/*************************************************************************************** * Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) * Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.cache.mmu import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import xiangshan._ import xiangshan.cache.{HasDCacheParameters, MemoryOpConstants} import utils._ import utility._ import coupledL2.utils.SplittedSRAM import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} import freechips.rocketchip.tilelink._ /* ptw cache caches the page table of all the three layers * ptw cache resp at next cycle * the cache should not be blocked * when miss queue if full, just block req outside */ class PageCachePerPespBundle(implicit p: Parameters) extends PtwBundle { val hit = Bool() val pre = Bool() val ppn = UInt(gvpnLen.W) val pbmt = UInt(ptePbmtLen.W) val perm = new PtePermBundle() val n = UInt(pteNLen.W) val ecc = Bool() val level = UInt(2.W) val v = Bool() def apply(hit: Bool, pre: Bool, ppn: UInt, pbmt: UInt = 0.U, n: UInt = 0.U, perm: PtePermBundle = 0.U.asTypeOf(new PtePermBundle()), ecc: Bool = false.B, level: UInt = 0.U, valid: Bool = true.B): Unit = { this.hit := hit && !ecc this.pre := pre this.ppn := ppn this.n := n this.pbmt := pbmt this.perm := perm this.ecc := ecc && hit this.level := level this.v := valid } } class PageCacheMergePespBundle(implicit p: Parameters) extends PtwBundle { assert(tlbcontiguous == 8, "Only support tlbcontiguous = 8!") val hit = Bool() val pre = Bool() val ppn = Vec(tlbcontiguous, UInt(gvpnLen.W)) val pbmt = Vec(tlbcontiguous, UInt(ptePbmtLen.W)) val perm = Vec(tlbcontiguous, new PtePermBundle()) val ecc = Bool() val level = UInt(2.W) val v = Vec(tlbcontiguous, Bool()) def apply(hit: Bool, pre: Bool, ppn: Vec[UInt], pbmt: Vec[UInt] = Vec(tlbcontiguous, 0.U), perm: Vec[PtePermBundle] = Vec(tlbcontiguous, 0.U.asTypeOf(new PtePermBundle())), ecc: Bool = false.B, level: UInt = 0.U, valid: Vec[Bool] = Vec(tlbcontiguous, true.B)): Unit = { this.hit := hit && !ecc this.pre := pre this.ppn := ppn this.pbmt := pbmt this.perm := perm this.ecc := ecc && hit this.level := level this.v := valid } } class PageCacheRespBundle(implicit p: Parameters) extends PtwBundle { val l3 = if (EnableSv48) Some(new PageCachePerPespBundle) else None val l2 = new PageCachePerPespBundle val l1 = new PageCachePerPespBundle val l0 = new PageCacheMergePespBundle val sp = new PageCachePerPespBundle } class PtwCacheReq(implicit p: Parameters) extends PtwBundle { val req_info = new L2TlbInnerBundle() val isFirst = Bool() val bypassed = if (EnableSv48) Vec(4, Bool()) else Vec(3, Bool()) val isHptwReq = Bool() val hptwId = UInt(log2Up(l2tlbParams.llptwsize).W) } class PtwCacheIO()(implicit p: Parameters) extends MMUIOBaseBundle with HasPtwConst { val req = Flipped(DecoupledIO(new PtwCacheReq())) val resp = DecoupledIO(new Bundle { val req_info = new L2TlbInnerBundle() val isFirst = Bool() val hit = Bool() val prefetch = Bool() // is the entry fetched by prefetch val bypassed = Bool() val toFsm = new Bundle { val l3Hit = if (EnableSv48) Some(Bool()) else None val l2Hit = Bool() val l1Hit = Bool() val ppn = UInt(gvpnLen.W) val stage1Hit = Bool() // find stage 1 pte in cache, but need to search stage 2 pte in cache at PTW } val stage1 = new PtwMergeResp() val isHptwReq = Bool() val toHptw = new Bundle { val l3Hit = if (EnableSv48) Some(Bool()) else None val l2Hit = Bool() val l1Hit = Bool() val ppn = UInt(ppnLen.W) val id = UInt(log2Up(l2tlbParams.llptwsize).W) val resp = new HptwResp() // used if hit val bypassed = Bool() } }) val refill = Flipped(ValidIO(new Bundle { val ptes = UInt(blockBits.W) val levelOH = new Bundle { // NOTE: levelOH has (Level+1) bits, each stands for page cache entries val sp = Bool() val l0 = Bool() val l1 = Bool() val l2 = Bool() val l3 = if (EnableSv48) Some(Bool()) else None def apply(levelUInt: UInt, valid: Bool) = { sp := GatedValidRegNext((levelUInt === 1.U || levelUInt === 2.U || levelUInt === 3.U) && valid, false.B) l0 := GatedValidRegNext((levelUInt === 0.U) & valid, false.B) l1 := GatedValidRegNext((levelUInt === 1.U) & valid, false.B) l2 := GatedValidRegNext((levelUInt === 2.U) & valid, false.B) l3.map(_ := GatedValidRegNext((levelUInt === 3.U) & valid, false.B)) } } // duplicate level and sel_pte for each page caches, for better fanout val req_info_dup = Vec(3, new L2TlbInnerBundle()) val level_dup = Vec(3, UInt(log2Up(Level + 1).W)) val sel_pte_dup = Vec(3, UInt(XLEN.W)) })) val sfence_dup = Vec(4, Input(new SfenceBundle())) val csr_dup = Vec(3, Input(new TlbCsrBundle())) } class PtwCache()(implicit p: Parameters) extends XSModule with HasPtwConst with HasPerfEvents { val io = IO(new PtwCacheIO) val ecc = Code.fromString(l2tlbParams.ecc) val l1EntryType = new PTWEntriesWithEcc(ecc, num = PtwL1SectorSize, tagLen = PtwL1TagLen, level = 1, hasPerm = false, ReservedBits = l2tlbParams.l1ReservedBits) val l0EntryType = new PTWEntriesWithEcc(ecc, num = PtwL0SectorSize, tagLen = PtwL0TagLen, level = 0, hasPerm = true, ReservedBits = l2tlbParams.l0ReservedBits) // TODO: four caches make the codes dirty, think about how to deal with it val sfence_dup = io.sfence_dup val refill = io.refill.bits val refill_prefetch_dup = io.refill.bits.req_info_dup.map(a => from_pre(a.source)) val refill_h = io.refill.bits.req_info_dup.map(a => Mux(a.s2xlate === allStage, onlyStage1, a.s2xlate)) val flush_dup = sfence_dup.zip(io.csr_dup).map(f => f._1.valid || f._2.satp.changed || f._2.vsatp.changed || f._2.hgatp.changed) val flush = flush_dup(0) // when refill, refuce to accept new req val rwHarzad = if (sramSinglePort) io.refill.valid else false.B // handle hand signal and req_info // TODO: replace with FlushableQueue val stageReq = Wire(Decoupled(new PtwCacheReq())) // enq stage & read page cache valid val stageDelay = Wire(Vec(2, Decoupled(new PtwCacheReq()))) // page cache resp val stageCheck = Wire(Vec(2, Decoupled(new PtwCacheReq()))) // check hit & check ecc val stageResp = Wire(Decoupled(new PtwCacheReq())) // deq stage val stageDelay_valid_1cycle = OneCycleValid(stageReq.fire, flush) // catch ram data val stageCheck_valid_1cycle = OneCycleValid(stageDelay(1).fire, flush) // replace & perf counter val stageResp_valid_1cycle_dup = Wire(Vec(2, Bool())) stageResp_valid_1cycle_dup.map(_ := OneCycleValid(stageCheck(1).fire, flush)) // ecc flush stageReq <> io.req PipelineConnect(stageReq, stageDelay(0), stageDelay(1).ready, flush, rwHarzad) InsideStageConnect(stageDelay(0), stageDelay(1), stageDelay_valid_1cycle) PipelineConnect(stageDelay(1), stageCheck(0), stageCheck(1).ready, flush) InsideStageConnect(stageCheck(0), stageCheck(1), stageCheck_valid_1cycle) PipelineConnect(stageCheck(1), stageResp, io.resp.ready, flush) stageResp.ready := !stageResp.valid || io.resp.ready // l3: level 3 non-leaf pte val l3 = if (EnableSv48) Some(Reg(Vec(l2tlbParams.l3Size, new PtwEntry(tagLen = PtwL3TagLen)))) else None val l3v = if (EnableSv48) Some(RegInit(0.U(l2tlbParams.l3Size.W))) else None val l3g = if (EnableSv48) Some(Reg(UInt(l2tlbParams.l3Size.W))) else