/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.cache.mmu import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import utils._ import utility._ import freechips.rocketchip.formal.PropertyClass import xiangshan.backend.fu.util.HasCSRConst import scala.math.min // For Direct-map TLBs, we do not use it now class BankedAsyncDataModuleTemplateWithDup[T <: Data]( gen: T, numEntries: Int, numRead: Int, numDup: Int, numBanks: Int ) extends Module { val io = IO(new Bundle { val raddr = Vec(numRead, Input(UInt(log2Ceil(numEntries).W))) val rdata = Vec(numRead, Vec(numDup, Output(gen))) val wen = Input(Bool()) val waddr = Input(UInt(log2Ceil(numEntries).W)) val wdata = Input(gen) }) require(numBanks > 1) require(numEntries > numBanks) val numBankEntries = numEntries / numBanks def bankOffset(address: UInt): UInt = { address(log2Ceil(numBankEntries) - 1, 0) } def bankIndex(address: UInt): UInt = { address(log2Ceil(numEntries) - 1, log2Ceil(numBankEntries)) } val dataBanks = Seq.tabulate(numBanks)(i => { val bankEntries = if (i < numBanks - 1) numBankEntries else (numEntries - (i * numBankEntries)) Mem(bankEntries, gen) }) // async read, but regnext for (i <- 0 until numRead) { val data_read = Reg(Vec(numDup, Vec(numBanks, gen))) val bank_index = Reg(Vec(numDup, UInt(numBanks.W))) for (j <- 0 until numDup) { bank_index(j) := UIntToOH(bankIndex(io.raddr(i))) for (k <- 0 until numBanks) { data_read(j)(k) := Mux(io.wen && (io.waddr === io.raddr(i)), io.wdata, dataBanks(k)(bankOffset(io.raddr(i)))) } } // next cycle for (j <- 0 until numDup) { io.rdata(i)(j) := Mux1H(bank_index(j), data_read(j)) } } // write for (i <- 0 until numBanks) { when (io.wen && (bankIndex(io.waddr) === i.U)) { dataBanks(i)(bankOffset(io.waddr)) := io.wdata } } } class TLBFA( parentName: String, ports: Int, nDups: Int, nSets: Int, nWays: Int, saveLevel: Boolean = false, normalPage: Boolean, superPage: Boolean )(implicit p: Parameters) extends TlbModule with HasPerfEvents { val io = IO(new TlbStorageIO(nSets, nWays, ports, nDups)) io.r.req.map(_.ready := true.B) val v = RegInit(VecInit(Seq.fill(nWays)(false.B))) val entries = Reg(Vec(nWays, new TlbSectorEntry(normalPage, superPage))) val g = entries.map(_.perm.g) for (i <- 0 until ports) { val req = io.r.req(i) val resp = io.r.resp(i) val access = io.access(i) val vpn = req.bits.vpn val vpn_reg = RegEnable(vpn, req.fire) val hasS2xlate = req.bits.s2xlate =/= noS2xlate val OnlyS2 = req.bits.s2xlate === onlyStage2 val OnlyS1 = req.bits.s2xlate === onlyStage1 val refill_mask = Mux(io.w.valid, UIntToOH(io.w.bits.wayIdx), 0.U(nWays.W)) val hitVec = VecInit((entries.zipWithIndex).zip(v zip refill_mask.asBools).map{ case (e, m) => { val s2xlate_hit = e._1.s2xlate === req.bits.s2xlate val hit = e._1.hit(vpn, Mux(hasS2xlate, io.csr.vsatp.asid, io.csr.satp.asid), vmid = io.csr.hgatp.asid, hasS2xlate = hasS2xlate, onlyS2 = OnlyS2, onlyS1 = OnlyS1) s2xlate_hit && hit && m._1 && !m._2 } }) hitVec.suggestName("hitVec") val hitVecReg = RegEnable(hitVec, req.fire) // Sector tlb may trigger multi-hit, see def "wbhit" XSPerfAccumulate(s"port${i}_multi_hit", !