/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.cache.mmu import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import difftest._ import freechips.rocketchip.util.SRAMAnnotation import xiangshan._ import utils._ import utility._ import xiangshan.backend.fu.{PMPChecker, PMPReqBundle, PMPConfig => XSPMPConfig} import xiangshan.backend.rob.RobPtr import xiangshan.backend.fu.util.HasCSRConst import freechips.rocketchip.rocket.PMPConfig /** TLB module * support block request and non-block request io at the same time * return paddr at next cycle, then go for pmp/pma check * @param Width: The number of requestors * @param Block: Blocked or not for each requestor ports * @param q: TLB Parameters, like entry number, each TLB has its own parameters * @param p: XiangShan Paramemters, like XLEN */ class TLB(Width: Int, nRespDups: Int = 1, Block: Seq[Boolean], q: TLBParameters)(implicit p: Parameters) extends TlbModule with HasCSRConst with HasPerfEvents { val io = IO(new TlbIO(Width, nRespDups, q)) val req = io.requestor.map(_.req) val resp = io.requestor.map(_.resp) val ptw = io.ptw val pmp = io.pmp val refill_to_mem = io.refill_to_mem /** Sfence.vma & Svinval * Sfence.vma will 1. flush old entries 2. flush inflight 3. flush pipe * Svinval will 1. flush old entries 2. flush inflight * So, Svinval will not flush pipe, which means * it should not drop reqs from pipe and should return right resp */ val sfence = DelayN(io.sfence, q.fenceDelay) val csr = io.csr val satp = DelayN(io.csr.satp, q.fenceDelay) val vsatp = DelayN(io.csr.vsatp, q.fenceDelay) val hgatp = DelayN(io.csr.hgatp, q.fenceDelay) val isHyperInst = (0 until Width).map(i => ValidHold(req(i).fire && !req(i).bits.kill && req(i).bits.hyperinst, resp(i).fire, flush_pipe(i))) val isHlvx = (0 until Width).map(i => ValidHold(req(i).fire && !req(i).bits.kill && req(i).bits.hlvx, resp(i).fire, flush_pipe(i))) val onlyS2xlate = vsatp.mode === 0.U && hgatp.mode === 8.U val flush_mmu = DelayN(sfence.valid || csr.satp.changed || csr.vsatp.changed || csr.hgatp.changed, q.fenceDelay) val mmu_flush_pipe = DelayN(sfence.valid && sfence.bits.flushPipe, q.fenceDelay) // for svinval, won't flush pipe val flush_pipe = io.flushPipe // ATTENTION: csr and flush from backend are delayed. csr should not be later than flush. // because, csr will influence tlb behavior. val ifecth = if (q.fetchi) true.B else false.B val mode_tmp = if (q.useDmode) csr.priv.dmode else csr.priv.imode val mode = (0 until Width).map(i => Mux(isHyperInst(i), csr.priv.spvp, mode_tmp)) val virt = csr.priv.virt val sum = (0 until Width).map(i => Mux(virt || isHyperInst(i), io.csr.priv.vsum, io.csr.priv.sum)) val mxr = (0 until Width).map(i => Mux(virt || isHyperInst(i), io.csr.priv.vmxr || io.csr.priv.mxr, io.csr.priv.mxr)) // val vmEnable = satp.mode === 8.U // && (mode < ModeM) // FIXME: fix me when boot xv6/linux... val vmEnable = (0 until Width).map(i => if (EnbaleTlbDebug) (satp.mode === 8.U) else (satp.mode === 8.U) && (mode(i) < ModeM)) val s2xlateEnable = (0 until Width).map(i => (isHyperInst(i) || virt) && (vsatp.mode === 8.U || hgatp.mode === 8.U) && (mode(i) < ModeM)) val portTranslateEnable = (0 until Width).map(i => (vmEnable(i) || s2xlateEnable(i)) && RegNext(!req(i).bits.no_translate)) val req_in = req val req_out = req.map(a => RegEnable(a.bits, a.fire)) val req_out_v = (0 until Width).map(i => ValidHold(req_in(i).fire && !req_in(i).bits.kill, resp(i).fire, flush_pipe(i))) val refill = (0 until Width).map(i => ptw.resp.fire && !flush_mmu && (vmEnable(i) || ptw.resp.bits.s2xlate(0)) val entries = Module(new TlbStorageWrapper(Width, q, nRespDups)) entries.io.base_connect(sfence, csr, satp) if (q.outReplace) { io.replace <> entries.io.replace } for (i <- 0 until Width) { val s2xlate = Wire(UInt(2.W)) s2xlate(0) := virt || req_in(i).bits.hyperinst s2xlate(1) := s2xlate(0) && vsatp.mode === 0.U && hgatp.mode === 8.U entries.io.r_req_apply(io.requestor(i).req.valid, get_pn(req_in(i).bits.vaddr), i, s2xlate) entries.io.w_apply(refill, ptw.resp.bits) resp(i).bits.debug.isFirstIssue := RegNext(req(i).bits.debug.isFirstIssue) resp(i).bits.debug.robIdx := RegNext(req(i).bits.debug.robIdx) } // read TLB, get hit/miss, paddr, perm bits val readResult = (0 until Width).map(TLBRead(_)) val hitVec = readResult.map(_._1) val missVec = readResult.map(_._2) val pmp_addr = readResult.map(_._3) val perm = readResult.map(_._4) val g_perm = readResult.map(_._7) val s2xlate = readResult.map(_._8) // check pmp use paddr (for timing optization, use pmp_addr here) // check permisson (0 until Width).foreach{i => pmp_check(pmp_addr(i), req_out(i).size, req_out(i).cmd, i) for (d <- 0 until nRespDups) { perm_check(perm(i)(d), req_out(i).cmd, i, d, g_perm(i)(d), req_out(i).hlvx, s2xlate(i)) } } // handle block or non-block io // for non-block io, just return the above result, send miss to ptw // for block io, hold the request, send miss to ptw, // when ptw back, return the result (0 until Width) foreach {i => if (Block(i)) handle_block(i) else handle_nonblock(i) } io.ptw.resp.ready := true.B /************************ main body above | method/log/perf below ****************************/ def TLBRead(i: Int) = { val s2xlate = Wire(UInt(2.W)) s2xlate(0) := virt || req_in(i).bits.hyperinst s2xlate(1) := s2xlate(0) && vsatp.mode === 0.U && hgatp.mode === 8.U val (e_hit, e_ppn, e_perm, e_gvpn, e_g_perm, e_s2xlate) = entries.io.r_resp_apply(i) val (p_hit, p_ppn, p_perm, p_gvpn, p_g_perm, p_s2xlate) = ptw_resp_bypass(get_pn(req_in(i).bits.vaddr), s2xlate) val enable = portTranslateEnable(i) val hit = e_hit || p_hit val miss = !hit && enable hit.suggestName(s"hit_read_${i}") miss.suggestName(s"miss_read_${i}") val vaddr = SignExt(req_out(i).vaddr, PAddrBits) resp(i).bits.miss := miss