/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.cache.mmu import chipsalliance.rocketchip.config.Parameters import chisel3._ import chisel3.util._ import xiangshan._ import xiangshan.cache.{HasDCacheParameters, MemoryOpConstants} import utils._ import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} import freechips.rocketchip.tilelink._ /* ptw cache caches the page table of all the three layers * ptw cache resp at next cycle * the cache should not be blocked * when miss queue if full, just block req outside */ class PtwCacheIO()(implicit p: Parameters) extends PtwBundle { val req = Flipped(DecoupledIO(new Bundle { val vpn = UInt(vpnLen.W) val source = UInt(bPtwWidth.W) val isReplay = Bool() })) val resp = DecoupledIO(new Bundle { val source = UInt(bPtwWidth.W) val vpn = UInt(vpnLen.W) val isReplay = Bool() val hit = Bool() val toFsm = new Bundle { val l1Hit = Bool() val l2Hit = Bool() val ppn = UInt(ppnLen.W) } val toTlb = new PtwEntry(tagLen = vpnLen, hasPerm = true, hasLevel = true) }) val refill = Flipped(ValidIO(new Bundle { val ptes = UInt(MemBandWidth.W) val vpn = UInt(vpnLen.W) val level = UInt(log2Up(Level).W) val memAddr = Input(UInt(PAddrBits.W)) })) val sfence = Input(new SfenceBundle) val refuseRefill = Input(Bool()) } class PtwCache()(implicit p: Parameters) extends XSModule with HasPtwConst { val io = IO(new PtwCacheIO) // TODO: four caches make the codes dirty, think about how to deal with it val sfence = io.sfence val refuseRefill = io.refuseRefill val refill = io.refill.bits val first_valid = io.req.valid val first_fire = first_valid && io.req.ready val first_req = io.req.bits val second_ready = Wire(Bool()) val second_valid = ValidHold(first_fire, io.resp.fire(), sfence.valid) val second_req = RegEnable(first_req, first_fire) // NOTE: if ptw cache resp may be blocked, hard to handle refill // when miss queue is full, please to block itlb and dtlb input // when refill, refuce to accept new req val rwHarzad = if (SramSinglePort) io.refill.valid else false.B io.req.ready := !rwHarzad && (second_ready || io.req.bits.isReplay) // NOTE: when write, don't ready, whe // when replay, just come in, out make sure resp.fire() // l1: level 0 non-leaf pte val l1 = Reg(Vec(PtwL1EntrySize, new PtwEntry(tagLen = PtwL1TagLen))) val l1v = RegInit(0.U(PtwL1EntrySize.W)) val l1g = Reg(UInt(PtwL1EntrySize.W)) // l2: level 1 non-leaf pte val l2 = Module(new SRAMTemplate( new PtwEntries(num = PtwL2SectorSize, tagLen = PtwL2TagLen, level = 1, hasPerm = false), set = PtwL2LineNum, way = PtwL2WayNum, singlePort = SramSinglePort )) val l2v = RegInit(0.U((PtwL2LineNum * PtwL2WayNum).W)) val l2g = Reg(UInt((PtwL2LineNum * PtwL2WayNum).W)) def getl2vSet(vpn: UInt) = { require(log2Up(PtwL2WayNum) == log2Down(PtwL2WayNum)) val set = genPtwL2SetIdx(vpn) require(set.getWidth == log2Up(PtwL2LineNum)) val l2vVec = l2v.asTypeOf(Vec(PtwL2LineNum, UInt(PtwL2WayNum.W))) l2vVec(set) } // l3: level 2 leaf pte of 4KB pages val l3 = Module(new SRAMTemplate( new