(!resp.valid || (PopCount(hitVecReg) === 0.U || PopCount(hitVecReg) === 1.U))) resp.valid := GatedValidRegNext(req.valid) resp.bits.hit := Cat(hitVecReg).orR val ppnReg = RegEnable(VecInit(entries.map(_.genPPN(saveLevel, req.valid)(vpn))), req.fire) val permReg = RegEnable(VecInit(entries.map(_.perm)), req.fire) val gPermReg = RegEnable(VecInit(entries.map(_.g_perm)), req.fire) val s2xLate = RegEnable(VecInit(entries.map(_.s2xlate)), req.fire) if (nWays == 1) { for (d <- 0 until nDups) { resp.bits.ppn(d) := ppnReg(0) resp.bits.perm(d) := permReg(0) resp.bits.g_perm(d) := gPermReg(0) resp.bits.s2xlate(d) := s2xLate(0) } } else { for (d <- 0 until nDups) { resp.bits.ppn(d) := Mux1H(hitVecReg zip ppnReg) resp.bits.perm(d) := Mux1H(hitVecReg zip permReg) resp.bits.g_perm(d) := Mux1H(hitVecReg zip gPermReg) resp.bits.s2xlate(d) := Mux1H(hitVecReg zip s2xLate) } } access.sets := get_set_idx(vpn_reg(vpn_reg.getWidth - 1, sectortlbwidth), nSets) // no use access.touch_ways.valid := resp.valid && Cat(hitVecReg).orR access.touch_ways.bits := OHToUInt(hitVecReg) resp.bits.hit.suggestName("hit") resp.bits.ppn.suggestName("ppn") resp.bits.perm.suggestName("perm") resp.bits.g_perm.suggestName("g_perm") } when (io.w.valid) { v(io.w.bits.wayIdx) := true.B entries(io.w.bits.wayIdx).apply(io.w.bits.data) } // write assert, should not duplicate with the existing entries val w_hit_vec = VecInit(entries.zip(v).map{case (e, vi) => e.wbhit(io.w.bits.data, Mux(io.w.bits.data.s2xlate =/= noS2xlate, io.csr.vsatp.asid, io.csr.satp.asid), s2xlate = io.w.bits.data.s2xlate) && vi }) XSError(io.w.valid && Cat(w_hit_vec).orR, s"${parentName} refill, duplicate with existing entries") val refill_vpn_reg = RegEnable(io.w.bits.data.s1.entry.tag, io.w.valid) val refill_wayIdx_reg = RegEnable(io.w.bits.wayIdx, io.w.valid) when (GatedValidRegNext(io.w.valid)) { io.access.map { access => access.sets := get_set_idx(refill_vpn_reg, nSets) access.touch_ways.valid := true.B access.touch_ways.bits := refill_wayIdx_reg } } val sfence = io.sfence val sfence_valid = sfence.valid && !sfence.bits.hg && !sfence.bits.hv val sfence_vpn = sfence.bits.addr(VAddrBits - 1, offLen) val sfenceHit = entries.map(_.hit(sfence_vpn, sfence.bits.id, vmid = io.csr.hgatp.asid, hasS2xlate = io.csr.priv.virt)) val sfenceHit_noasid = entries.map(_.hit(sfence_vpn, sfence.bits.id, ignoreAsid = true, vmid = io.csr.hgatp.asid, hasS2xlate = io.csr.priv.virt)) // Sfence will flush all sectors of an entry when hit when (sfence_valid) { when (sfence.bits.rs1) { // virtual address *.rs1 <- (rs1===0.U) when (sfence.bits.rs2) { // asid, but i do not want to support asid, *.rs2 <- (rs2===0.U) // all addr and all asid v.zipWithIndex.map{ case(a, i) => a := a && !((io.csr.priv.virt === false.B && entries(i).s2xlate === noS2xlate) || (io.csr.priv.virt && entries(i).s2xlate =/= noS2xlate && entries(i).vmid === io.csr.hgatp.asid))} }.otherwise { // all addr but specific asid v.zipWithIndex.map{ case (a, i) => a := a && !