resp(i).bits.ptwBack := ptw.resp.fire resp(i).bits.memidx := RegNext(req_in(i).bits.memidx) val ppn = WireInit(VecInit(Seq.fill(nRespDups)(0.U(ppnLen.W)))) val perm = WireInit(VecInit(Seq.fill(nRespDups)(0.U.asTypeOf(new TlbPermBundle)))) val gvpn = WireInit(VecInit(Seq.fill(nRespDups)(0.U(gvpnLen.W)))) val g_perm = WireInit(VecInit(Seq.fill(nRespDups)(0.U.asTypeOf(new TlbPermBundle)))) for (d <- 0 until nRespDups) { ppn(d) := Mux(p_hit, p_ppn, e_ppn(d)) perm(d) := Mux(p_hit, p_perm, e_perm(d)) gvpn(d) := Mux(p_hit, p_gvpn, e_gvpn(d)) g_perm(d) := Mux(p_hit, p_g_perm, e_g_perm(d)) s2xlate(d) := Mux(p_hit, p_s2xlate, e_s2xlate(d)) val paddr = Cat(ppn(d), get_off(req_out(i).vaddr)) val gpaddr = Cat(gvpn(d), get_off(req_out(i).vaddr)) resp(i).bits.paddr(d) := Mux(enable, paddr, vaddr) resp(i).bits.gpaddr(d) := gpaddr } XSDebug(req_out_v(i), p"(${i.U}) hit:${hit} miss:${miss} ppn:${Hexadecimal(ppn(0))} perm:${perm(0)}\n") val pmp_paddr = resp(i).bits.paddr(0) (hit, miss, pmp_paddr, perm, g_perm, s2xlate) } def pmp_check(addr: UInt, size: UInt, cmd: UInt, idx: Int): Unit = { pmp(idx).valid := resp(idx).valid pmp(idx).bits.addr := addr pmp(idx).bits.size := size pmp(idx).bits.cmd := cmd } def perm_check(perm: TlbPermBundle, cmd: UInt, idx: Int, nDups: Int, g_perm: TlbPermBundle, hlvx: Bool, s2xlate: UInt) = { // for timing optimization, pmp check is divided into dynamic and static // dynamic: superpage (or full-connected reg entries) -> check pmp when translation done // static: 4K pages (or sram entries) -> check pmp with pre-checked results val hasS2xlate = s2xlate(0) === 1.U val onlyS2 = s2xlate === 11.U val af = perm.af || (hasS2xlate && g_perm.af) // Stage 1 perm check val pf = perm.pf val ldUpdate = !perm.a && TlbCmd.isRead(cmd) && !TlbCmd.isAmo(cmd) // update A/D through exception val stUpdate = (!perm.a || !perm.d) && (TlbCmd.isWrite(cmd) || TlbCmd.isAmo(cmd)) // update A/D through exception val instrUpdate = !perm.a && TlbCmd.isExec(cmd) // update A/D through exception val modeCheck = !(mode(idx) === ModeU && !perm.u || mode(idx) === ModeS && perm.u && (!sum(idx) || ifecth)) val ldPermFail = !(modeCheck && (perm.r || mxr(idx) && perm.x)) val stPermFail = !(modeCheck && perm.w) val instrPermFail = !(modeCheck && perm.x) val ldPf = (ldPermFail || pf) && (TlbCmd.isRead(cmd) && !TlbCmd.isAmo(cmd)) val stPf = (stPermFail || pf) && (TlbCmd.isWrite(cmd) || TlbCmd.isAmo(cmd)) val instrPf = (instrPermFail || pf) && TlbCmd.isExec(cmd) val s1_valid = portTranslateEnable(idx) && !onlyS2 // Stage 2 perm check val gpf = g_perm.pf val g_ldUpdate = !g_perm.a && TlbCmd.isRead(cmd) && !TlbCmd.isAmo(cmd) val g_stUpdate = (!g_perm.a || !g_perm.d) && (TlbCmd.isWrite(cmd) || TlbCmd.isAmo(cmd)) val g_instrUpdate = !g_perm.a && TlbCmd.isExec(cmd) val g_ldPermFail = !