PtwEntries(num = PtwL3SectorSize, tagLen = PtwL3TagLen, level = 2, hasPerm = true), set = PtwL3LineNum, way = PtwL3WayNum, singlePort = SramSinglePort )) val l3v = RegInit(0.U((PtwL3LineNum * PtwL3WayNum).W)) val l3g = Reg(UInt((PtwL3LineNum * PtwL3WayNum).W)) def getl3vSet(vpn: UInt) = { require(log2Up(PtwL3WayNum) == log2Down(PtwL3WayNum)) val set = genPtwL3SetIdx(vpn) require(set.getWidth == log2Up(PtwL3LineNum)) val l3vVec = l3v.asTypeOf(Vec(PtwL3LineNum, UInt(PtwL3WayNum.W))) l3vVec(set) } // sp: level 0/1 leaf pte of 1GB/2MB super pages val sp = Reg(Vec(PtwSPEntrySize, new PtwEntry(tagLen = SPTagLen, hasPerm = true, hasLevel = true))) val spv = RegInit(0.U(PtwSPEntrySize.W)) val spg = Reg(UInt(PtwSPEntrySize.W)) // Access Perf val l1AccessPerf = Wire(Vec(PtwL1EntrySize, Bool())) val l2AccessPerf = Wire(Vec(PtwL2WayNum, Bool())) val l3AccessPerf = Wire(Vec(PtwL3WayNum, Bool())) val spAccessPerf = Wire(Vec(PtwSPEntrySize, Bool())) l1AccessPerf.map(_ := false.B) l2AccessPerf.map(_ := false.B) l3AccessPerf.map(_ := false.B) spAccessPerf.map(_ := false.B) // l1 val ptwl1replace = ReplacementPolicy.fromString(ptwl1Replacer, PtwL1EntrySize) val (l1Hit, l1HitPPN) = { val hitVecT = l1.zipWithIndex.map { case (e, i) => e.hit(first_req.vpn) && l1v(i) } val hitVec = hitVecT.map(RegEnable(_, first_fire)) val hitPPN = ParallelPriorityMux(hitVec zip l1.map(_.ppn)) val hit = ParallelOR(hitVec) && second_valid when (hit) { ptwl1replace.access(OHToUInt(hitVec)) } l1AccessPerf.zip(hitVec).map{ case (l, h) => l := h && RegNext(first_fire)} for (i <- 0 until PtwL1EntrySize) { XSDebug(first_fire, p"[l1] l1(${i.U}) ${l1(i)} hit:${l1(i).hit(first_req.vpn)}\n") } XSDebug(first_fire, p"[l1] l1v:${Binary(l1v)} hitVecT:${Binary(VecInit(hitVecT).asUInt)}\n") XSDebug(second_valid, p"[l1] l1Hit:${hit} l1HitPPN:0x${Hexadecimal(hitPPN)} hitVec:${VecInit(hitVec).asUInt}\n") VecInit(hitVecT).suggestName(s"l1_hitVecT") VecInit(hitVec).suggestName(s"l1_hitVec") (hit, hitPPN) } // l2 val ptwl2replace = ReplacementPolicy.fromString(ptwl2Replacer,PtwL2WayNum,PtwL2LineNum) val (l2Hit, l2HitPPN) = { val ridx = genPtwL2SetIdx(first_req.vpn) val vidx = RegEnable(VecInit(getl2vSet(first_req.vpn).asBools), first_fire) l2.io.r.req.valid := first_fire l2.io.r.req.bits.apply(setIdx = ridx) val ramDatas = l2.io.r.resp.data // val hitVec = VecInit(ramDatas.map{wayData => wayData.hit(first_req.vpn) }) val hitVec = VecInit(ramDatas.zip(vidx).map { case (wayData, v) => wayData.hit(second_req.vpn) && v }) val hitWayData = ParallelPriorityMux(hitVec zip ramDatas) val hit = ParallelOR(hitVec) && second_valid val hitWay = ParallelPriorityMux(hitVec zip (0 until PtwL2WayNum).map(_.U)) ridx.suggestName(s"l2_ridx") vidx.suggestName(s"l2_vidx") ramDatas.suggestName(s"l2_ramDatas") hitVec.suggestName(s"l2_hitVec") hitWayData.suggestName(s"l2_hitWayData") hitWay.suggestName(s"l2_hitWay") when (hit) { ptwl2replace.access(genPtwL2SetIdx(second_req.vpn), hitWay) } l2AccessPerf.zip(hitVec).map{ case (l, h) => l := h && RegNext(first_fire) } XSDebug(first_fire, p"[l2] ridx:0x${Hexadecimal(ridx)}\n") for (i <- 0 until PtwL2WayNum) { XSDebug(RegNext(first_fire), p"[l2] ramDatas(${i.U}) ${ramDatas(i)} l2v:${vidx(i)} hit:${ramDatas(i).hit(second_req.vpn)}\n") } XSDebug(second_valid, p"[l2] l2Hit:${hit} l2HitPPN:0x${Hexadecimal(hitWayData.ppns(genPtwL2SectorIdx(second_req.vpn)))} hitVec:${Binary(hitVec.asUInt)} hitWay:${hitWay} vidx:${Binary(vidx.asUInt)}\n") (hit, hitWayData.ppns(genPtwL2SectorIdx(second_req.vpn))) } // l3 val ptwl3replace = ReplacementPolicy.fromString(ptwl3Replacer,PtwL3WayNum,PtwL3LineNum) val (l3Hit, l3HitData) = { val ridx = genPtwL3SetIdx(first_req.vpn) val vidx = RegEnable(VecInit(getl3vSet(first_req.vpn).asBools), first_fire) l3.io.r.req.valid := first_fire l3.io.r.req.bits.apply(setIdx = ridx) val ramDatas = l3.io.r.resp.data val hitVec = VecInit(ramDatas.zip(vidx).map{ case (wayData, v) => wayData.hit(second_req.vpn) && v }) val hitWayData = ParallelPriorityMux(hitVec zip ramDatas) val hit = ParallelOR(hitVec) && second_valid val hitWay = ParallelPriorityMux(hitVec zip (0 until PtwL3WayNum).map(_.U)) when (hit) { ptwl3replace.access(genPtwL3SetIdx(second_req.vpn), hitWay) } l3AccessPerf.zip(hitVec).map{ case (l, h) => l := h && RegNext(first_fire) } XSDebug(first_fire, p"[l3] ridx:0x${Hexadecimal(ridx)}\n") for (i <- 0 until PtwL3WayNum) { XSDebug(RegNext(first_fire), p"[l3] ramDatas(${i.U}) ${ramDatas(i)} l3v:${vidx(i)} hit:${ramDatas(i).hit(second_req.vpn)}\n") } XSDebug(second_valid, p"[l3] l3Hit:${hit} l3HitData:${hitWayData} hitVec:${Binary(hitVec.asUInt)} hitWay:${hitWay} vidx:${Binary(vidx.asUInt)}\n") ridx.suggestName(s"l3_ridx") vidx.suggestName(s"l3_vidx") ramDatas.suggestName(s"l3_ramDatas") hitVec.suggestName(s"l3_hitVec") hitWay.suggestName(s"l3_hitWay") (hit, hitWayData) } val l3HitPPN = l3HitData.ppns(genPtwL3SectorIdx(second_req.vpn)) val l3HitPerm = l3HitData.perms.getOrElse(0.U.asTypeOf(Vec(PtwL3SectorSize, new PtePermBundle)))(genPtwL3SectorIdx(second_req.vpn)) // super page val spreplace = ReplacementPolicy.fromString(spReplacer, PtwSPEntrySize) val (spHit, spHitData) = { val hitVecT = sp.zipWithIndex.map { case (e, i) => e.hit(first_req.vpn) && spv(i) } val hitVec = hitVecT.map(RegEnable(_, first_fire)) val hitData = ParallelPriorityMux(hitVec zip sp) val hit = ParallelOR(hitVec) && second_valid when (hit) { spreplace.access(OHToUInt(hitVec)) } spAccessPerf.zip(hitVec).map{ case (s, h) => s := h && RegNext(first_fire) } for (i <- 0 until PtwSPEntrySize) { XSDebug(first_fire, p"[sp] sp(${i.U}) ${sp(i)} hit:${sp(i).hit(first_req.vpn)} spv:${spv(i)}\n") } XSDebug(second_valid, p"[sp] spHit:${hit} spHitData:${hitData} hitVec:${Binary(VecInit(hitVec).asUInt)}\n") VecInit(hitVecT).suggestName(s"sp_hitVecT") VecInit(hitVec).suggestName(s"sp_hitVec") (hit, hitData) } val spHitPerm = spHitData.perm.getOrElse(0.U.asTypeOf(new PtePermBundle)) val spHitLevel = spHitData.level.getOrElse(0.U) val resp = Wire(io.resp.bits.cloneType) val resp_latch = RegEnable(resp, io.resp.valid && !io.resp.ready) val resp_latch_valid = ValidHold(io.resp.valid && !io.resp.ready, io.resp.ready, sfence.valid) second_ready := !