(!g(i) && ((!io.csr.priv.virt && entries(i).s2xlate === noS2xlate && entries(i).asid === sfence.bits.id) || (io.csr.priv.virt && entries(i).s2xlate =/= noS2xlate && entries(i).asid === sfence.bits.id && entries(i).vmid === io.csr.hgatp.asid)))} } }.otherwise { when (sfence.bits.rs2) { // specific addr but all asid v.zipWithIndex.map{ case (a, i) => a := a & !sfenceHit_noasid(i) } }.otherwise { // specific addr and specific asid v.zipWithIndex.map{ case (a, i) => a := a & !(sfenceHit(i) && !g(i)) } } } } val hfencev_valid = sfence.valid && sfence.bits.hv val hfenceg_valid = sfence.valid && sfence.bits.hg val hfencev = io.sfence val hfencev_vpn = sfence_vpn val hfencevHit = entries.map(_.hit(hfencev_vpn, hfencev.bits.id, vmid = io.csr.hgatp.asid, hasS2xlate = true.B)) val hfencevHit_noasid = entries.map(_.hit(hfencev_vpn, 0.U, ignoreAsid = true, vmid = io.csr.hgatp.asid, hasS2xlate = true.B)) when (hfencev_valid) { when (hfencev.bits.rs1) { when (hfencev.bits.rs2) { v.zipWithIndex.map { case (a, i) => a := a && !(entries(i).s2xlate =/= noS2xlate && entries(i).vmid === io.csr.hgatp.asid)} }.otherwise { v.zipWithIndex.map { case (a, i) => a := a && !(!g(i) && (entries(i).s2xlate =/= noS2xlate && entries(i).asid === sfence.bits.id && entries(i).vmid === io.csr.hgatp.asid)) } } }.otherwise { when (hfencev.bits.rs2) { v.zipWithIndex.map{ case (a, i) => a := a && !hfencevHit_noasid(i) } }.otherwise { v.zipWithIndex.map{ case (a, i) => a := a && !(hfencevHit(i) && !g(i)) } } } } val hfenceg = io.sfence val hfenceg_gvpn = (sfence.bits.addr << 2)(VAddrBits - 1, offLen) when (hfenceg_valid) { when(hfenceg.bits.rs2) { v.zipWithIndex.map { case (a, i) => a := a && !(entries(i).s2xlate =/= noS2xlate) } }.otherwise { v.zipWithIndex.map { case (a, i) => a := a && !(entries(i).s2xlate =/= noS2xlate && entries(i).vmid === sfence.bits.id) } } } XSPerfAccumulate(s"access", io.r.resp.map(_.valid.asUInt).fold(0.U)(_ + _)) XSPerfAccumulate(s"hit", io.r.resp.map(a => a.valid && a.bits.hit).fold(0.U)(_.asUInt + _.asUInt)) for (i <- 0 until nWays) { XSPerfAccumulate(s"access${i}", io.r.resp.zip(io.access.map(acc => UIntToOH(acc.touch_ways.bits))).map{ case (a, b) => a.valid && a.bits.hit && b(i)}.fold(0.U)(_.asUInt + _.asUInt)) } for (i <- 0 until nWays) { XSPerfAccumulate(s"refill${i}", io.w.valid && io.w.bits.wayIdx === i.U) } val perfEvents = Seq( ("tlbstore_access", io.r.resp.map(_.valid.asUInt).fold(0.U)(_ + _) ), ("tlbstore_hit ", io.r.resp.map(a => a.valid && a.bits.hit).fold(0.U)(_.asUInt + _.asUInt)), ) generatePerfEvent() println(s"${parentName} tlb_fa: nSets${nSets} nWays:${nWays}") } class TLBFakeFA( ports: Int, nDups: Int, nSets: Int, nWays: Int, useDmode: Boolean = false )(implicit p: Parameters) extends TlbModule with HasCSRConst{ val io = IO(new TlbStorageIO(nSets, nWays, ports, nDups)) io.r.req.map(_.ready := true.B) val mode = if (useDmode) io.csr.priv.dmode else io.csr.priv.imode val vmEnable = if (EnbaleTlbDebug) (io.csr.satp.mode === 8.U) else (io.csr.satp.mode === 8.U && (mode < ModeM)) for (i <- 0 until ports) { val req = io.r.req(i) val resp = io.r.resp(i) val helper = Module(new PTEHelper()) helper.clock := clock helper.satp := io.csr.satp.ppn helper.enable := req.fire && vmEnable helper.vpn := req.bits.vpn val pte = helper.pte.asTypeOf(new PteBundle) val ppn = pte.ppn