(g_perm.r || io.csr.priv.mxr && g_perm.x) val g_stPermFail = !g_perm.w val g_instrPermFail = !g_perm.x val ldGpf = (g_ldPermFail || gpf) && (TlbCmd.isRead(cmd) && !TlbCmd.isAmo(cmd)) val stGpf = (g_stPermFail || gpf) && (TlbCmd.isWrite(cmd) || TlbCmd.isAmo(cmd)) val instrGpf = (g_instrPermFail || gpf) && TlbCmd.isExec(cmd) val s2_valid = hasS2xlate val fault_valid = s1_valid || s2_valid resp(idx).bits.excp(nDups).pf.ld := (ldPf || ldUpdate) && s1_valid && !af resp(idx).bits.excp(nDups).pf.st := (stPf || stUpdate) && s1_valid && !af resp(idx).bits.excp(nDups).pf.instr := (instrPf || instrUpdate) && s1_valid && !af // NOTE: pf need && with !af, page fault has higher priority than access fault // but ptw may also have access fault, then af happens, the translation is wrong. // In this case, pf has lower priority than af resp(idx).bits.excp(nDups).gpf.ld := (ldGpf || g_ldUpdate) && s2_valid && !af resp(idx).bits.excp(nDups).gpf.st := (stGpf || g_stUpdate) && s2_valid && !af resp(idx).bits.excp(nDups).gpf.instr := (instrGpf || g_instrUpdate) && s2_valid && !af resp(idx).bits.excp(nDups).af.ld := af && TlbCmd.isRead(cmd) && fault_valid resp(idx).bits.excp(nDups).af.st := af && TlbCmd.isWrite(cmd) && fault_valid resp(idx).bits.excp(nDups).af.instr := af && TlbCmd.isExec(cmd) && fault_valid } def handle_nonblock(idx: Int): Unit = { io.requestor(idx).resp.valid := req_out_v(idx) io.requestor(idx).req.ready := io.requestor(idx).resp.ready // should always be true XSError(!io.requestor(idx).resp.ready, s"${q.name} port ${idx} is non-block, resp.ready must be true.B") val req_s2xlate = Wire(UInt(2.W)) req_s2xlate(0) := virt || req_out(idx).hyperinst req_s2xlate(1) := req_s2xlate(0) && vsatp.mode === 0.U && hgatp.mode === 8.U val ptw_s2xlate = ptw.resp.bits.s2xlate val onlyS2 = ptw_s2xlate === 11.U val ptw_s1_hit = ptw.resp.bits.s1.hit(get_pn(req_out(idx).vaddr), Mux(ptw_s2xlate(0), io.csr.vsatp.asid, io.csr.satp.asid), io.csr.hgatp.asid, true, false, ptw_s2xlate(0)) val ptw_s2_hit = ptw.resp.bits.s2.hit(get_pn(req_out(idx).vaddr), io.csr.hgatp.asid) val ptw_just_back = ptw.resp.fire && req_s2xlate === ptw_s2xlate&& Mux(onlyS2, ptw_s2_hit, ptw_s1_hit) val ptw_already_back = RegNext(ptw.resp.fire) && RegNext(ptw.resp.bits).hit(get_pn(req_out(idx).vaddr), asid = io.csr.satp.asid, allType = true) io.ptw.req(idx).valid := req_out_v(idx) && missVec(idx) && !(ptw_just_back || ptw_already_back) // TODO: remove the regnext, timing io.tlbreplay(idx) := req_out_v(idx) && missVec(idx) && (ptw_just_back || ptw_already_back) when (io.requestor(idx).req_kill && RegNext(io.requestor(idx).req.fire)) { io.ptw.req(idx).valid := false.B io.tlbreplay(idx) := true.B } io.ptw.req(idx).bits.vpn := get_pn(req_out(idx).vaddr) io.ptw.req(idx).bits.gvpn := RegNext(get_pn(req_out(idx).vaddr)) // for only stage two translation, longer than vpn io.ptw.req(idx).bits.s2xlate := RegNext(req_s2xlate) io.ptw.req(idx).bits.memidx := req_out(idx).memidx } def handle_block(idx: Int): Unit = { // three valid: 1.if exist a entry; 2.if sent to ptw; 3.unset resp.valid io.requestor(idx).req.ready := !req_out_v(idx) || io.requestor(idx).resp.fire // req_out_v for if there is a request, may long latency, fixme // miss request entries val miss_req_vpn = get_pn(req_out(idx).vaddr) val miss_req_gvpn = get_pn(req_out(idx).vaddr) val miss_req_memidx = req_out(idx).memidx val miss_req_s2xlate = Wire(UInt(2.W)) miss_req_s2xlate(0) := virt || req_out(idx).hyperinst miss_req_s2xlate(1) := miss_req_s2xlate(0) && vsatp.mode === 0.U && hgatp.mode === 8.U val onlyS2 = miss_req_s2xlate === 11.U val hit_s1 = io.ptw.resp.bits.s1.hit(miss_req_vpn, Mux(miss_req_s2xlate(0), io.csr.vsatp.asid, io.csr.satp.asid), io.csr.hgatp.asid, allType = true, false, miss_req_s2xlate(0)) val hit_s2 = io.ptw.resp.bits.s2.hit(miss_req_vpn, io.csr.hgatp.asid) val hit = Mux(onlyS2, hit_s2, hit_s1) && io.ptw.resp.valid && miss_req_s2xlate === io.ptw.resp.bits.s2xlate val new_coming = RegNext(req_in(idx).fire && !req_in(idx).bits.kill && !flush_pipe(idx), false.B) val miss_wire = new_coming && missVec(idx) val miss_v = ValidHoldBypass(miss_wire, resp(idx).fire, flush_pipe(idx)) val miss_req_v = ValidHoldBypass(miss_wire || (miss_v && flush_mmu && !mmu_flush_pipe), io.ptw.req(idx).fire || resp(idx).fire, flush_pipe(idx)) // when ptw resp, check if hit, reset miss_v, resp to lsu/ifu resp(idx).valid := req_out_v(idx) && !(miss_v && portTranslateEnable(idx)) when (io.ptw.resp.fire && hit && req_out_v(idx) && portTranslateEnable(idx)) { val stage1 = io.ptw.resp.bits.s1 val stage2 = io.ptw.resp.bits.s2 val s2xlate = io.ptw.resp.bits.s2xlate resp(idx).valid := true.B resp(idx).bits.miss := false.B // for blocked tlb, this is useless val s1_paddr = Cat(stage1.genPPN(get_pn(req_out(idx).vaddr)), get_off(req_out(idx).vaddr)) val s2_paddr = Cat(stage2.genPPNS2() for (d <- 0 until nRespDups) { resp(idx).bits.paddr(d) := Mux(s2xlate(0), s2_paddr, s1_paddr) resp(idx).bits.gpaddr(d) := s1_paddr perm_check(stage1.entry.perm.get(), req_out(idx).cmd, idx, d, stage2.entry.perm, req_out(idx).hlvx, s2xlate(0)) } pmp_check(resp(idx).bits.paddr(0), req_out(idx).size, req_out(idx).cmd, idx) // NOTE: the unfiltered req would be handled by Repeater } assert(RegNext(!resp(idx).valid || resp(idx).ready, true.B), "when tlb resp valid, ready should be true, must") assert(RegNext(req_out_v(idx) || !(miss_v || miss_req_v), true.B), "when not req_out_v, should not set miss_v/miss_req_v") val ptw_req = io.ptw.req(idx) ptw_req.valid := miss_req_v ptw_req.bits.vpn := miss_req_vpn ptw_req.bits.gvpn := miss_req_gvpn ptw_req.bits.s2xlate := miss_req_s2xlate ptw_req.bits.memidx := miss_req_memidx io.tlbreplay(idx) := false.B // NOTE: when flush pipe, tlb should abandon last req // however, some outside modules like icache, dont care flushPipe, and still waiting for tlb resp // just resp valid and raise page