None val l3asids = if (EnableSv48) Some(l3.get.map(_.asid)) else None val l3vmids = if (EnableSv48) Some(l3.get.map(_.vmid)) else None val l3h = if (EnableSv48) Some(Reg(Vec(l2tlbParams.l3Size, UInt(2.W)))) else None // l2: level 2 non-leaf pte val l2 = Reg(Vec(l2tlbParams.l2Size, new PtwEntry(tagLen = PtwL2TagLen))) val l2v = RegInit(0.U(l2tlbParams.l2Size.W)) val l2g = Reg(UInt(l2tlbParams.l2Size.W)) val l2asids = l2.map(_.asid) val l2vmids = l2.map(_.vmid) val l2h = Reg(Vec(l2tlbParams.l2Size, UInt(2.W))) // l1: level 1 non-leaf pte val l1 = Module(new SplittedSRAM( l1EntryType, set = l2tlbParams.l1nSets, way = l2tlbParams.l1nWays, waySplit = 1, dataSplit = 4, singlePort = sramSinglePort, readMCP2 = false )) val l1v = RegInit(0.U((l2tlbParams.l1nSets * l2tlbParams.l1nWays).W)) val l1g = Reg(UInt((l2tlbParams.l1nSets * l2tlbParams.l1nWays).W)) val l1h = Reg(Vec(l2tlbParams.l1nSets, Vec(l2tlbParams.l1nWays, UInt(2.W)))) def getl1vSet(vpn: UInt) = { require(log2Up(l2tlbParams.l1nWays) == log2Down(l2tlbParams.l1nWays)) val set = genPtwL1SetIdx(vpn) require(set.getWidth == log2Up(l2tlbParams.l1nSets)) val l1vVec = l1v.asTypeOf(Vec(l2tlbParams.l1nSets, UInt(l2tlbParams.l1nWays.W))) l1vVec(set) } def getl1hSet(vpn: UInt) = { require(log2Up(l2tlbParams.l1nWays) == log2Down(l2tlbParams.l1nWays)) val set = genPtwL1SetIdx(vpn) require(set.getWidth == log2Up(l2tlbParams.l1nSets)) l1h(set) } // l0: level 0 leaf pte of 4KB pages val l0 = Module(new SplittedSRAM( l0EntryType, set = l2tlbParams.l0nSets, way = l2tlbParams.l0nWays, waySplit = 2, dataSplit = 4, singlePort = sramSinglePort, readMCP2 = false )) val l0v = RegInit(0.U((l2tlbParams.l0nSets * l2tlbParams.l0nWays).W)) val l0g = Reg(UInt((l2tlbParams.l0nSets * l2tlbParams.l0nWays).W)) val l0h = Reg(Vec(l2tlbParams.l0nSets, Vec(l2tlbParams.l0nWays, UInt(2.W)))) def getl0vSet(vpn: UInt) = { require(log2Up(l2tlbParams.l0nWays) == log2Down(l2tlbParams.l0nWays)) val set = genPtwL0SetIdx(vpn) require(set.getWidth == log2Up(l2tlbParams.l0nSets)) val l0vVec = l0v.asTypeOf(Vec(l2tlbParams.l0nSets, UInt(l2tlbParams.l0nWays.W))) l0vVec(set) } def getl0hSet(vpn: UInt) = { require(log2Up(l2tlbParams.l0nWays) == log2Down(l2tlbParams.l0nWays)) val set = genPtwL0SetIdx(vpn) require(set.getWidth == log2Up(l2tlbParams.l0nSets)) l0h(set) } // sp: level 1/2/3 leaf pte of 512GB/1GB/2MB super pages val sp = Reg(Vec(l2tlbParams.spSize, new PtwEntry(tagLen = SPTagLen, hasPerm = true, hasLevel = true, hasNapot = true))) val spv = RegInit(0.U(l2tlbParams.spSize.W)) val spg = Reg(UInt(l2tlbParams.spSize.W)) val spasids = sp.map(_.asid) val spvmids = sp.map(_.vmid) val sph = Reg(Vec(l2tlbParams.spSize, UInt(2.W))) // Access Perf val l3AccessPerf = if(EnableSv48) Some(Wire(Vec(l2tlbParams.l3Size, Bool()))) else None val l2AccessPerf = Wire(Vec(l2tlbParams.l2Size, Bool())) val l1AccessPerf = Wire(Vec(l2tlbParams.l1nWays, Bool())) val l0AccessPerf = Wire(Vec(l2tlbParams.l0nWays, Bool())) val spAccessPerf = Wire(Vec(l2tlbParams.spSize, Bool())) if (EnableSv48) l3AccessPerf.map(_.map(_ := false.B)) l2AccessPerf.map(_ := false.B) l1AccessPerf.map(_ := false.B) l0AccessPerf.map(_ := false.B) spAccessPerf.map(_ := false.B) def vpn_match(vpn1: UInt, vpn2: UInt, level: Int) = { (vpn1(vpnLen-1, vpnnLen*level+3) === vpn2(vpnLen-1, vpnnLen*level+3)) } // NOTE: not actually bypassed, just check if hit, re-access the page cache def refill_bypass(vpn: UInt, level: Int, h_search: UInt) = { val change_h = MuxLookup(h_search, noS2xlate)(Seq( allStage -> onlyStage1, onlyStage1 -> onlyStage1, onlyStage2 -> onlyStage2 )) val change_refill_h = MuxLookup(io.refill.bits.req_info_dup(0).s2xlate, noS2xlate)(Seq( allStage -> onlyStage1, onlyStage1 -> onlyStage1, onlyStage2 -> onlyStage2 )) val refill_vpn = io.refill.bits.req_info_dup(0).vpn io.refill.valid && (level.U === io.refill.bits.level_dup(0)) && vpn_match(refill_vpn, vpn, level) && change_h === change_refill_h } val vpn_search = stageReq.bits.req_info.vpn val h_search = MuxLookup(stageReq.bits.req_info.s2xlate, noS2xlate)(Seq( allStage -> onlyStage1, onlyStage1 -> onlyStage1, onlyStage2 -> onlyStage2 )) // l3 val l3Hit = if(EnableSv48) Some(Wire(Bool())) else None val l3HitPPN = if(EnableSv48) Some(Wire(UInt(ppnLen.W))) else None val l3HitPbmt = if(EnableSv48) Some(Wire(UInt(ptePbmtLen.W))) else None val l3Pre = if(EnableSv48) Some(Wire(Bool())) else None val ptwl3replace = if(EnableSv48) Some(ReplacementPolicy.fromString(l2tlbParams.l3Replacer, l2tlbParams.l3Size)) else None if (EnableSv48) { val hitVecT = l3.get.zipWithIndex.map { case (e, i) => (e.hit(vpn_search, io.csr_dup(2).satp.asid, io.csr_dup(2).vsatp.asid, io.csr_dup(2).hgatp.vmid, s2xlate = h_search =/= noS2xlate) && l3v.get(i) && h_search === l3h.get(i)) } val hitVec = hitVecT.map(RegEnable(_, stageReq.fire)) // stageDelay, but check for l3 val hitPPN = DataHoldBypass(ParallelPriorityMux(hitVec zip l3.get.map(_.ppn)), stageDelay_valid_1cycle) val hitPbmt = DataHoldBypass(ParallelPriorityMux(hitVec zip l3.get.map(_.pbmt)), stageDelay_valid_1cycle) val hitPre = DataHoldBypass(ParallelPriorityMux(hitVec zip l3.get.map(_.prefetch)), stageDelay_valid_1cycle) val hit = DataHoldBypass(ParallelOR(hitVec), stageDelay_valid_1cycle) when (hit && stageDelay_valid_1cycle) { ptwl3replace.get.access(OHToUInt(hitVec)) } l3AccessPerf.get.zip(hitVec).map{ case (l, h) => l := h && stageDelay_valid_1cycle} for (i <- 0 until l2tlbParams.l3Size) { XSDebug(stageReq.fire, p"[l3] l3(${i.U}) ${l3.get(i)} hit:${l3.get(i).hit(vpn_search, io.csr_dup(2).satp.asid, io.csr_dup(2).vsatp.asid, io.csr_dup(2).hgatp.vmid, s2xlate = h_search =/= noS2xlate)}\n") } XSDebug(stageReq.fire, p"[l3] l3v:${Binary(l3v.get)} hitVecT:${Binary(VecInit(hitVecT).asUInt)}\n") XSDebug(stageDelay(0).valid, p"[l3] l3Hit:${hit} l3HitPPN:0x${Hexadecimal(hitPPN)} hitVec:${VecInit(hitVec).asUInt}\n") VecInit(hitVecT).suggestName(s"l3_hitVecT") VecInit(hitVec).suggestName(s"l3_hitVec") // synchronize with other entries with RegEnable l3Hit.map(_ := RegEnable(hit, stageDelay(1).fire)) l3HitPPN.map(_ := RegEnable(hitPPN, stageDelay(1).fire)) l3HitPbmt.map(_ := RegEnable(hitPbmt, stageDelay(1).fire)) l3Pre.map(_ := RegEnable(hitPre, stageDelay(1).fire)) } // l2 val ptwl2replace = ReplacementPolicy.fromString(l2tlbParams.l2Replacer, l2tlbParams.l2Size) val (l2Hit, l2HitPPN, l2HitPbmt, l2Pre) = { val hitVecT = l2.zipWithIndex.map { case (e, i) => (e.hit(vpn_search, io.csr_dup(2).satp.asid, io.csr_dup(2).vsatp.asid, io.csr_dup(2).hgatp.vmid, s2xlate = h_search =/= noS2xlate) && l2v(i) && h_search === l2h(i)) } val hitVec = hitVecT.map(RegEnable(_, stageReq.fire)) // stageDelay, but check for l2 val hitPPN = DataHoldBypass(ParallelPriorityMux(hitVec zip l2.map(_.ppn)), stageDelay_valid_1cycle) val hitPbmt = DataHoldBypass(ParallelPriorityMux(hitVec zip l2.map(_.pbmt)), stageDelay_valid_1cycle) val hitPre = DataHoldBypass(ParallelPriorityMux(hitVec zip l2.map(_.prefetch)), stageDelay_valid_1cycle) val hit = DataHoldBypass(ParallelOR(hitVec), stageDelay_valid_1cycle) when (hit && stageDelay_valid_1cycle) { ptwl2replace.access(OHToUInt(hitVec)) } l2AccessPerf.zip(hitVec).map{ case (l, h) => l := h && stageDelay_valid_1cycle} for (i <- 0 until l2tlbParams.l2Size) { XSDebug(stageReq.fire, p"[l2] l2(${i.U}) ${l2(i)} hit:${l2(i).hit(vpn_search, io.csr_dup(2).satp.asid, io.csr_dup(2).vsatp.asid, io.csr_dup(2).hgatp.vmid, s2xlate = h_search =/= noS2xlate)}\n") } XSDebug(stageReq.fire, p"[l2] l2v:${Binary(l2v)} hitVecT:${Binary(VecInit(hitVecT).asUInt)}\n") XSDebug(stageDelay(0).valid, p"[l2] l2Hit:${hit} l2HitPPN:0x${Hexadecimal(hitPPN)} hitVec:${VecInit(hitVec).asUInt}\n") VecInit(hitVecT).suggestName(s"l2_hitVecT") VecInit(hitVec).suggestName(s"l2_hitVec") // synchronize with other entries with RegEnable (RegEnable(hit, stageDelay(1).fire), RegEnable(hitPPN, stageDelay(1).fire), RegEnable(hitPbmt, stageDelay(1).fire), RegEnable(hitPre, stageDelay(1).fire)) } // l1 val ptwl1replace = ReplacementPolicy.fromString(l2tlbParams.l1Replacer,l2tlbParams.l1nWays,l2tlbParams.l1nSets) val (l1Hit, l1HitPPN, l1HitPbmt, l1Pre, l1eccError) = { val ridx = genPtwL1SetIdx(vpn_search) l1.io.r.req.valid := stageReq.fire l1.io.r.req.bits.apply(setIdx = ridx) val vVec_req = getl1vSet(vpn_search) val hVec_req = getl1hSet(vpn_search) // delay one cycle after sram read val delay_vpn = stageDelay(0).bits.req_info.vpn val delay_h = MuxLookup(stageDelay(0).bits.req_info.s2xlate, noS2xlate)(Seq( allStage -> onlyStage1, onlyStage1 -> onlyStage1, onlyStage2 -> onlyStage2 )) val data_resp = DataHoldBypass(l1.io.r.resp.data, stageDelay_valid_1cycle) val vVec_delay = RegEnable(vVec_req, stageReq.fire) val hVec_delay = RegEnable(hVec_req, stageReq.fire) val hitVec_delay = VecInit(data_resp.zip(vVec_delay.asBools).zip(hVec_delay).map { case ((wayData, v), h) => wayData.entries.hit(delay_vpn, io.csr_dup(1).satp.asid, io.csr_dup(1).vsatp.asid, io.csr_dup(1).hgatp.vmid, s2xlate = delay_h =/= noS2xlate) && v && (delay_h === h)}) // check hit and ecc val check_vpn = stageCheck(0).bits.req_info.vpn val ramDatas = RegEnable(data_resp, stageDelay(1).fire) val vVec = RegEnable(vVec_delay, stageDelay(1).fire).asBools val hitVec = RegEnable(hitVec_delay, stageDelay(1).fire) val hitWayEntry = ParallelPriorityMux(hitVec zip ramDatas) val hitWayData = hitWayEntry.entries val hit = ParallelOR(hitVec) val hitWay = ParallelPriorityMux(hitVec zip (0 until l2tlbParams.l1nWays).map(_.U(log2Up(l2tlbParams.l1nWays).W))) val eccError = WireInit(false.B) if (l2tlbParams.enablePTWECC) { eccError := hitWayEntry.decode() } else { eccError := false.B } ridx.suggestName(s"l1_ridx") ramDatas.suggestName(s"l1_ramDatas") hitVec.suggestName(s"l1_hitVec") hitWayData.suggestName(s"l1_hitWayData") hitWay.suggestName(s"l1_hitWay") when (hit && stageCheck_valid_1cycle) { ptwl1replace.access(genPtwL1SetIdx(check_vpn), hitWay) } l1AccessPerf.zip(hitVec).map{ case (l, h) => l := h && stageCheck_valid_1cycle } XSDebug(stageDelay_valid_1cycle, p"[l1] ridx:0x${Hexadecimal(ridx)}\n") for (i <- 0 until l2tlbParams.l1nWays) { XSDebug(stageCheck_valid_1cycle, p"[l1] ramDatas(${i.U}) ${ramDatas(i)} l1v:${vVec(i)} hit:${hit}\n") } XSDebug(stageCheck_valid_1cycle, p"[l1] l1Hit:${hit} l1HitPPN:0x${Hexadecimal(hitWayData.ppns(genPtwL1SectorIdx(check_vpn)))} hitVec:${Binary(hitVec.asUInt)} hitWay:${hitWay} vidx:${vVec}\n") (hit, hitWayData.ppns(genPtwL1SectorIdx(check_vpn)), hitWayData.pbmts(genPtwL1SectorIdx(check_vpn)), hitWayData.prefetch, eccError) } val l0_masked_clock = ClockGate(false.B, stageReq.fire | (!flush_dup(0) && refill.levelOH.l0), clock) val l1_masked_clock = ClockGate(false.B, stageReq.fire | (!flush_dup(1) && refill.levelOH.l1), clock) l0.clock := l0_masked_clock l1.clock := l1_masked_clock // l0 val ptwl0replace = ReplacementPolicy.fromString(l2tlbParams.l0Replacer,l2tlbParams.l0nWays,l2tlbParams.l0nSets) val (l0Hit, l0HitData, l0Pre, l0eccError) = { val ridx = genPtwL0SetIdx(vpn_search) l0.io.r.req.valid := stageReq.fire l0.io.r.req.bits.apply(setIdx = ridx) val vVec_req = getl0vSet(vpn_search) val hVec_req = getl0hSet(vpn_search) // delay one cycle after sram read val delay_vpn = stageDelay(0).bits.req_info.vpn val delay_h = MuxLookup(stageDelay(0).bits.req_info.s2xlate, noS2xlate)(Seq( allStage -> onlyStage1, onlyStage1 -> onlyStage1, onlyStage2 -> onlyStage2 )) val data_resp = DataHoldBypass(l0.io.r.resp.data, stageDelay_valid_1cycle) val vVec_delay = RegEnable(vVec_req, stageReq.fire) val hVec_delay = RegEnable(hVec_req, stageReq.fire) val hitVec_delay = VecInit(data_resp.zip(vVec_delay.asBools).zip(hVec_delay).map { case ((wayData, v), h) => wayData.entries.hit(delay_vpn, io.csr_dup(0).satp.asid, io.csr_dup(0).vsatp.asid, io.csr_dup(0).hgatp.vmid, s2xlate = delay_h =/= noS2xlate) && v && (delay_h === h)}) // check hit and ecc val check_vpn = stageCheck(0).bits.req_info.vpn val ramDatas = RegEnable(data_resp, stageDelay(1).fire) val vVec = RegEnable(vVec_delay, stageDelay(1).fire).asBools val hitVec = RegEnable(hitVec_delay, stageDelay(1).fire) val hitWayEntry = ParallelPriorityMux(hitVec zip ramDatas) val hitWayData = hitWayEntry.entries val hitWayEcc = hitWayEntry.ecc val hit = ParallelOR(hitVec) val hitWay = ParallelPriorityMux(hitVec zip (0 until l2tlbParams.l0nWays).map(_.U(log2Up(l2tlbParams.l0nWays).W))) val eccError = WireInit(false.B) if (l2tlbParams.enablePTWECC) { eccError := hitWayEntry.decode() } else { eccError := false.B } when (hit && stageCheck_valid_1cycle) { ptwl0replace.access(genPtwL0SetIdx(check_vpn), hitWay) } l0AccessPerf.zip(hitVec).map{ case (l, h) => l := h && stageCheck_valid_1cycle } XSDebug(stageReq.fire, p"[l0] ridx:0x${Hexadecimal(ridx)}\n") for (i <- 0 until l2tlbParams.l0nWays) { XSDebug(stageCheck_valid_1cycle, p"[l0] ramDatas(${i.U}) ${ramDatas(i)} l0v:${vVec(i)} hit:${hitVec(i)}\n") } XSDebug(stageCheck_valid_1cycle, p"[l0] l0Hit:${hit} l0HitData:${hitWayData} hitVec:${Binary(hitVec.asUInt)} hitWay:${hitWay} v:${vVec}\n") ridx.suggestName(s"l0_ridx") ramDatas.suggestName(s"l0_ramDatas") hitVec.suggestName(s"l0_hitVec") hitWay.suggestName(s"l0_hitWay") (hit, hitWayData, hitWayData.prefetch, eccError) } val l0HitPPN = l0HitData.ppns val l0HitPbmt = l0HitData.pbmts val l0HitPerm = l0HitData.perms.getOrElse(0.U.asTypeOf(Vec(PtwL0SectorSize, new PtePermBundle))) val l0HitValid = VecInit(l0HitData.onlypf.map(!