/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. * * * Acknowledgement * * This implementation is inspired by several key papers: * [1] David Kroft. "[Lockup-free instruction fetch/prefetch cache organization.] * (https://dl.acm.org/doi/10.5555/800052.801868)" 8th Annual Symposium on Computer Architecture (ISCA). 1981. ***************************************************************************************/ package xiangshan.cache import chisel3._ import chisel3.util._ import chisel3.experimental.dataview._ import coupledL2.VaddrKey import coupledL2.IsKeywordKey import difftest._ import freechips.rocketchip.tilelink.ClientStates._ import freechips.rocketchip.tilelink.MemoryOpCategories._ import freechips.rocketchip.tilelink.TLPermissions._ import freechips.rocketchip.tilelink.TLMessages._ import freechips.rocketchip.tilelink._ import huancun.{AliasKey, DirtyKey, PrefetchKey} import org.chipsalliance.cde.config.Parameters import utility._ import utils._ import xiangshan._ import xiangshan.mem.AddPipelineReg import xiangshan.mem.prefetch._ import xiangshan.mem.trace._ import xiangshan.mem.LqPtr class MissReqWoStoreData(implicit p: Parameters) extends DCacheBundle { val source = UInt(sourceTypeWidth.W) val pf_source = UInt(L1PfSourceBits.W) val cmd = UInt(M_SZ.W) val addr = UInt(PAddrBits.W) val vaddr = UInt(VAddrBits.W) val pc = UInt(VAddrBits.W) val lqIdx = new LqPtr // store val full_overwrite = Bool() // amo val word_idx = UInt(log2Up(blockWords).W) val amo_data = UInt(QuadWordBits.W) val amo_mask = UInt(QuadWordBytes.W) val amo_cmp = UInt(QuadWordBits.W) // data to be compared in AMOCAS val req_coh = new ClientMetadata val id = UInt(reqIdWidth.W) // For now, miss queue entry req is actually valid when req.valid && !cancel // * req.valid is fast to generate // * cancel is slow to generate, it will not be used until the last moment // // cancel may come from the following sources: // 1. miss req blocked by writeback queue: // a writeback req of the same address is in progress // 2. pmp check failed val cancel = Bool() // cancel is slow to generate, it will cancel missreq.valid // Req source decode // Note that req source is NOT cmd type // For instance, a req which isFromPrefetch may have R or W cmd def isFromLoad = source === LOAD_SOURCE.U def isFromStore = source === STORE_SOURCE.U def isFromAMO = source === AMO_SOURCE.U def isFromPrefetch = source >= DCACHE_PREFETCH_SOURCE.U def isPrefetchWrite = source === DCACHE_PREFETCH_SOURCE.U && cmd === MemoryOpConstants.M_PFW def isPrefetchRead = source === DCACHE_PREFETCH_SOURCE.U && cmd === MemoryOpConstants.M_PFR def hit = req_coh.isValid() } class MissReqStoreData(implicit p: Parameters) extends DCacheBundle { // store data and store mask will be written to miss queue entry // 1 cycle after req.fire() and meta write val store_data = UInt((cfg.blockBytes * 8).W) val store_mask = UInt(cfg.blockBytes.W) } class MissQueueRefillInfo(implicit p: Parameters) extends MissReqStoreData { // refill_info for mainpipe req awake val miss_param = UInt(TLPermissions.bdWidth.W) val miss_dirty = Bool() val error = Bool() } class MissReq(implicit p: Parameters) extends MissReqWoStoreData { // store data and store mask will be written to miss queue entry // 1 cycle after req.fire() and meta write val store_data = UInt((cfg.blockBytes * 8).W) val store_mask = UInt(cfg.blockBytes.W) def toMissReqStoreData(): MissReqStoreData = { val out = Wire(new MissReqStoreData) out.store_data := store_data out.store_mask := store_mask out } def toMissReqWoStoreData(): MissReqWoStoreData = { this.viewAsSupertype(new MissReqWoStoreData) } } class MissResp(implicit p: Parameters) extends DCacheBundle { val id = UInt(log2Up(cfg.nMissEntries).W) // cache miss request is handled by miss queue, either merged or newly allocated val handled = Bool() // cache req missed, merged into one of miss