fault to go through. The pipe(ifu) will abandon it. if (!q.outsideRecvFlush) { when (req_out_v(idx) && flush_pipe(idx) && portTranslateEnable(idx)) { resp(idx).valid := true.B for (d <- 0 until nRespDups) { resp(idx).bits.excp(d).pf.ld := true.B // sfence happened, pf for not to use this addr resp(idx).bits.excp(d).pf.st := true.B resp(idx).bits.excp(d).pf.instr := true.B } } } } // when ptw resp, tlb at refill_idx maybe set to miss by force. // Bypass ptw resp to check. def ptw_resp_bypass(vpn: UInt, s2xlate: UInt) = { val hasS2xlate = s2xlate(0) === 1.U val onlyS2 = s2xlate(1) === 1.U && hasS2xlate val s2xlate_hit = s2xlate === ptw.resp.bits.s2xlate val normal_hit = ptw.resp.bits.s1.hit(vpn, Mux(hasS2xlate, io.csr.vsatp.asid, io.csr.satp.asid), io.csr.hgatp.asid, true, false, hasS2xlate) val onlyS2_hit = ptw.resp.bits.s2.hit(vpn, io.csr.hgatp.asid) val p_hit = RegNext(Mux(onlyS2, onlyS2_hit, normal_hit) && io.ptw.resp.fire && s2xlate_hit) val ppn_s1 = ptw.resp.bits.s1.genPPN(vpn) val ppn_s2 = ptw.resp.bits.s2.genPPNS2() val p_ppn = RegEnable(Mux(hasS2xlate, ppn_s2, ppn_s1), io.ptw.resp.fire) val p_perm = RegEnable(ptwresp_to_tlbperm(ptw.resp.bits.s1), io.ptw.resp.fire) val p_gvpn = RegEnable(ptw.resp.bits.s2.entry.tag, io.ptw.resp.fire) val p_g_perm = RegEnable(hptwresp_to_tlbperm(ptw.resp.bits.s2), io.ptw.resp.fire) val p_s2xlate = RegEnable(ptw.resp.bits.s2xlate, io.ptw.resp.fire) (p_hit, p_ppn, p_perm, p_gvpn, p_g_perm, p_s2xlate) } // assert for(i <- 0 until Width) { TimeOutAssert(req_out_v(i) && !resp(i).valid, timeOutThreshold, s"{q.name} port{i} long time no resp valid.") } // perf event val result_ok = req_in.map(a => RegNext(a.fire)) val perfEvents = Seq( ("access", PopCount((0 until Width).map{i => if (Block(i)) io.requestor(i).req.fire else portTranslateEnable(i) && result_ok(i) })), ("miss ", PopCount((0 until Width).map{i => if (Block(i)) portTranslateEnable(i) && result_ok(i) && missVec(i) else ptw.req(i).fire })), ) generatePerfEvent() // perf log for (i <- 0 until Width) { if (Block(i)) { XSPerfAccumulate(s"access${i}",result_ok(i) && portTranslateEnable(i)) XSPerfAccumulate(s"miss${i}", result_ok(i) && missVec(i)) } else { XSPerfAccumulate("first_access" + Integer.toString(i, 10), result_ok(i) && portTranslateEnable(i) && RegNext(req(i).bits.debug.isFirstIssue)) XSPerfAccumulate("access" + Integer.toString(i, 10), result_ok(i) && portTranslateEnable(i)) XSPerfAccumulate("first_miss" + Integer.toString(i, 10), result_ok(i) && portTranslateEnable(i) && missVec(i) && RegNext(req(i).bits.debug.isFirstIssue)) XSPerfAccumulate("miss" + Integer.toString(i, 10), result_ok(i) && portTranslateEnable(i) && missVec(i)) } } XSPerfAccumulate("ptw_resp_count", ptw.resp.fire) XSPerfAccumulate("ptw_resp_pf_count", ptw.resp.fire && ptw.resp.bits.pf) // Log for(i <- 0 until