(second_valid || resp_latch_valid) || io.resp.fire() resp.source := second_req.source resp.vpn := second_req.vpn resp.isReplay := second_req.isReplay resp.hit := l3Hit || spHit resp.toFsm.l1Hit := l1Hit resp.toFsm.l2Hit := l2Hit resp.toFsm.ppn := Mux(l2Hit, l2HitPPN, l1HitPPN) resp.toTlb.tag := second_req.vpn resp.toTlb.ppn := Mux(l3Hit, l3HitPPN, spHitData.ppn) resp.toTlb.perm.map(_ := Mux(l3Hit, l3HitPerm, spHitPerm)) resp.toTlb.level.map(_ := Mux(l3Hit, 2.U, spHitLevel)) io.resp.valid := second_valid io.resp.bits := Mux(resp_latch_valid, resp_latch, resp) assert(!(l3Hit && spHit), "normal page and super page both hit") // refill Perf val l1RefillPerf = Wire(Vec(PtwL1EntrySize, Bool())) val l2RefillPerf = Wire(Vec(PtwL2WayNum, Bool())) val l3RefillPerf = Wire(Vec(PtwL3WayNum, Bool())) val spRefillPerf = Wire(Vec(PtwSPEntrySize, Bool())) l1RefillPerf.map(_ := false.B) l2RefillPerf.map(_ := false.B) l3RefillPerf.map(_ := false.B) spRefillPerf.map(_ := false.B) // refill l2.io.w.req <> DontCare l3.io.w.req <> DontCare l2.io.w.req.valid := false.B l3.io.w.req.valid := false.B val memRdata = refill.ptes val memSelData = memRdata.asTypeOf(Vec(MemBandWidth/XLEN, UInt(XLEN.W)))(refill.memAddr(log2Up(l1BusDataWidth/8) - 1, log2Up(XLEN/8))) val memPtes = (0 until PtwL3SectorSize).map(i => memRdata((i+1)*XLEN-1, i*XLEN).asTypeOf(new PteBundle)) val memPte = memSelData.asTypeOf(new PteBundle) // TODO: handle sfenceLatch outsize when (io.refill.valid && !memPte.isPf(refill.level) && !(sfence.valid || refuseRefill)) { when (refill.level === 0.U && !memPte.isLeaf()) { // val refillIdx = LFSR64()(log2Up(PtwL1EntrySize)-1,0) // TODO: may be LRU val refillIdx = replaceWrapper(l1v, ptwl1replace.way) refillIdx.suggestName(s"PtwL1RefillIdx") val rfOH = UIntToOH(refillIdx) l1(refillIdx).refill(refill.vpn, memSelData) ptwl1replace.access(refillIdx) l1v := l1v | rfOH l1g := (l1g & ~rfOH) | Mux(memPte.perm.g, rfOH, 0.U) for (i <- 0 until PtwL1EntrySize) { l1RefillPerf(i) := i.U === refillIdx } XSDebug(p"[l1 refill] refillIdx:${refillIdx} refillEntry:${l1(refillIdx).genPtwEntry(refill.vpn, memSelData)}\n") XSDebug(p"[l1 refill] l1v:${Binary(l1v)}->${Binary(l1v | rfOH)} l1g:${Binary(l1g)}->${Binary((l1g & ~rfOH) | Mux(memPte.perm.g, rfOH, 0.U))}\n") refillIdx.suggestName(s"l1_refillIdx") rfOH.suggestName(s"l1_rfOH") } when (refill.level === 1.U && !memPte.isLeaf()) { val refillIdx = genPtwL2SetIdx(refill.vpn) val victimWay = replaceWrapper(RegEnable(VecInit(getl2vSet(refill.vpn).asBools).asUInt, first_fire), ptwl2replace.way(refillIdx)) val victimWayOH = UIntToOH(victimWay) val rfvOH = UIntToOH(Cat(refillIdx, victimWay)) l2.io.w.apply( valid = true.B, setIdx = refillIdx, data = (new PtwEntries(num = PtwL2SectorSize, tagLen = PtwL2TagLen, level = 1, hasPerm = false)).genEntries( vpn = refill.vpn, data = memRdata, levelUInt = 1.U ), waymask = victimWayOH ) ptwl2replace.access(refillIdx, victimWay) l2v := l2v | rfvOH l2g := l2g & ~rfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, rfvOH, 0.U) for (i <- 0 until PtwL2WayNum) { l2RefillPerf(i) := i.U === victimWay } XSDebug(p"[l2 refill] refillIdx:0x${Hexadecimal(refillIdx)} victimWay:${victimWay} victimWayOH:${Binary(victimWayOH)} rfvOH(in UInt):${Cat(refillIdx, victimWay)}\n") XSDebug(p"[l2 refill] refilldata:0x${ (new PtwEntries(num = PtwL2SectorSize, tagLen = PtwL2TagLen, level = 1, hasPerm = false)).genEntries( vpn = refill.vpn, data = memRdata, levelUInt = 1.U) }\n") XSDebug(p"[l2 refill] l2v:${Binary(l2v)} -> ${Binary(l2v | rfvOH)}\n") XSDebug(p"[l2 refill] l2g:${Binary(l2g)} -> ${Binary(l2g & ~rfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, rfvOH, 0.U))}\n") refillIdx.suggestName(s"l2_refillIdx") victimWay.suggestName(s"l2_victimWay") victimWayOH.suggestName(s"l2_victimWayOH") rfvOH.suggestName(s"l2_rfvOH") } when (refill.level === 2.U && memPte.isLeaf()) { val refillIdx = genPtwL3SetIdx(refill.vpn) val victimWay = replaceWrapper(RegEnable(VecInit(getl3vSet(refill.vpn).asBools).asUInt, first_fire), ptwl3replace.way(refillIdx)) val victimWayOH = UIntToOH(victimWay) val rfvOH = UIntToOH(Cat(refillIdx, victimWay)) l3.io.w.apply( valid = true.B, setIdx = refillIdx, data = (new PtwEntries(num = PtwL3SectorSize, tagLen = PtwL3TagLen, level = 2, hasPerm = true)).genEntries( vpn = refill.vpn, data = memRdata, levelUInt = 2.U ), waymask = victimWayOH ) ptwl3replace.access(refillIdx, victimWay) l3v := l3v | rfvOH l3g := l3g & ~rfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, rfvOH, 0.U) for (i <- 0 until PtwL3WayNum) { l3RefillPerf(i) := i.U === victimWay } XSDebug(p"[l3 refill] refillIdx:0x${Hexadecimal(refillIdx)} victimWay:${victimWay} victimWayOH:${Binary(victimWayOH)} rfvOH(in UInt):${Cat(refillIdx, victimWay)}\n") XSDebug(p"[l3 refill] refilldata:0x${ (new PtwEntries(num = PtwL3SectorSize, tagLen = PtwL3TagLen, level = 2, hasPerm = true)).genEntries( vpn = refill.vpn, data = memRdata, levelUInt = 2.U) }\n") XSDebug(p"[l3 refill] l3v:${Binary(l3v)} -> ${Binary(l3v | rfvOH)}\n") XSDebug(p"[l3 refill] l3g:${Binary(l3g)} -> ${Binary(l3g & ~rfvOH | Mux(Cat(memPtes.map(_.perm.g)).andR, rfvOH, 0.U))}\n") refillIdx.suggestName(s"l3_refillIdx") victimWay.suggestName(s"l3_victimWay") victimWayOH.suggestName(s"l3_victimWayOH") rfvOH.suggestName(s"l3_rfvOH") } when ((refill.level === 0.U || refill.level === 1.U) && memPte.isLeaf()) { val refillIdx = spreplace.way// LFSR64()(log2Up(PtwSPEntrySize)-1,0) // TODO: may be LRU val rfOH = UIntToOH(refillIdx) sp(refillIdx).refill(refill.vpn, memSelData, refill.level) spreplace.access(refillIdx) spv := spv | rfOH spg := spg & ~rfOH | Mux(memPte.perm.g, rfOH, 0.U) for (i <- 0 until PtwSPEntrySize) { spRefillPerf(i) := i.U === refillIdx } XSDebug(p"[sp refill] refillIdx:${refillIdx} refillEntry:${sp(refillIdx).genPtwEntry(refill.vpn, memSelData, refill.level)}\n") XSDebug(p"[sp