queue entries // i.e. !miss_merged means this access is the first miss for this cacheline val merged = Bool() } /** * miss queue enq logic: enq is now splited into 2 cycles * +---------------------------------------------------------------------+ pipeline reg +-------------------------+ * + s0: enq source arbiter, judge mshr alloc or merge + +-------+ + s1: real alloc or merge + * + +-----+ primary_fire? -> + | alloc | + + * + mainpipe -> req0 -> | | secondary_fire? -> + | merge | + + * + loadpipe0 -> req1 -> | arb | -> req -> + -> | req | -> + + * + loadpipe1 -> req2 -> | | mshr id -> + | id | + + * + +-----+ + +-------+ + + * +---------------------------------------------------------------------+ +-------------------------+ */ // a pipeline reg between MissReq and MissEntry class MissReqPipeRegBundle(edge: TLEdgeOut)(implicit p: Parameters) extends DCacheBundle with HasCircularQueuePtrHelper { val req = new MissReq // this request is about to merge to an existing mshr val merge = Bool() // this request is about to allocate a new mshr val alloc = Bool() val cancel = Bool() val mshr_id = UInt(log2Up(cfg.nMissEntries).W) def reg_valid(): Bool = { (merge || alloc) } def matched(new_req: MissReq): Bool = { val block_match = get_block(req.addr) === get_block(new_req.addr) block_match && reg_valid() && !(req.isFromPrefetch) } def prefetch_late_en(new_req: MissReqWoStoreData, new_req_valid: Bool): Bool = { val block_match = get_block(req.addr) === get_block(new_req.addr) new_req_valid && alloc && block_match && (req.isFromPrefetch) && !(new_req.isFromPrefetch) } def reject_req(new_req: MissReq): Bool = { val block_match = get_block(req.addr) === get_block(new_req.addr) val alias_match = is_alias_match(req.vaddr, new_req.vaddr) val merge_load = (req.isFromLoad || req.isFromStore || req.isFromPrefetch) && new_req.isFromLoad // store merge to a store is disabled, sbuffer should avoid this situation, as store to same address should preserver their program order to match memory model val merge_store = (req.isFromLoad || req.isFromPrefetch) && new_req.isFromStore val set_match = addr_to_dcache_set(req.vaddr) === addr_to_dcache_set(new_req.vaddr) Mux( alloc, block_match && (!alias_match || !(merge_load || merge_store)), false.B ) } def merge_req(new_req: MissReq): Bool = { val block_match = get_block(req.addr) === get_block(new_req.addr) val alias_match = is_alias_match(req.vaddr, new_req.vaddr) val merge_load = (req.isFromLoad || req.isFromStore || req.isFromPrefetch) && new_req.isFromLoad // store merge to a store is disabled, sbuffer should avoid this situation, as store to same address should preserver their program order to match memory model val merge_store = (req.isFromLoad || req.isFromPrefetch) && new_req.isFromStore Mux( alloc, block_match && alias_match && (merge_load || merge_store), false.B ) } def merge_isKeyword(new_req: MissReq): Bool = { val load_merge_load = merge_req(new_req) && req.isFromLoad && new_req.isFromLoad val store_merge_load = merge_req(new_req) && req.isFromStore && new_req.isFromLoad val load_merge_load_use_new_req_isKeyword = isAfter(req.lqIdx, new_req.lqIdx) val use_new_req_isKeyword = (load_merge_load && load_merge_load_use_new_req_isKeyword) || store_merge_load Mux ( use_new_req_isKeyword, new_req.vaddr(5).asBool, req.vaddr(5).asBool ) } def isKeyword(): Bool= { val alloc_isKeyword = Mux( alloc, Mux( req.isFromLoad, req.vaddr(5).asBool, false.B), false.B) Mux( merge_req(req), merge_isKeyword(req), alloc_isKeyword ) } // send out acquire as soon as possible // if a new store miss req is about to merge into this pipe reg, don't send acquire now def can_send_acquire(valid: Bool, new_req: MissReq): Bool = { alloc && !