Width) { XSDebug(req(i).valid, p"req(${i.U}): (${req(i).valid} ${req(i).ready}) ${req(i).bits}\n") XSDebug(resp(i).valid, p"resp(${i.U}): (${resp(i).valid} ${resp(i).ready}) ${resp(i).bits}\n") } XSDebug(io.sfence.valid, p"Sfence: ${io.sfence}\n") XSDebug(ParallelOR(req_out_v) || ptw.resp.valid, p"vmEnable:${vmEnable} hit:${Binary(VecInit(hitVec).asUInt)} miss:${Binary(VecInit(missVec).asUInt)}\n") for (i <- ptw.req.indices) { XSDebug(ptw.req(i).fire, p"L2TLB req:${ptw.req(i).bits}\n") } XSDebug(ptw.resp.valid, p"L2TLB resp:${ptw.resp.bits} (v:${ptw.resp.valid}r:${ptw.resp.ready}) \n") println(s"${q.name}: page: ${q.NWays} ${q.Associative} ${q.Replacer.get}") if (env.EnableDifftest) { for (i <- 0 until Width) { val pf = io.requestor(i).resp.bits.excp(0).pf.instr || io.requestor(i).resp.bits.excp(0).pf.st || io.requestor(i).resp.bits.excp(0).pf.ld val gpf = io.requestor(i).resp.bits.excp(0).gpf.instr || io.requestor(i).resp.bits.excp(0).gpf.st || io.requestor(i).resp.bits.excp(0).gpf.ld val af = io.requestor(i).resp.bits.excp(0).af.instr || io.requestor(i).resp.bits.excp(0).af.st || io.requestor(i).resp.bits.excp(0).af.ld val difftest = DifftestModule(new DiffL1TLBEvent) difftest.coreid := io.hartId difftest.valid := RegNext(io.requestor(i).req.fire) && !io.requestor(i).req_kill && io.requestor(i).resp.fire && !io.requestor(i).resp.bits.miss && !pf && !af && !gpf && portTranslateEnable(i) if (!Seq("itlb", "ldtlb", "sttlb").contains(q.name)) { difftest.valid := false.B } difftest.index := TLBDiffId(p(XSCoreParamsKey).HartId).U difftest.satp := io.csr.satp difftest.vpn := RegNext(get_pn(req_in(i).bits.vaddr)) difftest.ppn := get_pn(io.requestor(i).resp.bits.paddr(0)) difftest.io.vsatp := io.csr.vsatp difftest.io.hgatp := io.csr.hgatp val s2xlate = Wire(UInt(2.W)) s2xlate(0) := virt || req_in(i).bits.hyperinst s2xlate(1) := s2xlate(0) && io.csr.vsatp.mode === 0.U && io.csr.hgatp.mode === 8.U difftest.io.s2xlate := s2xlate } } } object TLBDiffId { var i: Int = 0 var lastHartId: Int = -1 def apply(hartId: Int): Int = { if (lastHartId != hartId) { i = 0 lastHartId = hartId } i += 1 i - 1 } } class TLBNonBlock(Width: Int, nRespDups: Int = 1, q: TLBParameters)(implicit p: Parameters) extends TLB(Width, nRespDups, Seq.fill(Width)(false), q) class TLBBLock(Width: Int, nRespDups: Int = 1, q: TLBParameters)(implicit p: Parameters) extends TLB(Width, nRespDups, Seq.fill(Width)(true), q) class TlbReplace(Width: Int, q: TLBParameters)(implicit p: Parameters) extends TlbModule { val io = IO(new TlbReplaceIO(Width, q)) if (q.Associative == "fa") { val re = ReplacementPolicy.fromString(q.Replacer, q.NWays) re.access(io.page.access.map(_.touch_ways)) io.page.refillIdx := re.way } else { // set-acco && plru val re = ReplacementPolicy.fromString(q.Replacer, q.NSets, q.NWays) re.access(io.page.access.map(_.sets), io.page.access.map(_.touch_ways)) io.page.refillIdx := { if (q.NWays == 1) 0.U else re.way(io.page.chosen_set) } } }