refill] spv:${Binary(spv)}->${Binary(spv | rfOH)} spg:${Binary(spg)}->${Binary(spg & ~rfOH | Mux(memPte.perm.g, rfOH, 0.U))}\n") refillIdx.suggestName(s"sp_refillIdx") rfOH.suggestName(s"sp_rfOH") } } // sfence when (sfence.valid) { when (sfence.bits.rs1/*va*/) { when (sfence.bits.rs2) { // all va && all asid l1v := 0.U l2v := 0.U l3v := 0.U spv := 0.U } .otherwise { // all va && specific asid except global l1v := l1v & l1g l2v := l2v & l2g l3v := l3v & l3g spv := spv & spg } } .otherwise { // val flushMask = UIntToOH(genTlbL2Idx(sfence.bits.addr(sfence.bits.addr.getWidth-1, offLen))) val flushSetIdxOH = UIntToOH(genPtwL3SetIdx(sfence.bits.addr(sfence.bits.addr.getWidth-1, offLen))) // val flushMask = VecInit(flushSetIdxOH.asBools.map(Fill(PtwL3WayNum, _.asUInt))).asUInt val flushMask = VecInit(flushSetIdxOH.asBools.map { a => Fill(PtwL3WayNum, a.asUInt) }).asUInt flushSetIdxOH.suggestName(s"sfence_nrs1_flushSetIdxOH") flushMask.suggestName(s"sfence_nrs1_flushMask") when (sfence.bits.rs2) { // specific leaf of addr && all asid l3v := l3v & ~flushMask l3g := l3g & ~flushMask } .otherwise { // specific leaf of addr && specific asid l3v := l3v & (~flushMask | l3g) } spv := 0.U } } // Perf Count XSPerfAccumulate("access", second_valid) XSPerfAccumulate("l1_hit", l1Hit) XSPerfAccumulate("l2_hit", l2Hit) XSPerfAccumulate("l3_hit", l3Hit) XSPerfAccumulate("sp_hit", spHit) XSPerfAccumulate("pte_hit", l3Hit || spHit) XSPerfAccumulate("rwHarzad", io.req.valid && !io.req.ready) XSPerfAccumulate("out_blocked", io.resp.valid && !io.resp.ready) l1AccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"L1AccessIndex${i}", l) } l2AccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"L2AccessIndex${i}", l) } l3AccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"L3AccessIndex${i}", l) } spAccessPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"SPAccessIndex${i}", l) } l1RefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"L1RefillIndex${i}", l) } l2RefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"L2RefillIndex${i}", l) } l3RefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"L3RefillIndex${i}", l) } spRefillPerf.zipWithIndex.map{ case (l, i) => XSPerfAccumulate(s"SPRefillIndex${i}", l) } // debug XSDebug(sfence.valid, p"[sfence] original v and g vector:\n") XSDebug(sfence.valid, p"[sfence] l1v:${Binary(l1v)}\n") XSDebug(sfence.valid, p"[sfence] l2v:${Binary(l2v)}\n") XSDebug(sfence.valid, p"[sfence] l3v:${Binary(l3v)}\n") XSDebug(sfence.valid, p"[sfence] l3g:${Binary(l3g)}\n") XSDebug(sfence.valid, p"[sfence] spv:${Binary(spv)}\n") XSDebug(RegNext(sfence.valid), p"[sfence] new v and g vector:\n") XSDebug(RegNext(sfence.valid), p"[sfence] l1v:${Binary(l1v)}\n") XSDebug(RegNext(sfence.valid), p"[sfence] l2v:${Binary(l2v)}\n") XSDebug(RegNext(sfence.valid), p"[sfence] l3v:${Binary(l3v)}\n") XSDebug(RegNext(sfence.valid), p"[sfence] l3g:${Binary(l3g)}\n") XSDebug(RegNext(sfence.valid), p"[sfence] spv:${Binary(spv)}\n") }