(valid && merge_req(new_req) && new_req.isFromStore) } def get_acquire(l2_pf_store_only: Bool): TLBundleA = { val acquire = Wire(new TLBundleA(edge.bundle)) val grow_param = req.req_coh.onAccess(req.cmd)._2 val acquireBlock = edge.AcquireBlock( fromSource = mshr_id, toAddress = get_block_addr(req.addr), lgSize = (log2Up(cfg.blockBytes)).U, growPermissions = grow_param )._2 val acquirePerm = edge.AcquirePerm( fromSource = mshr_id, toAddress = get_block_addr(req.addr), lgSize = (log2Up(cfg.blockBytes)).U, growPermissions = grow_param )._2 acquire := Mux(req.full_overwrite, acquirePerm, acquireBlock) // resolve cache alias by L2 acquire.user.lift(AliasKey).foreach(_ := req.vaddr(13, 12)) // pass vaddr to l2 acquire.user.lift(VaddrKey).foreach(_ := req.vaddr(VAddrBits - 1, blockOffBits)) // miss req pipe reg pass keyword to L2, is priority acquire.echo.lift(IsKeywordKey).foreach(_ := isKeyword()) // trigger prefetch acquire.user.lift(PrefetchKey).foreach(_ := Mux(l2_pf_store_only, req.isFromStore, true.B)) // req source when(req.isFromLoad) { acquire.user.lift(ReqSourceKey).foreach(_ := MemReqSource.CPULoadData.id.U) }.elsewhen(req.isFromStore) { acquire.user.lift(ReqSourceKey).foreach(_ := MemReqSource.CPUStoreData.id.U) }.elsewhen(req.isFromAMO) { acquire.user.lift(ReqSourceKey).foreach(_ := MemReqSource.CPUAtomicData.id.U) }.otherwise { acquire.user.lift(ReqSourceKey).foreach(_ := MemReqSource.L1DataPrefetch.id.U) } acquire } def block_match(release_addr: UInt): Bool = { reg_valid() && get_block(req.addr) === get_block(release_addr) } } class CMOUnit(edge: TLEdgeOut)(implicit p: Parameters) extends DCacheModule { val io = IO(new Bundle() { val req = Flipped(DecoupledIO(new CMOReq)) val req_chanA = DecoupledIO(new TLBundleA(edge.bundle)) val resp_chanD = Flipped(DecoupledIO(new TLBundleD(edge.bundle))) val resp_to_lsq = DecoupledIO(new CMOResp) }) val s_idle :: s_sreq :: s_wresp :: s_lsq_resp :: Nil = Enum(4) val state = RegInit(s_idle) val state_next = WireInit(state) val req = RegEnable(io.req.bits, io.req.fire) val nderr = RegInit(false.B) state := state_next switch (state) { is(s_idle) { when (io.req.fire) { state_next := s_sreq nderr := false.B } } is(s_sreq) { when (io.req_chanA.fire) { state_next := s_wresp } } is(s_wresp) { when (io.resp_chanD.fire) { state_next := s_lsq_resp nderr := io.resp_chanD.bits.denied || io.resp_chanD.bits.corrupt } } is(s_lsq_resp) { when (io.resp_to_lsq.fire) { state_next := s_idle } } } io.req.ready := state === s_idle io.req_chanA.valid := state === s_sreq io.req_chanA.bits := edge.CacheBlockOperation( fromSource = (cfg.nMissEntries + 1).U, toAddress = req.address, lgSize = (log2Up(cfg.blockBytes)).U, opcode = req.opcode )._2 io.resp_chanD.ready := state === s_wresp io.resp_to_lsq.valid := state === s_lsq_resp io.resp_to_lsq.bits.address := req.address io.resp_to_lsq.bits.nderr := nderr assert(!(state =/= s_idle && io.req.valid)) assert(!(state =/= s_wresp && io.resp_chanD.valid)) } class MissEntry(edge: TLEdgeOut, reqNum: Int)(implicit p: Parameters) extends DCacheModule with HasCircularQueuePtrHelper { val io = IO(new Bundle() { val hartId = Input(UInt(hartIdLen.W)) // MSHR ID val id = Input(UInt(log2Up(cfg.nMissEntries).W)) // client requests // MSHR update request, MSHR state and addr will be updated when req.fire val req = Flipped(ValidIO(new MissReqWoStoreData)) val wbq_block_miss_req = Input(Bool()) // pipeline reg val miss_req_pipe_reg = Input(new MissReqPipeRegBundle(edge)) // allocate this entry for new req val primary_valid = Input(Bool()) // this entry is free and can be allocated to new reqs val primary_ready = Output(Bool()) // this entry is busy, but it can merge the new req val secondary_ready = Output(Bool()) // this entry is busy and it can not merge the new req val secondary_reject = Output(Bool()) // way selected for replacing, used to support plru update // bus val mem_acquire = DecoupledIO(new TLBundleA(edge.bundle)) val mem_grant = Flipped(DecoupledIO(new TLBundleD(edge.bundle))) val mem_finish = DecoupledIO(new