_)) // super page val spreplace = ReplacementPolicy.fromString(l2tlbParams.spReplacer, l2tlbParams.spSize) val (spHit, spHitData, spPre, spValid) = { val hitVecT = sp.zipWithIndex.map { case (e, i) => e.hit(vpn_search, io.csr_dup(0).satp.asid, io.csr_dup(0).vsatp.asid, io.csr_dup(0).hgatp.vmid, allType = true, s2xlate = h_search =/= noS2xlate) && spv(i) && (sph(i) === h_search) } val hitVec = hitVecT.map(RegEnable(_, stageReq.fire)) val hitData = ParallelPriorityMux(hitVec zip sp) val hit = ParallelOR(hitVec) when (hit && stageDelay_valid_1cycle) { spreplace.access(OHToUInt(hitVec)) } spAccessPerf.zip(hitVec).map{ case (s, h) => s := h && stageDelay_valid_1cycle } for (i <- 0 until l2tlbParams.spSize) { XSDebug(stageReq.fire, p"[sp] sp(${i.U}) ${sp(i)} hit:${sp(i).hit(vpn_search, io.csr_dup(0).satp.asid, io.csr_dup(0).vsatp.asid, io.csr_dup(0).hgatp.vmid, s2xlate = h_search =/= noS2xlate)} spv:${spv(i)}\n") } XSDebug(stageDelay_valid_1cycle, p"[sp] spHit:${hit} spHitData:${hitData} hitVec:${Binary(VecInit(hitVec).asUInt)}\n") VecInit(hitVecT).suggestName(s"sp_hitVecT") VecInit(hitVec).suggestName(s"sp_hitVec") (RegEnable(hit, stageDelay(1).fire), RegEnable(hitData, stageDelay(1).fire), RegEnable(hitData.prefetch, stageDelay(1).fire), RegEnable(hitData.v, stageDelay(1).fire)) } val spHitPerm = spHitData.perm.getOrElse(0.U.asTypeOf(new PtePermBundle)) val spHitLevel = spHitData.level.getOrElse(0.U) val check_res = Wire(new PageCacheRespBundle) check_res.l3.map(_.apply(l3Hit.get, l3Pre.get, l3HitPPN.get, l3HitPbmt.get)) check_res.l2.apply(l2Hit, l2Pre, l2HitPPN, l2HitPbmt) check_res.l1.apply(l1Hit, l1Pre, l1HitPPN, l1HitPbmt, ecc = l1eccError) check_res.l0.apply(l0Hit, l0Pre, l0HitPPN, l0HitPbmt, l0HitPerm, l0eccError, valid = l0HitValid) check_res.sp.apply(spHit, spPre, spHitData.ppn, spHitData.pbmt, spHitData.n.getOrElse(0.U), spHitPerm, false.B, spHitLevel, spValid) val resp_res = Reg(new PageCacheRespBundle) when (stageCheck(1).fire) { resp_res := check_res } // stageResp bypass val bypassed = if (EnableSv48) Wire(Vec(4, Bool())) else Wire(Vec(3, Bool())) bypassed.indices.foreach(i => bypassed(i) := stageResp.bits.bypassed(i) || ValidHoldBypass(refill_bypass(stageResp.bits.req_info.vpn, i, stageResp.bits.req_info.s2xlate), OneCycleValid(stageCheck(1).fire, false.B) || io.refill.valid) ) // stageResp bypass to hptw val hptw_bypassed = if (EnableSv48) Wire(Vec(4, Bool())) else Wire(Vec(3, Bool())) hptw_bypassed.indices.foreach(i => hptw_bypassed(i) := stageResp.bits.bypassed(i) || ValidHoldBypass(refill_bypass(stageResp.bits.req_info.vpn, i, stageResp.bits.req_info.s2xlate), io.resp.fire) ) val isAllStage = stageResp.bits.req_info.s2xlate === allStage val isOnlyStage2 = stageResp.bits.req_info.s2xlate === onlyStage2 val stage1Hit = (resp_res.l0.hit || resp_res.sp.hit) && isAllStage val idx = stageResp.bits.req_info.vpn(2, 0) val stage1Pf = !Mux(resp_res.l0.hit, resp_res.l0.v(idx), resp_res.sp.v) io.resp.bits.req_info := stageResp.bits.req_info io.resp.bits.isFirst := stageResp.bits.isFirst io.resp.bits.hit := (resp_res.l0.hit || resp_res.sp.hit) && (!isAllStage || isAllStage && stage1Pf) if (EnableSv48) { io.resp.bits.bypassed := ((bypassed(0) && !resp_res.l0.hit) || (bypassed(1) && !resp_res.l1.hit) || (bypassed(2) && !resp_res.l2.hit) || (bypassed(3) && !resp_res.l3.get.hit)) && !isAllStage } else { io.resp.bits.bypassed := ((bypassed(0) && !resp_res.l0.hit) || (bypassed(1) && !resp_res.l1.hit) || (bypassed(2) && !resp_res.l2.hit)) && !isAllStage } io.resp.bits.prefetch := resp_res.l0.pre && resp_res.l0.hit || resp_res.sp.pre && resp_res.sp.hit io.resp.bits.toFsm.l3Hit.map(_ := resp_res.l3.get.hit && !stage1Hit && !isOnlyStage2 && !stageResp.bits.isHptwReq) io.resp.bits.toFsm.l2Hit := resp_res.l2.hit && !stage1Hit && !isOnlyStage2 && !stageResp.bits.isHptwReq io.resp.bits.toFsm.l1Hit := resp_res.l1.hit && !stage1Hit && !isOnlyStage2 && !stageResp.bits.isHptwReq io.resp.bits.toFsm.ppn := Mux(resp_res.l1.hit, resp_res.l1.ppn, Mux(resp_res.l2.hit, resp_res.l2.ppn, resp_res.l3.getOrElse(0.U.asTypeOf(new PageCachePerPespBundle)).ppn)) io.resp.bits.toFsm.stage1Hit := stage1Hit io.resp.bits.isHptwReq := stageResp.bits.isHptwReq if (EnableSv48) { io.resp.bits.toHptw.bypassed := ((hptw_bypassed(0) && !resp_res.l0.hit) || (hptw_bypassed(1) && !resp_res.l1.hit) || (hptw_bypassed(2) && !resp_res.l2.hit) || (hptw_bypassed(3) && !resp_res.l3.get.hit)) && stageResp.bits.isHptwReq } else { io.resp.bits.toHptw.bypassed := ((hptw_bypassed(0) && !resp_res.l0.hit) || (hptw_bypassed(1) && !resp_res.l1.hit) || (hptw_bypassed(2) && !resp_res.l2.hit)) && stageResp.bits.isHptwReq } io.resp.bits.toHptw.id := stageResp.bits.hptwId io.resp.bits.toHptw.l3Hit.map(_ := resp_res.l3.get.hit && stageResp.bits.isHptwReq) io.resp.bits.toHptw.l2Hit := resp_res.l2.hit && stageResp.bits.isHptwReq io.resp.bits.toHptw.l1Hit := resp_res.l1.hit && stageResp.bits.isHptwReq io.resp.bits.toHptw.ppn := Mux(resp_res.l1.hit, resp_res.l1.ppn, Mux(resp_res.l2.hit, resp_res.l2.ppn, resp_res.l3.getOrElse(0.U.asTypeOf(new PageCachePerPespBundle)).ppn))(ppnLen - 1, 0) io.resp.bits.toHptw.resp.entry.tag := stageResp.bits.req_info.vpn io.resp.bits.toHptw.resp.entry.asid := DontCare io.resp.bits.toHptw.resp.entry.vmid.map(_ := io.csr_dup(0).hgatp.vmid) io.resp.bits.toHptw.resp.entry.level.map(_ := Mux(resp_res.l0.hit, 0.U, resp_res.sp.level)) io.resp.bits.toHptw.resp.entry.prefetch := from_pre(stageResp.bits.req_info.source) io.resp.bits.toHptw.resp.entry.ppn := Mux(resp_res.l0.hit, resp_res.l0.ppn(idx), resp_res.sp.ppn)(ppnLen - 1, 0) io.resp.bits.toHptw.resp.entry.pbmt := Mux(resp_res.l0.hit, resp_res.l0.pbmt(idx), resp_res.sp.pbmt) io.resp.bits.toHptw.resp.entry.n.map(_ := Mux(resp_res.sp.hit, resp_res.sp.n, 0.U)) io.resp.bits.toHptw.resp.entry.perm.map(_ := Mux(resp_res.l0.hit, resp_res.l0.perm(idx), resp_res.sp.perm)) io.resp.bits.toHptw.resp.entry.v := Mux(resp_res.l0.hit, resp_res.l0.v(idx), resp_res.sp.v) io.resp.bits.toHptw.resp.gpf := !io.resp.bits.toHptw.resp.entry.v io.resp.bits.toHptw.resp.gaf := false.B io.resp.bits.stage1.entry.map(_.tag := stageResp.bits.req_info.vpn(vpnLen - 1, 3)) io.resp.bits.stage1.entry.map(_.asid := Mux(stageResp.bits.req_info.hasS2xlate(), io.csr_dup(0).vsatp.asid, io.csr_dup(0).satp.asid)) // DontCare io.resp.bits.stage1.entry.map(_.vmid.map(_ := io.csr_dup(0).hgatp.vmid)) if (EnableSv48) { io.resp.bits.stage1.entry.map(_.level.map(_ := Mux(resp_res.l0.hit, 0.U, Mux(resp_res.sp.hit, resp_res.sp.level, Mux(resp_res.l1.hit, 1.U, Mux(resp_res.l2.hit, 2.U, 3.U)))))) } else { io.resp.bits.stage1.entry.map(_.level.map(_ := Mux(resp_res.l0.hit, 0.U, Mux(resp_res.sp.hit, resp_res.sp.level, Mux(resp_res.l1.hit, 1.U, 2.U))))) } io.resp.bits.stage1.entry.map(_.prefetch := from_pre(stageResp.bits.req_info.source)) for (i <- 0 until tlbcontiguous) { if (EnableSv48) { io.resp.bits.stage1.entry(i).ppn := Mux(resp_res.l0.hit, resp_res.l0.ppn(i)(gvpnLen - 1, sectortlbwidth), Mux(resp_res.sp.hit, resp_res.sp.ppn(gvpnLen - 1, sectortlbwidth), Mux(resp_res.l1.hit, resp_res.l1.ppn(gvpnLen - 1, sectortlbwidth), Mux(resp_res.l2.hit, resp_res.l2.ppn(gvpnLen - 1, sectortlbwidth), resp_res.l3.get.ppn(gvpnLen - 1, sectortlbwidth))))) io.resp.bits.stage1.entry(i).ppn_low := Mux(resp_res.l0.hit, resp_res.l0.ppn(i)(sectortlbwidth - 1, 0), Mux(resp_res.sp.hit, resp_res.sp.ppn(sectortlbwidth - 1, 0), Mux(resp_res.l1.hit, resp_res.l1.ppn(sectortlbwidth - 1, 0), Mux(resp_res.l2.hit, resp_res.l2.ppn(sectortlbwidth - 1, 0), resp_res.l3.get.ppn(sectortlbwidth - 1, 0))))) io.resp.bits.stage1.entry(i).v := Mux(resp_res.l0.hit, resp_res.l0.v(i), Mux(resp_res.sp.hit, resp_res.sp.v, Mux(resp_res.l1.hit, resp_res.l1.v, Mux(resp_res.l2.hit, resp_res.l2.v, resp_res.l3.get.v)))) } else { io.resp.bits.stage1.entry(i).ppn := Mux(resp_res.l0.hit, resp_res.l0.ppn(i)(gvpnLen - 1, sectortlbwidth), Mux(resp_res.sp.hit, resp_res.sp.ppn(gvpnLen - 1, sectortlbwidth), Mux(resp_res.l1.hit, resp_res.l1.ppn(gvpnLen - 1, sectortlbwidth), resp_res.l2.ppn(gvpnLen - 1, sectortlbwidth)))) io.resp.bits.stage1.entry(i).ppn_low := Mux(resp_res.l0.hit, resp_res.l0.ppn(i)(sectortlbwidth - 1, 0), Mux(resp_res.sp.hit, resp_res.sp.ppn(sectortlbwidth - 1, 0), Mux(resp_res.l1.hit, resp_res.l1.ppn(sectortlbwidth - 1, 0), resp_res.l2.ppn(sectortlbwidth - 1, 0)))) io.resp.bits.stage1.entry(i).v := Mux(resp_res.l0.hit, resp_res.l0.v(i), Mux(resp_res.sp.hit, resp_res.sp.v, Mux(resp_res.l1.hit, resp_res.l1.v, resp_res.l2.v))) } io.resp.bits.stage1.entry(i).pbmt := Mux(resp_res.l0.hit, resp_res.l0.pbmt(i), Mux(resp_res.sp.hit, resp_res.sp.pbmt, Mux(resp_res.l1.hit, resp_res.l1.pbmt, resp_res.l2.pbmt))) io.resp.bits.stage1.entry(i).n.map(_ := Mux(resp_res.sp.hit, resp_res.sp.n, 0.U)) io.resp.bits.stage1.entry(i).perm.map(_ := Mux(resp_res.l0.hit, resp_res.l0.perm(i), Mux(resp_res.sp.hit, resp_res.sp.perm, 0.U.asTypeOf(new PtePermBundle)))) io.resp.bits.stage1.entry(i).pf := !io.resp.bits.stage1.entry(i).v io.resp.bits.stage1.entry(i).af := false.B } io.resp.bits.stage1.pteidx := UIntToOH(idx).asBools io.resp.bits.stage1.not_super := Mux(resp_res.l0.hit, true.B, false.B) io.resp.bits.stage1.not_merge := false.B io.resp.valid := stageResp.valid XSError(stageResp.valid && resp_res.l0.hit && resp_res.sp.hit, "normal page and super page both hit") // refill Perf val l3RefillPerf = if (EnableSv48) Some(Wire(Vec(l2tlbParams.l3Size, Bool()))) else None val l2RefillPerf = Wire(Vec(l2tlbParams.l2Size, Bool())) val l1RefillPerf = Wire(Vec(l2tlbParams.l1nWays, Bool())) val l0RefillPerf = Wire(Vec(l2tlbParams.l0nWays, Bool())) val spRefillPerf = Wire(Vec(l2tlbParams.spSize, Bool())) l3RefillPerf.map(_.map(_ := false.B)) l2RefillPerf.map(_ := false.B) l1RefillPerf.map(_ := false.B) l0RefillPerf.map(_ := false.B) spRefillPerf.map(_ := false.B) // refill l1.io.w.req <> DontCare l0.io.w.req <> DontCare l1.io.w.req.valid := false.B l0.io.w.req.valid := false.B val memRdata = refill.ptes val memPtes = (0 until (l2tlbParams.blockBytes/(XLEN/8))).map(i => memRdata((i+1)*XLEN-1, i*XLEN).asTypeOf(new PteBundle)) val memSelData = io.refill.bits.sel_pte_dup val memPte = memSelData.map(a => a.asTypeOf(new PteBundle)) val mPBMTE = io.csr.mPBMTE val hPBMTE = io.csr.hPBMTE val pbmte = Mux(refill.req_info_dup(0).s2xlate === onlyStage1 || refill.req_info_dup(0).s2xlate === allStage, hPBMTE, mPBMTE) // TODO: handle sfenceLatch outsize if (EnableSv48) { val l3Refill = !flush_dup(2) && refill.levelOH.l3.get && !memPte(2).isLeaf() && memPte(2).canRefill(refill.level_dup(2), refill.req_info_dup(2).s2xlate, pbmte, io.csr_dup(2).vsatp.mode) val l3RefillIdx = replaceWrapper(l3v.get, ptwl3replace.get.way).suggestName(s"l3_refillIdx") val l3RfOH = UIntToOH(l3RefillIdx).asUInt.suggestName(s"l3_rfOH") when (l3Refill) { l3.get(l3RefillIdx).refill( refill.req_info_dup(2).vpn, Mux(refill.req_info_dup(2).s2xlate =/= noS2xlate, io.csr_dup(2).vsatp.asid, io.csr_dup(2).satp.asid), io.csr_dup(2).hgatp.vmid, memSelData(2), 3.U, refill_prefetch_dup(2) ) ptwl2replace.access(l3RefillIdx) l3v.get := l3v.get | l3RfOH l3g.get := (l3g.get & ~l3RfOH) | Mux(memPte(2).perm.g, l3RfOH, 0.U) l3h.get(l3RefillIdx) := refill_h(2) for (i <- 0 until l2tlbParams.l3Size) { l3RefillPerf.get(i) := i.U === l3RefillIdx } } XSDebug(l3Refill, p"[l3 refill] refillIdx:${l3RefillIdx} refillEntry:${l3.get(l3RefillIdx).genPtwEntry(refill.req_info_dup(2).vpn, Mux(refill.req_info_dup(2).s2xlate =/= noS2xlate, io.csr_dup(2).vsatp.asid, io.csr_dup(2).satp.asid), memSelData(2), 0.U, prefetch = refill_prefetch_dup(2))}\n") XSDebug(l3Refill, p"[l3 refill] l3v:${Binary(l3v.get)}->${Binary(l3v.get | l3RfOH)} l3g:${Binary(l3g.get)}->${Binary((l3g.get & ~l3RfOH) | Mux(memPte(2).perm.g, l3RfOH, 0.U))}\n") } // L2 refill val l2Refill = !flush_dup(2) && refill.levelOH.l2 && !memPte(2).isLeaf() && memPte(2).canRefill(refill.level_dup(2), refill.req_info_dup(2).s2xlate, pbmte, io.csr_dup(2).vsatp.mode) val l2RefillIdx = replaceWrapper(l2v, ptwl2replace.way).suggestName(s"l2_refillIdx") val l2RfOH = UIntToOH(l2RefillIdx).asUInt.suggestName(s"l2_rfOH") when ( l2Refill ) { l2(l2RefillIdx).refill( refill.req_info_dup(2).vpn, Mux(refill.req_info_dup(2).s2xlate =/= noS2xlate, io.csr_dup(2).vsatp.asid, io.csr_dup(2).satp.asid), io.csr_dup(2).hgatp.vmid, memSelData(2), 2.U, refill_prefetch_dup(2) ) ptwl2replace.access(l2RefillIdx) l2v := l2v | l2RfOH l2g := (l2g & ~l2RfOH) | Mux(memPte(2).perm.g, l2RfOH, 0.U) l2h(l2RefillIdx) := refill_h(2) for (i <- 0 until l2tlbParams.l2Size) { l2RefillPerf(i) := i.U === l2RefillIdx } } XSDebug(l2Refill, p"[l2 refill] refillIdx:${l2RefillIdx} refillEntry:${l2(l2RefillIdx).genPtwEntry(refill.req_info_dup(2).vpn, Mux(refill.req_info_dup(2).s2xlate =/= noS2xlate, io.csr_dup(2).vsatp.asid, io.csr_dup(2).satp.asid), memSelData(2), 0.U, prefetch = refill_prefetch_dup(2))}\n") XSDebug(l2Refill, p"[l2 refill] l2v:${Binary(l2v)}->${Binary(l2v | l2RfOH)} l2g:${Binary(l2g)}->${Binary((l2g & ~l2RfOH) | Mux(memPte(2).perm.g, l2RfOH, 0.U))}\n") // L1 refill val l1Refill = !flush_dup(1) && refill.levelOH.l1 val l1RefillIdx = genPtwL1SetIdx(refill.req_info_dup(1).vpn).suggestName(s"l1_refillIdx") val l1VictimWay = replaceWrapper(getl1vSet(refill.req_info_dup(1).vpn), ptwl1replace.way(l1RefillIdx)).suggestName(s"l1_victimWay") val l1VictimWayOH = UIntToOH(l1VictimWay).suggestName(s"l1_victimWayOH") val l1RfvOH = UIntToOH(Cat(l1RefillIdx, l1VictimWay)).asUInt.suggestName(s"l1_rfvOH") val l1Wdata = Wire(l1EntryType) l1Wdata.gen( vpn = refill.req_info_dup(1).vpn, asid = Mux(refill.req_info_dup(1).s2xlate =/= noS2xlate, io.csr_dup(1).vsatp.asid, io.csr_dup(1).satp.asid), vmid = io.csr_dup(1).hgatp.vmid, data = memRdata, levelUInt = 1.U, refill_prefetch_dup(1), refill.req_info_dup(1).s2xlate, pbmte, io.csr_dup(1).vsatp.mode ) when (l1Refill) { l1.io.w.apply( valid = true.B, setIdx = l1RefillIdx, data = l1Wdata, waymask = l1VictimWayOH ) ptwl1replace.access(l1RefillIdx, l1VictimWay) l1v := l1v | l1RfvOH l1g := l1g & ~l1RfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, l1RfvOH, 0.U) l1h(l1RefillIdx)(l1VictimWay) := refill_h(1) for (i <- 0 until l2tlbParams.l1nWays) { l1RefillPerf(i) := i.U === l1VictimWay } } XSDebug(l1Refill, p"[l1 refill] refillIdx:0x${Hexadecimal(l1RefillIdx)} victimWay:${l1VictimWay} victimWayOH:${Binary(l1VictimWayOH)} rfvOH(in UInt):${Cat(l1RefillIdx, l1VictimWay)}\n") XSDebug(l1Refill, p"[l1 refill] refilldata:0x${l1Wdata}\n") XSDebug(l1Refill, p"[l1 refill] l1v:${Binary(l1v)} -> ${Binary(l1v | l1RfvOH)}\n") XSDebug(l1Refill, p"[l1 refill] l1g:${Binary(l1g)} -> ${Binary(l1g & ~l1RfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, l1RfvOH, 0.U))}\n") // L0 refill val l0Refill = !flush_dup(0) && refill.levelOH.l0 && !memPte(0).isNapot(refill.level_dup(0)) val l0RefillIdx = genPtwL0SetIdx(refill.req_info_dup(0).vpn).suggestName(s"l0_refillIdx") val l0VictimWay = replaceWrapper(getl0vSet(refill.req_info_dup(0).vpn), ptwl0replace.way(l0RefillIdx)).suggestName(s"l0_victimWay") val