map(_.U)) val jalIdx = PriorityMux(jals, (0 until PredictWidth).map(_.U)) val callIdx = PriorityMux(calls, (0 until PredictWidth).map(_.U)) val jalrIdx = PriorityMux(jalrs, (0 until PredictWidth).map(_.U)) val retIdx = PriorityMux(rets, (0 until PredictWidth).map(_.U)) val jmps = (if (EnableRAS) {brTakens | jals | calls | jalrs | rets} else {brTakens | jals | calls | jalrs}) val jmpIdx = MuxCase(0.U, (0 until PredictWidth).map(i => (jmps(i), i.U))) io.s3Taken := MuxCase(false.B, (0 until PredictWidth).map(i => (jmps(i), true.B))) // val brNotTakens = VecInit((0 until PredictWidth).map(i => brs(i) && ~inLatch.tage.takens(i) && i.U <= jmpIdx && io.predecode.bits.mask(i))) val brNotTakens = if (EnableBPD) { VecInit((0 until PredictWidth).map(i => brs(i) && i.U <= jmpIdx && Mux(tageHits(i), ~tageTakens(i), ~btbTakens(i)(1)) && predecode.mask(i))) } else { VecInit((0 until PredictWidth).map(i => brs(i) && i.U <= jmpIdx && ~inLatch.btbPred.bits.predCtr(i)(1) && predecode.mask(i))) } // TODO: what if if4 and if2 late jump to the same target? // val lateJump = io.s3Taken && PriorityMux(Reverse(predecode.mask), ((PredictWidth - 1) to 0).map(_.U)) === jmpIdx && !predecode.isRVC(jmpIdx) val lateJump = io.s3Taken && PriorityMux(Reverse(predecode.mask), (0 until PredictWidth).map {i => (PredictWidth - 1 - i).U}) === jmpIdx && !predecode.isRVC(jmpIdx) io.out.bits.lateJump := lateJump io.out.bits.predCtr := inLatch.btbPred.bits.predCtr io.out.bits.btbHit := inLatch.btbPred.bits.btbHit io.out.bits.tageMeta := inLatch.btbPred.bits.tageMeta //io.out.bits.btbType := Mux(jmpIdx === retIdx, BTBtype.R, // Mux(jmpIdx === jalrIdx, BTBtype.I, // Mux(jmpIdx === brTakenIdx, BTBtype.B, BTBtype.J))) val firstHist = inLatch.btbPred.bits.hist(0) // there may be several notTaken branches before the first jump instruction, // so we need to calculate how many zeroes should each instruction shift in its global history. // each history is exclusive of instruction's own jump direction. val histShift = Wire(Vec(PredictWidth, UInt(log2Up(PredictWidth).W))) val shift = Wire(Vec(PredictWidth, Vec(PredictWidth, UInt(1.W)))) (0 until PredictWidth).foreach(i => shift(i) := Mux(!brNotTakens(i), 0.U, ~LowerMask(UIntToOH(i.U), PredictWidth)).asTypeOf(Vec(PredictWidth, UInt(1.W)))) for (j <- 0 until PredictWidth) { var tmp = 0.U for (i <- 0 until PredictWidth) { tmp = tmp + shift(i)(j) } histShift(j) := tmp } (0 until PredictWidth).foreach(i => io.out.bits.hist(i) := firstHist << histShift(i)) // save ras checkpoint info io.out.bits.rasSp := sp.value io.out.bits.rasTopCtr := rasTop.ctr // flush BPU and redirect when target differs from the target predicted in Stage1 val tToNt = inLatch.btbPred.bits.redirect && ~io.s3Taken val ntToT = ~inLatch.btbPred.bits.redirect && io.s3Taken val dirDiffers = tToNt || ntToT val tgtDiffers = inLatch.btbPred.bits.redirect && io.s3Taken && io.out.bits.target =/= inLatch.btbPred.bits.target // io.out.bits.redirect := (if (EnableBPD) {dirDiffers || tgtDiffers} else false.B) io.out.bits.redirect := dirDiffers || tgtDiffers io.out.bits.target := Mux(!io.s3Taken, inLatch.pc + (PopCount(predecode.mask) << 1.U), // TODO: RVC Mux(jmpIdx === retIdx, rasTopAddr, Mux(jmpIdx === jalrIdx, inLatch.jbtac.target, inLatch.btb.targets(jmpIdx)))) // for (i <- 0 until FetchWidth) { // io.out.bits.instrValid(i) := ((io.s3Taken && i.U <= jmpIdx) || ~io.s3Taken) && io.predecode.bits.mask(i) // } io.out.bits.instrValid := predecode.mask.asTypeOf(Vec(PredictWidth, Bool())) for (i <- PredictWidth - 1 to 0) { io.out.bits.instrValid(i) := (io.s3Taken && i.U <= jmpIdx || !io.s3Taken) && predecode.mask(i) if (i != (PredictWidth - 1)) { when (!lateJump && !predecode.isRVC(i) && io.s3Taken && i.U <= jmpIdx) { io.out.bits.instrValid(i+1) := predecode.mask(i+1) } } } io.flushBPU := io.out.bits.redirect && io.out.fire() // speculative update RAS val rasWrite = WireInit(0.U.asTypeOf(rasEntry())) val retAddr = inLatch.pc + (callIdx << 1.U) + Mux(predecode.isRVC(callIdx), 2.U, 4.U) rasWrite.retAddr := retAddr val allocNewEntry = rasWrite.retAddr =/= rasTopAddr rasWrite.ctr := Mux(allocNewEntry, 1.U, rasTop.ctr + 1.U) val rasWritePosition = Mux(allocNewEntry, sp.value + 1.U, sp.value) when (io.out.fire() && io.s3Taken) { when (jmpIdx === callIdx) { ras(rasWritePosition) := rasWrite when (allocNewEntry) { sp.value := sp.value + 1.U } }.elsewhen (jmpIdx === retIdx) { when (rasTop.ctr === 1.U) { sp.value := Mux(sp.value === 0.U, 0.U, sp.value - 1.U) }.otherwise { ras(sp.value) := Cat(rasTop.ctr - 1.U, rasTopAddr).asTypeOf(rasEntry()) } } } // use checkpoint to recover RAS val recoverSp = io.redirectInfo.redirect.rasSp val recoverCtr = io.redirectInfo.redirect.rasTopCtr when (io.redirectInfo.flush()) { sp.value := recoverSp ras(recoverSp) := Cat(recoverCtr, ras(recoverSp).retAddr).asTypeOf(rasEntry()) } // roll back global history in S1 if S3 redirects io.s1RollBackHist := Mux(io.s3Taken, io.out.bits.hist(jmpIdx), io.out.bits.hist(0) << PopCount(brs & predecode.mask & ~Reverse(Cat(inLatch.tage.takens.map {t => Fill(2, t.asUInt)}).asUInt))) // debug info XSDebug(io.in.fire(), "in:(%d %d) pc=%x\n", io.in.valid, io.in.ready, io.in.bits.pc) XSDebug(io.out.fire(), "out:(%d %d) pc=%x redirect=%d predcdMask=%b instrValid=%b tgt=%x\n", io.out.valid, io.out.ready, inLatch.pc, io.out.bits.redirect, predecode.mask, io.out.bits.instrValid.asUInt, io.out.bits.target) XSDebug("flushS3=%d\n", flushS3) XSDebug("validLatch=%d predecode.valid=%d\n", validLatch, predecodeValid) XSDebug("brs=%b brTakens=%b brNTakens=%b jals=%b jalrs=%b calls=%b rets=%b\n", brs, brTakens, brNotTakens.asUInt, jals, jalrs, calls, rets) // ?????condition is wrong // XSDebug(io.in.fire() && callIdx.orR, "[RAS]:pc=0x%x, rasWritePosition=%d, rasWriteAddr=0x%x\n", // io.in.bits.pc, rasWritePosition, retAddr) } class BPU extends XSModule { val io = IO(new Bundle() { // from backend // flush pipeline if misPred and update bpu based on redirect signals from brq val redirectInfo = Input(new RedirectInfo) val in = new Bundle { val pc = Flipped(Valid(UInt(VAddrBits.W))) } val btbOut = ValidIO(new BranchPrediction) val tageOut = Decoupled(new BranchPrediction) // predecode info from icache // TODO: simplify this after implement predecode unit val predecode = Flipped(ValidIO(new Predecode)) }) val s1 = Module(new BPUStage1) val s2 = Module(new BPUStage2) val s3 = Module(new BPUStage3) s1.io.redirectInfo <> io.redirectInfo s1.io.flush := s3.io.flushBPU || io.redirectInfo.flush() s1.io.in.pc.valid := io.in.pc.valid s1.io.in.pc.bits <> io.in.pc.bits io.btbOut <> s1.io.s1OutPred s1.io.s3RollBackHist := s3.io.s1RollBackHist s1.io.s3Taken := s3.io.s3Taken s1.io.out <> s2.io.in s2.io.flush := s3.io.flushBPU || io.redirectInfo.flush() s2.io.out <> s3.io.in s3.io.flush := io.redirectInfo.flush() s3.io.predecode <> io.predecode io.tageOut <> s3.io.out s3.io.redirectInfo <> io.redirectInfo }