TLBundleE(edge.bundle)) val queryME = Vec(reqNum, Flipped(new DCacheMEQueryIOBundle)) // send refill info to load queue, useless now val refill_to_ldq = ValidIO(new Refill) // replace pipe val l2_hint = Input(Valid(new L2ToL1Hint())) // Hint from L2 Cache // main pipe: amo miss val main_pipe_req = DecoupledIO(new MainPipeReq) val main_pipe_resp = Input(Bool()) val main_pipe_refill_resp = Input(Bool()) val main_pipe_replay = Input(Bool()) // for main pipe s2 val refill_info = ValidIO(new MissQueueRefillInfo) val block_addr = ValidIO(UInt(PAddrBits.W)) val req_addr = ValidIO(UInt(PAddrBits.W)) val req_handled_by_this_entry = Output(Bool()) val forwardInfo = Output(new MissEntryForwardIO) val l2_pf_store_only = Input(Bool()) // whether the pipeline reg has send out an acquire val acquire_fired_by_pipe_reg = Input(Bool()) val memSetPattenDetected = Input(Bool()) val perf_pending_prefetch = Output(Bool()) val perf_pending_normal = Output(Bool()) val rob_head_query = new DCacheBundle { val vaddr = Input(UInt(VAddrBits.W)) val query_valid = Input(Bool()) val resp = Output(Bool()) def hit(e_vaddr: UInt): Bool = { require(e_vaddr.getWidth == VAddrBits) query_valid && vaddr(VAddrBits - 1, DCacheLineOffset) === e_vaddr(VAddrBits - 1, DCacheLineOffset) } } val latency_monitor = new DCacheBundle { val load_miss_refilling = Output(Bool()) val store_miss_refilling = Output(Bool()) val amo_miss_refilling = Output(Bool()) val pf_miss_refilling = Output(Bool()) } val prefetch_info = new DCacheBundle { val late_prefetch = Output(Bool()) } val nMaxPrefetchEntry = Input(UInt(64.W)) val matched = Output(Bool()) val l1Miss = Output(Bool()) }) assert(!RegNext(io.primary_valid && !io.primary_ready)) val req = Reg(new MissReqWoStoreData) val req_primary_fire = Reg(new MissReqWoStoreData) // for perf use val req_store_mask = Reg(UInt(cfg.blockBytes.W)) val req_valid = RegInit(false.B) val set = addr_to_dcache_set(req.vaddr) // initial keyword val isKeyword = RegInit(false.B) val miss_req_pipe_reg_bits = io.miss_req_pipe_reg.req val input_req_is_prefetch = isPrefetch(miss_req_pipe_reg_bits.cmd) val s_acquire = RegInit(true.B) val s_grantack = RegInit(true.B) val s_mainpipe_req = RegInit(true.B) val w_grantfirst = RegInit(true.B) val w_grantlast = RegInit(true.B) val w_mainpipe_resp = RegInit(true.B) val w_refill_resp = RegInit(true.B) val w_l2hint = RegInit(true.B) val mainpipe_req_fired = RegInit(true.B) val release_entry = s_grantack && w_mainpipe_resp && w_refill_resp val acquire_not_sent = !s_acquire && !io.mem_acquire.ready val data_not_refilled = !w_grantfirst val error = RegInit(false.B) val prefetch = RegInit(false.B) val access = RegInit(false.B) val should_refill_data_reg = Reg(Bool()) val should_refill_data = WireInit(should_refill_data_reg) val should_replace = RegInit(false.B) val full_overwrite = Reg(Bool()) val (_, _, refill_done, refill_count) = edge.count(io.mem_grant) val grant_param = Reg(UInt(TLPermissions.bdWidth.W)) // refill data with store data, this reg will be used to store: // 1. store data (if needed), before l2 refill data // 2. store data and l2 refill data merged result (i.e. new cacheline taht will be write to data array) val refill_and_store_data = Reg(Vec(blockRows, UInt(rowBits.W))) // raw data refilled to l1 by l2 val refill_data_raw = Reg(Vec(blockBytes/beatBytes, UInt(beatBits.W))) // allocate current miss queue entry for a miss req val primary_fire = WireInit(io.req.valid && io.primary_ready && io.primary_valid && !io.req.bits.cancel && !io.wbq_block_miss_req) val primary_accept = WireInit(io.req.valid && io.primary_ready && io.primary_valid && !io.req.bits.cancel) // merge miss req to current miss queue entry val secondary_fire = WireInit(io.req.valid && io.secondary_ready && !io.req.bits.cancel && !io.wbq_block_miss_req) val secondary_accept = WireInit(io.req.valid && io.secondary_ready && !io.req.bits.cancel) val