val vpn_reg = RegEnable(req.bits.vpn, req.valid) val pf = helper.pf val level = helper.level resp.valid := GatedValidRegNext(req.valid) resp.bits.hit := true.B for (d <- 0 until nDups) { resp.bits.perm(d).pf := pf resp.bits.perm(d).af := false.B resp.bits.perm(d).d := pte.perm.d resp.bits.perm(d).a := pte.perm.a resp.bits.perm(d).g := pte.perm.g resp.bits.perm(d).u := pte.perm.u resp.bits.perm(d).x := pte.perm.x resp.bits.perm(d).w := pte.perm.w resp.bits.perm(d).r := pte.perm.r resp.bits.ppn(d) := MuxLookup(level, 0.U)(Seq( 0.U -> Cat(ppn(ppn.getWidth-1, vpnnLen*2), vpn_reg(vpnnLen*2-1, 0)), 1.U -> Cat(ppn(ppn.getWidth-1, vpnnLen), vpn_reg(vpnnLen-1, 0)), 2.U -> ppn) ) } } io.access := DontCare } object TlbStorage { def apply ( parentName: String, associative: String, ports: Int, nDups: Int = 1, nSets: Int, nWays: Int, saveLevel: Boolean = false, normalPage: Boolean, superPage: Boolean, useDmode: Boolean, SoftTLB: Boolean )(implicit p: Parameters) = { if (SoftTLB) { val storage = Module(new TLBFakeFA(ports, nDups, nSets, nWays, useDmode)) storage.suggestName(s"${parentName}_fake_fa") storage.io } else { val storage = Module(new TLBFA(parentName, ports, nDups, nSets, nWays, saveLevel, normalPage, superPage)) storage.suggestName(s"${parentName}_fa") storage.io } } } class TlbStorageWrapper(ports: Int, q: TLBParameters, nDups: Int = 1)(implicit p: Parameters) extends TlbModule { val io = IO(new TlbStorageWrapperIO(ports, q, nDups)) val page = TlbStorage( parentName = q.name + "_storage", associative = q.Associative, ports = ports, nDups = nDups, nSets = q.NSets, nWays = q.NWays, normalPage = true, superPage = true, useDmode = q.useDmode, SoftTLB = coreParams.softTLB ) for (i <- 0 until ports) { page.r_req_apply( valid = io.r.req(i).valid, vpn = io.r.req(i).bits.vpn, i = i, s2xlate = io.r.req(i).bits.s2xlate ) } for (i <- 0 until ports) { val q = page.r.req(i) val p = page.r.resp(i) val rq = io.r.req(i) val rp = io.r.resp(i) rq.ready := q.ready // actually, not used rp.valid := p.valid // actually, not used rp.bits.hit := p.bits.hit for (d <- 0 until nDups) { rp.bits.ppn(d) := p.bits.ppn(d) rp.bits.perm(d).pf := p.bits.perm(d).pf rp.bits.perm(d).af := p.bits.perm(d).af rp.bits.perm(d).d := p.bits.perm(d).d rp.bits.perm(d).a := p.bits.perm(d).a rp.bits.perm(d).g := p.bits.perm(d).g rp.bits.perm(d).u := p.bits.perm(d).u rp.bits.perm(d).x := p.bits.perm(d).x rp.bits.perm(d).w := p.bits.perm(d).w rp.bits.perm(d).r := p.bits.perm(d).r rp.bits.s2xlate(d) := p.bits.s2xlate(d) rp.bits.g_perm(d) := p.bits.g_perm(d) } } page.sfence <> io.sfence page.csr <> io.csr val refill_idx = if (q.outReplace) { io.replace.page.access <> page.access io.replace.page.chosen_set := DontCare io.replace.page.refillIdx } else { val re = ReplacementPolicy.fromString(q.Replacer, q.NWays) re.access(page.access.map(_.touch_ways)) re.way } page.w_apply( valid = io.w.valid, wayIdx = refill_idx, data = io.w.bits.data ) // replacement def get_access(one_hot: UInt, valid: Bool): Valid[UInt] = { val res = Wire(Valid(UInt(log2Up(one_hot.getWidth).W))) res.valid := Cat(one_hot).orR && valid res.bits := OHToUInt(one_hot) res } }