l0VictimWayOH = UIntToOH(l0VictimWay).asUInt.suggestName(s"l0_victimWayOH") val l0RfvOH = UIntToOH(Cat(l0RefillIdx, l0VictimWay)).suggestName(s"l0_rfvOH") val l0Wdata = Wire(l0EntryType) l0Wdata.gen( vpn = refill.req_info_dup(0).vpn, asid = Mux(refill.req_info_dup(0).s2xlate =/= noS2xlate, io.csr_dup(0).vsatp.asid, io.csr_dup(0).satp.asid), vmid = io.csr_dup(0).hgatp.vmid, data = memRdata, levelUInt = 0.U, refill_prefetch_dup(0), refill.req_info_dup(0).s2xlate, pbmte, io.csr_dup(0).vsatp.mode ) when (l0Refill) { l0.io.w.apply( valid = true.B, setIdx = l0RefillIdx, data = l0Wdata, waymask = l0VictimWayOH ) ptwl0replace.access(l0RefillIdx, l0VictimWay) l0v := l0v | l0RfvOH l0g := l0g & ~l0RfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, l0RfvOH, 0.U) l0h(l0RefillIdx)(l0VictimWay) := refill_h(0) for (i <- 0 until l2tlbParams.l0nWays) { l0RefillPerf(i) := i.U === l0VictimWay } } XSDebug(l0Refill, p"[l0 refill] refillIdx:0x${Hexadecimal(l0RefillIdx)} victimWay:${l0VictimWay} victimWayOH:${Binary(l0VictimWayOH)} rfvOH(in UInt):${Cat(l0RefillIdx, l0VictimWay)}\n") XSDebug(l0Refill, p"[l0 refill] refilldata:0x${l0Wdata}\n") XSDebug(l0Refill, p"[l0 refill] l0v:${Binary(l0v)} -> ${Binary(l0v | l0RfvOH)}\n") XSDebug(l0Refill, p"[l0 refill] l0g:${Binary(l0g)} -> ${Binary(l0g & ~l0RfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, l0RfvOH, 0.U))}\n") // misc entries: super & invalid val spRefill = !flush_dup(0) && (refill.levelOH.sp || (refill.levelOH.l0 && memPte(0).isNapot(refill.level_dup(0)))) && ((memPte(0).isLeaf() && memPte(0).canRefill(refill.level_dup(0), refill.req_info_dup(0).s2xlate, pbmte, io.csr_dup(0).vsatp.mode)) || memPte(0).onlyPf(refill.level_dup(0), refill.req_info_dup(0).s2xlate, pbmte)) val spRefillIdx = spreplace.way.suggestName(s"sp_refillIdx") // LFSR64()(log2Up(l2tlbParams.spSize)-1,0) // TODO: may be LRU val spRfOH = UIntToOH(spRefillIdx).asUInt.suggestName(s"sp_rfOH") when (spRefill) { sp(spRefillIdx).refill( refill.req_info_dup(0).vpn, Mux(refill.req_info_dup(0).s2xlate =/= noS2xlate, io.csr_dup(0).vsatp.asid, io.csr_dup(0).satp.asid), io.csr_dup(0).hgatp.vmid, memSelData(0), refill.level_dup(0), refill_prefetch_dup(0), !memPte(0).onlyPf(refill.level_dup(0), refill.req_info_dup(0).s2xlate, pbmte) ) spreplace.access(spRefillIdx) spv := spv | spRfOH spg := spg & ~spRfOH | Mux(memPte(0).perm.g, spRfOH, 0.U) sph(spRefillIdx) := refill_h(0) for (i <- 0 until l2tlbParams.spSize) { spRefillPerf(i) := i.U === spRefillIdx } } XSDebug(spRefill, p"[sp refill] refillIdx:${spRefillIdx} refillEntry:${sp(spRefillIdx).genPtwEntry(refill.req_info_dup(0).vpn, Mux(refill.req_info_dup(0).s2xlate =/= noS2xlate, io.csr_dup(0).vsatp.asid, io.csr_dup(0).satp.asid), memSelData(0), refill.level_dup(0), refill_prefetch_dup(0))}\n") XSDebug(spRefill, p"[sp refill] spv:${Binary(spv)}->${Binary(spv | spRfOH)} spg:${Binary(spg)}->${Binary(spg & ~spRfOH | Mux(memPte(0).perm.g, spRfOH, 0.U))}\n") val l1eccFlush = resp_res.l1.ecc && stageResp_valid_1cycle_dup(0) // RegNext(l1eccError, init = false.B) val l0eccFlush = resp_res.l0.ecc && stageResp_valid_1cycle_dup(1) // RegNext(l0eccError, init = false.B) val eccVpn = stageResp.bits.req_info.vpn XSError(l1eccFlush, "l2tlb.cache.l1 ecc error. Should not happen at sim stage") XSError(l0eccFlush, "l2tlb.cache.l0 ecc error. Should not happen at sim stage") when (l1eccFlush) { val flushSetIdxOH = UIntToOH(genPtwL1SetIdx(eccVpn)) val flushMask = VecInit(flushSetIdxOH.asBools.map { a => Fill(l2tlbParams.l1nWays, a.asUInt) }).asUInt l1v := l1v & ~flushMask l1g := l1g & ~flushMask } when (l0eccFlush) { val flushSetIdxOH = UIntToOH(genPtwL0SetIdx(eccVpn)) val flushMask = VecInit(flushSetIdxOH.asBools.map { a => Fill(l2tlbParams.l0nWays, a.asUInt) }).asUInt l0v := l0v & ~flushMask l0g := l0g & ~flushMask } // sfence for l0 val sfence_valid_l0 = sfence_dup(0).valid && !sfence_dup(0).bits.hg && !sfence_dup(0).bits.hv when (sfence_valid_l0) { val l0hhit = VecInit(l0h.flatMap(_.map{a => io.csr_dup(0).priv.virt && a === onlyStage1 || !io.csr_dup(0).priv.virt && a === noS2xlate})).asUInt val sfence_vpn = sfence_dup(0).bits.addr(sfence_dup(0).bits.addr.getWidth-1, offLen) when (sfence_dup(0).bits.rs1/*va*/) { when (sfence_dup(0).bits.rs2) { // all va && all asid l0v := l0v & ~l0hhit } .otherwise { // all va && specific asid except global l0v := l0v & (l0g | ~l0hhit) } } .otherwise { // val flushMask = UIntToOH(genTlbl1Idx(sfence.bits.addr(sfence.bits.addr.getWidth-1, offLen))) val flushSetIdxOH = UIntToOH(genPtwL0SetIdx(sfence_vpn)) // val flushMask = VecInit(flushSetIdxOH.asBools.map(Fill(l2tlbParams.l0nWays, _.asUInt))).asUInt val flushMask = VecInit(flushSetIdxOH.asBools.map { a => Fill(l2tlbParams.l0nWays, a.asUInt) }).asUInt flushSetIdxOH.suggestName(s"sfence_nrs1_flushSetIdxOH") flushMask.suggestName(s"sfence_nrs1_flushMask") when (sfence_dup(0).bits.rs2) { // specific leaf of addr && all asid l0v := l0v & ~flushMask & ~l0hhit } .otherwise { // specific leaf of addr && specific asid l0v := l0v & (~flushMask | l0g | ~l0hhit) } } } // hfencev, simple implementation for l0 val hfencev_valid_l0 = sfence_dup(0).valid && sfence_dup(0).bits.hv when(hfencev_valid_l0) { val flushMask = VecInit(l0h.flatMap(_.map(_ === onlyStage1))).asUInt l0v := l0v & ~flushMask // all VS-stage l0 pte } // hfenceg, simple implementation for l0 val hfenceg_valid_l0 = sfence_dup(0).valid && sfence_dup(0).bits.hg when(hfenceg_valid_l0) { val flushMask = VecInit(l0h.flatMap(_.map(_ === onlyStage2))).asUInt l0v := l0v & ~flushMask // all G-stage l0 pte } val l2asidhit = VecInit(l2asids.map(_ === sfence_dup(2).bits.id)).asUInt val spasidhit = VecInit(spasids.map(_ === sfence_dup(0).bits.id)).asUInt val sfence_valid = sfence_dup(0).valid && !sfence_dup(0).bits.hg && !sfence_dup(0).bits.hv when (sfence_valid) { val l2vmidhit = VecInit(l2vmids.map(_.getOrElse(0.U) === io.csr_dup(2).hgatp.vmid)).asUInt val spvmidhit = VecInit(spvmids.map(_.getOrElse(0.U) === io.csr_dup(0).hgatp.vmid)).asUInt val l2hhit = VecInit(l2h.map{a => io.csr_dup(2).priv.virt && a === onlyStage1 || !io.csr_dup(2).priv.virt && a === noS2xlate}).asUInt val sphhit = VecInit(sph.map{a => io.csr_dup(0).priv.virt && a === onlyStage1 || !io.csr_dup(0).priv.virt && a === noS2xlate}).asUInt val l1hhit = VecInit(l1h.flatMap(_.map{a => io.csr_dup(1).priv.virt && a === onlyStage1 || !io.csr_dup(1).priv.virt && a === noS2xlate})).asUInt val sfence_vpn = sfence_dup(0).bits.addr(sfence_dup(0).bits.addr.getWidth-1, offLen) when (sfence_dup(0).bits.rs1/*va*/) { when (sfence_dup(0).bits.rs2) { // all va && all asid l1v := l1v & ~l1hhit l2v := l2v & ~(l2hhit & VecInit(l2vmidhit.asBools.map{a => io.csr_dup(2).priv.virt && a || !io.csr_dup(2).priv.virt}).asUInt) spv := spv & ~(sphhit & VecInit(spvmidhit.asBools.map{a => io.csr_dup(0).priv.virt && a || !io.csr_dup(0).priv.virt}).asUInt) } .otherwise { // all va && specific asid except global l1v := l1v & (l1g | ~l1hhit) l2v := l2v & ~(~l2g & l2hhit & l2asidhit & VecInit(l2vmidhit.asBools.map{a => io.csr_dup(2).priv.virt && a || !io.csr_dup(2).priv.virt}).asUInt) spv := spv & ~(~spg & sphhit & spasidhit & VecInit(spvmidhit.asBools.map{a => io.csr_dup(0).priv.virt && a || !io.csr_dup(0).priv.virt}).asUInt) } } .otherwise { when (sfence_dup(0).bits.rs2) { // specific leaf of addr && all asid spv := spv & ~(sphhit & VecInit(sp.map(_.hit(sfence_vpn, sfence_dup(0).bits.id, sfence_dup(0).bits.id, io.csr_dup(0).hgatp.vmid, ignoreAsid = true, s2xlate = io.csr_dup(0).priv.virt))).asUInt) } .otherwise { // specific leaf of addr && specific asid spv := spv & ~(~spg & sphhit & VecInit(sp.map(_.hit(sfence_vpn, sfence_dup(0).bits.id, sfence_dup(0).bits.id, io.csr_dup(0).hgatp.vmid, s2xlate = io.csr_dup(0).priv.virt))).asUInt) } } } val hfencev_valid = sfence_dup(0).valid && sfence_dup(0).bits.hv when (hfencev_valid) { val l2vmidhit = VecInit(l2vmids.map(_.getOrElse(0.U) === io.csr_dup(2).hgatp.vmid)).asUInt val spvmidhit = VecInit(spvmids.map(_.getOrElse(0.U) === io.csr_dup(0).hgatp.vmid)).asUInt val l2hhit = VecInit(l2h.map(_ === onlyStage1)).asUInt val sphhit = VecInit(sph.map(_ === onlyStage1)).asUInt val l1hhit = VecInit(l1h.flatMap(_.map(_ === onlyStage1))).asUInt val hfencev_vpn = sfence_dup(0).bits.addr(sfence_dup(0).bits.addr.getWidth-1, offLen) when(sfence_dup(0).bits.rs1) { when(sfence_dup(0).bits.rs2) { l1v := l1v & ~l1hhit l2v := l2v & ~(l2hhit & l2vmidhit) spv := spv & ~(sphhit & spvmidhit) }.otherwise { l1v := l1v & (l1g | ~l1hhit) l2v := l2v & ~(~l2g & l2hhit & l2asidhit & l2vmidhit) spv := spv & ~(~spg & sphhit & spasidhit & spvmidhit) } }.otherwise { when(sfence_dup(0).bits.rs2) { spv := spv & ~(sphhit & VecInit(sp.map(_.hit(hfencev_vpn, sfence_dup(0).bits.id, sfence_dup(0).bits.id, io.csr_dup(0).hgatp.vmid, ignoreAsid = true, s2xlate = true.B))).asUInt) }.otherwise { spv := spv & ~(~spg & sphhit & VecInit(sp.map(_.hit(hfencev_vpn, sfence_dup(0).bits.id, sfence_dup(0).bits.id, io.csr_dup(0).hgatp.vmid, s2xlate = true.B))).asUInt) } } } val hfenceg_valid = sfence_dup(0).valid && sfence_dup(0).bits.hg when(hfenceg_valid) { val l2vmidhit = VecInit(l2vmids.map(_.getOrElse(0.U) === sfence_dup(2).bits.id)).asUInt val spvmidhit = VecInit(spvmids.map(_.getOrElse(0.U) === sfence_dup(0).bits.id)).asUInt val l2hhit = VecInit(l2h.map(_ === onlyStage2)).asUInt val sphhit = VecInit(sph.map(_ === onlyStage2)).asUInt val l1hhit = VecInit(l1h.flatMap(_.map(_ === onlyStage2))).asUInt val hfenceg_gvpn = (sfence_dup(0).bits.addr << 2)(sfence_dup(0).bits.addr.getWidth - 1, offLen) when(sfence_dup(0).bits.rs1) { when(sfence_dup(0).bits.rs2) { l1v := l1v & ~l1hhit l2v := l2v & ~l2hhit spv := spv & ~sphhit }.otherwise { l1v := l1v & ~l1hhit l2v := l2v & ~(l2hhit & l2vmidhit) spv := spv & ~(sphhit & spvmidhit) } }.otherwise { when(sfence_dup(0).bits.rs2) { spv := spv & ~(sphhit & VecInit(sp.map(_.hit(hfenceg_gvpn, 0.U, 0.U, sfence_dup(0).bits.id, ignoreAsid = true, s2xlate = false.B))).asUInt) }.otherwise { spv := spv & ~(~spg & sphhit & VecInit(sp.map(_.hit(hfenceg_gvpn, 0.U, 0.U, sfence_dup(0).bits.id, ignoreAsid = true, s2xlate = true.B))).asUInt) } } } if (EnableSv48) { val l3asidhit = VecInit(l3asids.get.map(_ === sfence_dup(2).bits.id)).asUInt val l3vmidhit = VecInit(l3vmids.get.map(_.getOrElse(0.U) === io.csr_dup(2).hgatp.vmid)).asUInt val l3hhit = VecInit(l3h.get.map{a => io.csr_dup(2).priv.virt && a === onlyStage1 || !io.csr_dup(2).priv.virt && a === noS2xlate}).asUInt when (sfence_valid) { val l3vmidhit = VecInit(l3vmids.get.map(_.getOrElse(0.U) === io.csr_dup(2).hgatp.vmid)).asUInt val l3hhit = VecInit(l3h.get.map{a => io.csr_dup(2).priv.virt && a === onlyStage1 || !io.csr_dup(2).priv.virt && a === noS2xlate}).asUInt val sfence_vpn = sfence_dup(2).bits.addr(sfence_dup(2).bits.addr.getWidth-1, offLen) when (sfence_dup(2).bits.rs1/*va*/) { when (sfence_dup(2).bits.rs2) { // all va && all asid l3v.map(_ := l3v.get & ~(l3hhit & VecInit(l3vmidhit.asBools.map{a => io.csr_dup(2).priv.virt && a || !io.csr_dup(2).priv.virt}).asUInt)) } .otherwise { // all va && specific asid except global l3v.map(_ := l3v.get & ~(~l3g.get & l3hhit & l3asidhit & VecInit(l3vmidhit.asBools.map{a => io.csr_dup(2).priv.virt && a || !io.csr_dup(2).priv.virt}).asUInt)) } } } when (hfencev_valid) { val l3vmidhit = VecInit(l3vmids.get.map(_.getOrElse(0.U) === io.csr_dup(2).hgatp.vmid)).asUInt val l3hhit = VecInit(l3h.get.map(_ === onlyStage1)).asUInt val hfencev_vpn = sfence_dup(2).bits.addr(sfence_dup(2).bits.addr.getWidth-1, offLen) when(sfence_dup(2).bits.rs1) { when(sfence_dup(2).bits.rs2) { l3v.map(_ := l3v.get & ~(l3hhit & l3vmidhit)) }.otherwise { l3v.map(_ := l3v.get & ~(~l3g.get & l3hhit & l3asidhit & l3vmidhit)) } } } when (hfenceg_valid) { val l3vmidhit = VecInit(l3vmids.get.map(_.getOrElse(0.U) === sfence_dup(2).bits.id)).asUInt val l3hhit = VecInit(l3h.get.map(_ === onlyStage2)).asUInt val hfenceg_gvpn = (sfence_dup(2).bits.addr << 2)(sfence_dup(2).bits.addr.getWidth - 1, offLen) when(sfence_dup(2).bits.rs1) { when(sfence_dup(2).bits.rs2) { l3v.map(_ := l3v.get & ~l3hhit) }.otherwise { l3v.map(_ := l3v.get & ~(l3hhit & l3vmidhit)) } } } } def InsideStageConnect(in: DecoupledIO[PtwCacheReq], out: DecoupledIO[PtwCacheReq], inFire: Bool): Unit = { in.ready := !in.valid || out.ready out.valid := in.valid out.bits := in.bits out.bits.bypassed.zip(in.bits.bypassed).zipWithIndex.map{ case (b, i) => val bypassed_reg = Reg(Bool()) val bypassed_wire = refill_bypass(in.bits.req_info.vpn, i, in.bits.req_info.s2xlate) && io.refill.valid when (inFire) { bypassed_reg := bypassed_wire } .elsewhen (io.refill.valid) { bypassed_reg := bypassed_reg || bypassed_wire } b._1 := b._2 || (bypassed_wire || (bypassed_reg && !inFire)) } } // Perf Count val resp_l0 = resp_res.l0.hit val resp_sp = resp_res.sp.hit val resp_l3_pre = if (EnableSv48) Some(resp_res.l3.get.pre) else None val resp_l2_pre = resp_res.l2.pre val resp_l1_pre = resp_res.l1.pre val resp_l0_pre = resp_res.l0.pre val resp_sp_pre = resp_res.sp.pre val base_valid_access_0 = !from_pre(io.resp.bits.req_info.source) && io.resp.fire XSPerfAccumulate("access", base_valid_access_0) if (EnableSv48) { XSPerfAccumulate("l3_hit", base_valid_access_0 && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("l2_hit", base_valid_access_0 && io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l1_hit", base_valid_access_0 && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l0_hit", base_valid_access_0 && resp_l0) XSPerfAccumulate("sp_hit", base_valid_access_0 && resp_sp) XSPerfAccumulate("pte_hit",base_valid_access_0 && io.resp.bits.hit) if (EnableSv48) { XSPerfAccumulate("l3_hit_pre", base_valid_access_0 && resp_l3_pre.get && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("l2_hit_pre", base_valid_access_0 && resp_l2_pre && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l1_hit_pre", base_valid_access_0 && resp_l1_pre && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l0_hit_pre", base_valid_access_0 && resp_l0_pre && resp_l0) XSPerfAccumulate("sp_hit_pre", base_valid_access_0 && resp_sp_pre && resp_sp) XSPerfAccumulate("pte_hit_pre",base_valid_access_0 && (resp_l0_pre && resp_l0 || resp_sp_pre && resp_sp) && io.resp.bits.hit) val base_valid_access_1 = from_pre(io.resp.bits.req_info.source) && io.resp.fire XSPerfAccumulate("pre_access", base_valid_access_1) if (EnableSv48) { XSPerfAccumulate("pre_l3_hit", base_valid_access_1 && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("pre_l2_hit", base_valid_access_1 && io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l1_hit", base_valid_access_1 && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l0_hit", base_valid_access_1 && resp_l0) XSPerfAccumulate("pre_sp_hit", base_valid_access_1 && resp_sp) XSPerfAccumulate("pre_pte_hit",base_valid_access_1 && io.resp.bits.hit) if (EnableSv48) { XSPerfAccumulate("pre_l3_hit_pre", base_valid_access_1 && resp_l3_pre.get && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("pre_l2_hit_pre", base_valid_access_1 && resp_l2_pre && io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l1_hit_pre", base_valid_access_1 && resp_l1_pre && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l0_hit_pre", base_valid_access_1 && resp_l0_pre && resp_l0) XSPerfAccumulate("pre_sp_hit_pre", base_valid_access_1 && resp_sp_pre && resp_sp) XSPerfAccumulate("pre_pte_hit_pre",base_valid_access_1 && (resp_l0_pre && resp_l0 || resp_sp_pre && resp_sp) && io.resp.bits.hit) val base_valid_access_2 = stageResp.bits.isFirst && !from_pre(io.resp.bits.req_info.source) && io.resp.fire XSPerfAccumulate("access_first", base_valid_access_2) if (EnableSv48) { XSPerfAccumulate("l3_hit_first", base_valid_access_2 && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("l2_hit_first", base_valid_access_2 && io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l1_hit_first", base_valid_access_2 && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l0_hit_first", base_valid_access_2 && resp_l0) XSPerfAccumulate("sp_hit_first", base_valid_access_2 && resp_sp) XSPerfAccumulate("pte_hit_first",base_valid_access_2 && io.resp.bits.hit) if (EnableSv48) { XSPerfAccumulate("l3_hit_pre_first", base_valid_access_2 && resp_l3_pre.get && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("l2_hit_pre_first", base_valid_access_2 && resp_l2_pre && io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l1_hit_pre_first", base_valid_access_2 && resp_l1_pre && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("l0_hit_pre_first", base_valid_access_2 && resp_l0_pre && resp_l0) XSPerfAccumulate("sp_hit_pre_first", base_valid_access_2 && resp_sp_pre && resp_sp) XSPerfAccumulate("pte_hit_pre_first",base_valid_access_2 && (resp_l0_pre && resp_l0 || resp_sp_pre && resp_sp) && io.resp.bits.hit) val base_valid_access_3 = stageResp.bits.isFirst && from_pre(io.resp.bits.req_info.source) && io.resp.fire XSPerfAccumulate("pre_access_first", base_valid_access_3) if (EnableSv48) { XSPerfAccumulate("pre_l3_hit_first", base_valid_access_3 && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("pre_l2_hit_first", base_valid_access_3 && io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l1_hit_first", base_valid_access_3 && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l0_hit_first", base_valid_access_3 && resp_l0) XSPerfAccumulate("pre_sp_hit_first", base_valid_access_3 && resp_sp) XSPerfAccumulate("pre_pte_hit_first", base_valid_access_3 && io.resp.bits.hit) if (EnableSv48) { XSPerfAccumulate("pre_l3_hit_pre_first", base_valid_access_3 && resp_l3_pre.get && io.resp.bits.toFsm.l3Hit.get && !io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) } XSPerfAccumulate("pre_l2_hit_pre_first", base_valid_access_3 && resp_l2_pre && io.resp.bits.toFsm.l2Hit && !io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l1_hit_pre_first", base_valid_access_3 && resp_l1_pre && io.resp.bits.toFsm.l1Hit && !io.resp.bits.hit) XSPerfAccumulate("pre_l0_hit_pre_first", base_valid_access_3 && resp_l0_pre && resp_l0) XSPerfAccumulate("pre_sp_hit_pre_first", base_valid_access_3 && resp_sp_pre && resp_sp) XSPerfAccumulate("pre_pte_hit_pre_first",base_valid_access_3 && (resp_l0_pre && resp_l0 || resp_sp_pre && resp_sp) && io.resp.bits.hit) XSPerfAccumulate("rwHarzad", io.req.valid && !io.req.ready) XSPerfAccumulate("out_blocked", io.resp.valid && !io.resp.ready) if (EnableSv48) { l3AccessPerf.get.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l3AccessIndex${i}", l) } } l2AccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l2AccessIndex${i}", l) } l1AccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l1AccessIndex${i}", l) } l0AccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l0AccessIndex${i}", l) } spAccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"SPAccessIndex${i}", l) } if (EnableSv48) { l3RefillPerf.get.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l3RefillIndex${i}", l) } } l2RefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l2RefillIndex${i}", l) } l1RefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l1RefillIndex${i}", l) } l0RefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"l0RefillIndex${i}", l) } spRefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"SPRefillIndex${i}", l) } if (EnableSv48) { XSPerfAccumulate("l3Refill", Cat(l3RefillPerf.get).orR) } XSPerfAccumulate("l2Refill", Cat(l2RefillPerf).orR) XSPerfAccumulate("l1Refill", Cat(l1RefillPerf).orR) XSPerfAccumulate("l0Refill", Cat(l0RefillPerf).orR) XSPerfAccumulate("spRefill", Cat(spRefillPerf).orR) if (EnableSv48) { XSPerfAccumulate("l3Refill_pre", Cat(l3RefillPerf.get).orR && refill_prefetch_dup(0)) } XSPerfAccumulate("l2Refill_pre", Cat(l2RefillPerf).orR && refill_prefetch_dup(0)) XSPerfAccumulate("l1Refill_pre", Cat(l1RefillPerf).orR && refill_prefetch_dup(0)) XSPerfAccumulate("l0Refill_pre", Cat(l0RefillPerf).orR && refill_prefetch_dup(0)) XSPerfAccumulate("spRefill_pre", Cat(spRefillPerf).orR && refill_prefetch_dup(0)) // debug XSDebug(sfence_dup(0).valid, p"[sfence] original v and g vector:\n") if (EnableSv48) { XSDebug(sfence_dup(0).valid, p"[sfence] l3v:${Binary(l3v.get)}\n") } XSDebug(sfence_dup(0).valid, p"[sfence] l2v:${Binary(l2v)}\n") XSDebug(sfence_dup(0).valid, p"[sfence] l1v:${Binary(l1v)}\n") XSDebug(sfence_dup(0).valid, p"[sfence] l0v:${Binary(l0v)}\n") XSDebug(sfence_dup(0).valid, p"[sfence] l0g:${Binary(l0g)}\n") XSDebug(sfence_dup(0).valid, p"[sfence] spv:${Binary(spv)}\n") XSDebug(RegNext(sfence_dup(0).valid), p"[sfence] new v and g vector:\n") if (EnableSv48) { XSDebug(RegNext(sfence_dup(0).valid), p"[sfence] l3v:${Binary(l3v.get)}\n") } XSDebug(RegNext(sfence_dup(0).valid), p"[sfence] l2v:${Binary(l2v)}\n") XSDebug(RegNext(sfence_dup(0).valid), p"[sfence] l1v:${Binary(l1v)}\n") XSDebug(RegNext(sfence_dup(0).valid), p"[sfence] l0v:${Binary(l0v)}\n") XSDebug(RegNext(sfence_dup(0).valid), p"[sfence] l0g:${Binary(l0g)}\n") XSDebug(RegNext(sfence_dup(0).valid), p"[sfence] spv:${Binary(spv)}\n") val perfEvents = Seq( ("access ", base_valid_access_0 ), ("l2_hit ", l2Hit ), ("l1_hit ", l1Hit ), ("l0_hit ", l0Hit ), ("sp_hit ", spHit ), ("pte_hit ", l0Hit || spHit ), ("rwHarzad ", io.req.valid && !io.req.ready ), ("out_blocked ", io.resp.valid && !io.resp.ready ), ) generatePerfEvent() }