req_handled_by_this_entry = primary_accept || secondary_accept // for perf use val secondary_fired = RegInit(false.B) io.perf_pending_prefetch := req_valid && prefetch && !secondary_fired io.perf_pending_normal := req_valid && (!prefetch || secondary_fired) io.rob_head_query.resp := io.rob_head_query.hit(req.vaddr) && req_valid io.req_handled_by_this_entry := req_handled_by_this_entry when (release_entry && req_valid) { req_valid := false.B } when (io.miss_req_pipe_reg.alloc && !io.miss_req_pipe_reg.cancel) { assert(RegNext(primary_fire), "after 1 cycle of primary_fire, entry will be allocated") req_valid := true.B req := miss_req_pipe_reg_bits.toMissReqWoStoreData() req_primary_fire := miss_req_pipe_reg_bits.toMissReqWoStoreData() req.addr := get_block_addr(miss_req_pipe_reg_bits.addr) //only load miss need keyword isKeyword := Mux(miss_req_pipe_reg_bits.isFromLoad, miss_req_pipe_reg_bits.vaddr(5).asBool,false.B) s_acquire := io.acquire_fired_by_pipe_reg s_grantack := false.B s_mainpipe_req := false.B w_grantfirst := false.B w_grantlast := false.B w_l2hint := false.B mainpipe_req_fired := false.B when(miss_req_pipe_reg_bits.isFromStore) { req_store_mask := miss_req_pipe_reg_bits.store_mask for (i <- 0 until blockRows) { refill_and_store_data(i) := miss_req_pipe_reg_bits.store_data(rowBits * (i + 1) - 1, rowBits * i) } } full_overwrite := miss_req_pipe_reg_bits.isFromStore && miss_req_pipe_reg_bits.full_overwrite when (!miss_req_pipe_reg_bits.isFromAMO) { w_refill_resp := false.B } when (miss_req_pipe_reg_bits.isFromAMO) { w_mainpipe_resp := false.B } should_refill_data_reg := miss_req_pipe_reg_bits.isFromLoad error := false.B prefetch := input_req_is_prefetch && !io.miss_req_pipe_reg.prefetch_late_en(io.req.bits, io.req.valid) access := false.B secondary_fired := false.B } when (io.miss_req_pipe_reg.merge && !io.miss_req_pipe_reg.cancel) { assert(RegNext(secondary_fire) || RegNext(RegNext(primary_fire)), "after 1 cycle of secondary_fire or 2 cycle of primary_fire, entry will be merged") assert(miss_req_pipe_reg_bits.req_coh.state <= req.req_coh.state || (prefetch && !access)) assert(!(miss_req_pipe_reg_bits.isFromAMO || req.isFromAMO)) // use the most uptodate meta req.req_coh := miss_req_pipe_reg_bits.req_coh isKeyword := Mux( before_req_sent_can_merge(miss_req_pipe_reg_bits), before_req_sent_merge_iskeyword(miss_req_pipe_reg_bits), isKeyword) assert(!miss_req_pipe_reg_bits.isFromPrefetch, "can not merge a prefetch req, late prefetch should always be ignored!") when (miss_req_pipe_reg_bits.isFromStore) { req := miss_req_pipe_reg_bits req.addr := get_block_addr(miss_req_pipe_reg_bits.addr) req_store_mask := miss_req_pipe_reg_bits.store_mask for (i <- 0 until blockRows) { refill_and_store_data(i) := miss_req_pipe_reg_bits.store_data(rowBits * (i + 1) - 1, rowBits * i) } full_overwrite := miss_req_pipe_reg_bits.isFromStore && miss_req_pipe_reg_bits.full_overwrite assert(is_alias_match(req.vaddr, miss_req_pipe_reg_bits.vaddr), "alias bits should be the same when merging store") } should_refill_data := should_refill_data_reg || miss_req_pipe_reg_bits.isFromLoad should_refill_data_reg := should_refill_data when (!input_req_is_prefetch) { access := true.B // when merge non-prefetch req, set access bit } secondary_fired := true.B } when (io.mem_acquire.fire) { s_acquire := true.B } // merge data refilled by l2 and store data, update miss queue entry, gen refill_req val new_data = Wire(Vec(blockRows, UInt(rowBits.W))) val new_mask = Wire(Vec(blockRows, UInt(rowBytes.W))) // merge refilled data and store data (if needed) def mergePutData(old_data: UInt, new_data: UInt, wmask: UInt): UInt = { val full_wmask = FillInterleaved(8, wmask) (~full_wmask & old_data | full_wmask & new_data) } for (i <- 0 until blockRows) { // new_data(i) := req.store_data(rowBits * (i + 1) - 1, rowBits * i) new_data(i) := refill_and_store_data(i) // we only need to merge data for Store new_mask(i) := Mux(req.isFromStore, req_store_mask(rowBytes * (i + 1) - 1, rowBytes * i), 0.U) } val hasData = RegInit(true.B) val isDirty = RegInit(false.B) when (io.mem_grant.fire) { w_grantfirst := true.B grant_param := io.mem_grant.bits.param when (edge.hasData(io.mem_grant.bits)) { // GrantData when (isKeyword) { for (i <- 0 until beatRows) { val idx = ((refill_count << log2Floor(beatRows)) + i.U) ^ 4.U val grant_row = io.mem_grant.bits.data(rowBits * (i + 1) - 1, rowBits * i) refill_and_store_data(idx) := mergePutData(grant_row, new_data(idx), new_mask(idx)) } } .otherwise{ for (i <- 0 until beatRows) { val idx = (refill_count << log2Floor(beatRows)) + i.U val grant_row = io.mem_grant.bits.data(rowBits * (i + 1) - 1, rowBits * i) refill_and_store_data(idx) := mergePutData(grant_row, new_data(idx), new_mask(idx)) } } w_grantlast := w_grantlast || refill_done hasData := true.B }.otherwise { // Grant assert(full_overwrite) for (i <- 0 until blockRows) { refill_and_store_data(i) := new_data(i) } w_grantlast := true.B hasData := false.B } error := io.mem_grant.bits.denied || io.mem_grant.bits.corrupt || error refill_data_raw(refill_count ^ isKeyword) := io.mem_grant.bits.data isDirty := io.mem_grant.bits.echo.lift(DirtyKey).getOrElse(false.B) } when (io.mem_finish.fire) { s_grantack := true.B } when (io.main_pipe_req.fire) { s_mainpipe_req := true.B mainpipe_req_fired := true.B } when (io.main_pipe_replay) { s_mainpipe_req := false.B } when (io.main_pipe_resp) { w_mainpipe_resp := true.B } when(io.main_pipe_refill_resp) { w_refill_resp := true.B } when (io.l2_hint.valid) { w_l2hint := true.B } def before_req_sent_can_merge(new_req: MissReqWoStoreData): Bool = { // acquire_not_sent && (new_req.isFromLoad || new_req.isFromStore) // Since most acquire requests have been issued from pipe_reg, // the number of such merge situations is currently small, // So dont Merge anything for better timing. false.B } def before_data_refill_can_merge(new_req: MissReqWoStoreData): Bool = { data_not_refilled && new_req.isFromLoad } // Note that late prefetch will be ignored def should_merge(new_req: MissReqWoStoreData): Bool = { val block_match = get_block(req.addr) === get_block(new_req.addr) val alias_match = is_alias_match(req.vaddr, new_req.vaddr) block_match && alias_match && ( before_req_sent_can_merge(new_req) || before_data_refill_can_merge(new_req) ) } def before_req_sent_merge_iskeyword(new_req: MissReqWoStoreData): Bool = { val need_check_isKeyword = acquire_not_sent && req.isFromLoad && new_req.isFromLoad && should_merge(new_req) val use_new_req_isKeyword = isAfter(req.lqIdx, new_req.lqIdx) Mux( need_check_isKeyword, Mux( use_new_req_isKeyword, new_req.vaddr(5).asBool, req.vaddr(5).asBool ), isKeyword ) } // store can be merged before io.mem_acquire.fire // store can not be merged the cycle that io.mem_acquire.fire // load can be merged before io.mem_grant.fire // // TODO: merge store if possible? mem_acquire may need to be re-issued, // but sbuffer entry can be freed def should_reject(new_req: MissReqWoStoreData): Bool = { val block_match = get_block(req.addr) === get_block(new_req.addr) val set_match = set === addr_to_dcache_set(new_req.vaddr) val alias_match = is_alias_match(req.vaddr, new_req.vaddr) req_valid && Mux( block_match, (!before_req_sent_can_merge(new_req) && !before_data_refill_can_merge(new_req)) || !alias_match, false.B ) } // req_valid will be updated 1 cycle after primary_fire, so next cycle, this entry cannot accept a new req when(GatedValidRegNext(io.id >= ((cfg.nMissEntries).U - io.nMaxPrefetchEntry))) { // can accept prefetch req io.primary_ready := !req_valid && !GatedValidRegNext(primary_fire) }.otherwise { // cannot accept prefetch req except when a memset patten is detected io.primary_ready := !req_valid && (!io.req.bits.isFromPrefetch || io.memSetPattenDetected) && !GatedValidRegNext(primary_fire) } io.secondary_ready := should_merge(io.req.bits) io.secondary_reject := should_reject(io.req.bits) // generate primary_ready & secondary_(ready | reject) for each miss request for (i <- 0 until reqNum) { when(GatedValidRegNext(io.id >= ((cfg.nMissEntries).U - io.nMaxPrefetchEntry))) { io.queryME(i).primary_ready := !req_valid && !GatedValidRegNext(primary_fire) }.otherwise { io.queryME(i).primary_ready := !req_valid && !GatedValidRegNext(primary_fire) && (!io.queryME(i).req.bits.isFromPrefetch || io.memSetPattenDetected) } io.queryME(i).secondary_ready := should_merge(io.queryME(i).req.bits) io.queryME(i).secondary_reject := should_reject(io.queryME(i).req.bits) } // should not allocate, merge or reject at the same time assert(RegNext(PopCount(Seq(io.primary_ready, io.secondary_ready, io.secondary_reject)) <= 1.U || !io.req.valid)) val refill_data_splited = WireInit(VecInit(Seq.tabulate(cfg.blockBytes * 8 / l1BusDataWidth)(i => { val data = refill_and_store_data.asUInt data((i + 1) * l1BusDataWidth - 1, i * l1BusDataWidth) }))) // when granted data is all ready, wakeup lq's miss load val refill_to_ldq_en = !w_grantlast && io.mem_grant.fire io.refill_to_ldq.valid := GatedValidRegNext(refill_to_ldq_en) io.refill_to_ldq.bits.addr := RegEnable(req.addr + ((refill_count ^ isKeyword) << refillOffBits), refill_to_ldq_en) io.refill_to_ldq.bits.data := refill_data_splited(RegEnable(refill_count ^ isKeyword, refill_to_ldq_en)) io.refill_to_ldq.bits.error := RegEnable(io.mem_grant.bits.corrupt || io.mem_grant.bits.denied, refill_to_ldq_en) io.refill_to_ldq.bits.refill_done := RegEnable(refill_done && io.mem_grant.fire, refill_to_ldq_en) io.refill_to_ldq.bits.hasdata := hasData io.refill_to_ldq.bits.data_raw := refill_data_raw.asUInt io.refill_to_ldq.bits.id := io.id // if the entry has a pending merge req, wait for it // Note: now, only wait for store, because store may acquire T io.mem_acquire.valid := !s_acquire && !(io.miss_req_pipe_reg.merge && !io.miss_req_pipe_reg.cancel && miss_req_pipe_reg_bits.isFromStore) val grow_param = req.req_coh.onAccess(req.cmd)._2 val acquireBlock = edge.AcquireBlock( fromSource = io.id, toAddress = req.addr, lgSize = (log2Up(cfg.blockBytes)).U, growPermissions = grow_param )._2 val acquirePerm = edge.AcquirePerm( fromSource = io.id, toAddress = req.addr, lgSize = (log2Up(cfg.blockBytes)).U, growPermissions = grow_param )._2 io.mem_acquire.bits := Mux(full_overwrite, acquirePerm, acquireBlock) // resolve cache alias by L2 io.mem_acquire.bits.user.lift(AliasKey).foreach( _ := req.vaddr(13, 12)) // pass vaddr to l2 io.mem_acquire.bits.user.lift(VaddrKey).foreach( _ := req.vaddr(VAddrBits-1, blockOffBits)) // pass keyword to L2 io.mem_acquire.bits.echo.lift(IsKeywordKey).foreach(_ := isKeyword) // trigger prefetch io.mem_acquire.bits.user.lift(PrefetchKey).foreach(_ := Mux(io.l2_pf_store_only, req.isFromStore, true.B)) // req source when(prefetch && !secondary_fired) { io.mem_acquire.bits.user.lift(ReqSourceKey).foreach(_ := MemReqSource.L1DataPrefetch.id.U) }.otherwise { when(req.isFromStore) { io.mem_acquire.bits.user.lift(ReqSourceKey).foreach(_ := MemReqSource.CPUStoreData.id.U) }.elsewhen(req.isFromLoad) { io.mem_acquire.bits.user.lift(ReqSourceKey).foreach(_ := MemReqSource.CPULoadData.id.U) }.elsewhen(req.isFromAMO) { io.mem_acquire.bits.user.lift(ReqSourceKey).foreach(_ := MemReqSource.CPUAtomicData.id.U) }.otherwise { io.mem_acquire.bits.user.lift(ReqSourceKey).foreach(_ := MemReqSource.L1DataPrefetch.id.U) } } require(nSets <= 256) // io.mem_grant.ready := !w_grantlast && s_acquire io.mem_grant.ready := true.B assert(!(io.mem_grant.valid && !(!w_grantlast && s_acquire)), "dcache should always be ready for mem_grant now") val grantack = RegEnable(edge.GrantAck(io.mem_grant.bits), io.mem_grant.fire) assert(RegNext(!io.mem_grant.fire || edge.isRequest(io.mem_grant.bits))) io.mem_finish.valid := !s_grantack && w_grantfirst io.mem_finish.bits := grantack // Send mainpipe_req when receive hint from L2 or receive data without hint io.main_pipe_req.valid := !s_mainpipe_req && (w_l2hint || w_grantlast) io.main_pipe_req.bits := DontCare io.main_pipe_req.bits.miss := true.B io.main_pipe_req.bits.miss_id := io.id io.main_pipe_req.bits.probe := false.B io.main_pipe_req.bits.source := req.source io.main_pipe_req.bits.cmd := req.cmd io.main_pipe_req.bits.vaddr := req.vaddr io.main_pipe_req.bits.addr := req.addr io.main_pipe_req.bits.word_idx := req.word_idx io.main_pipe_req.bits.amo_data := req.amo_data io.main_pipe_req.bits.amo_mask := req.amo_mask io.main_pipe_req.bits.amo_cmp := req.amo_cmp io.main_pipe_req.bits.id := req.id io.main_pipe_req.bits.pf_source := req.pf_source io.main_pipe_req.bits.access := access io.block_addr.valid := req_valid && w_grantlast io.block_addr.bits := req.addr io.req_addr.valid := req_valid io.req_addr.bits := req.addr io.refill_info.valid := req_valid && w_grantlast io.refill_info.bits.store_data := refill_and_store_data.asUInt io.refill_info.bits.store_mask := ~0.U(blockBytes.W) io.refill_info.bits.miss_param := grant_param io.refill_info.bits.miss_dirty := isDirty io.refill_info.bits.error := error XSPerfAccumulate("miss_refill_mainpipe_req", io.main_pipe_req.fire) XSPerfAccumulate("miss_refill_without_hint", io.main_pipe_req.fire && !mainpipe_req_fired && !w_l2hint) XSPerfAccumulate("miss_refill_replay", io.main_pipe_replay) val w_grantfirst_forward_info = Mux(isKeyword, w_grantlast, w_grantfirst) val w_grantlast_forward_info = Mux(isKeyword, w_grantfirst, w_grantlast) io.forwardInfo.inflight := req_valid io.forwardInfo.paddr := req.addr io.forwardInfo.raw_data := refill_and_store_data io.forwardInfo.firstbeat_valid := w_grantfirst_forward_info io.forwardInfo.lastbeat_valid := w_grantlast_forward_info io.forwardInfo.corrupt := error io.matched := req_valid && (get_block(req.addr) === get_block(io.req.bits.addr)) && !prefetch io.prefetch_info.late_prefetch := io.req.valid && !(io.req.bits.isFromPrefetch) && req_valid && (get_block(req.addr) === get_block(io.req.bits.addr)) && prefetch when(io.prefetch_info.late_prefetch) { prefetch := false.B } io.l1Miss := req_valid // refill latency monitor val start_counting = GatedValidRegNext(io.mem_acquire.fire) || (GatedValidRegNextN(primary_fire, 2) && s_acquire) io.latency_monitor.load_miss_refilling := req_valid && req_primary_fire.isFromLoad && BoolStopWatch(start_counting, io.mem_grant.fire && !refill_done, true, true) io.latency_monitor.store_miss_refilling := req_valid && req_primary_fire.isFromStore && BoolStopWatch(start_counting, io.mem_grant.fire && !refill_done, true, true) io.latency_monitor.amo_miss_refilling := req_valid && req_primary_fire.isFromAMO && BoolStopWatch(start_counting, io.mem_grant.fire && !refill_done, true, true) io.latency_monitor.pf_miss_refilling := req_valid && req_primary_fire.isFromPrefetch && BoolStopWatch(start_counting, io.mem_grant.fire && !refill_done, true, true) XSPerfAccumulate("miss_req_primary", primary_fire) XSPerfAccumulate("miss_req_merged", secondary_fire) XSPerfAccumulate("load_miss_penalty_to_use", should_refill_data && BoolStopWatch(primary_fire, io.refill_to_ldq.valid, true) ) XSPerfAccumulate("penalty_between_grantlast_and_release", BoolStopWatch(!RegNext(w_grantlast) && w_grantlast, release_entry, true) ) XSPerfAccumulate("main_pipe_penalty", BoolStopWatch(io.main_pipe_req.fire, io.main_pipe_resp)) XSPerfAccumulate("penalty_blocked_by_channel_A", io.mem_acquire.valid && !io.mem_acquire.ready) XSPerfAccumulate("penalty_waiting_for_channel_D", s_acquire && !w_grantlast && !io.mem_grant.valid) XSPerfAccumulate("penalty_waiting_for_channel_E", io.mem_finish.valid && !io.mem_finish.ready) XSPerfAccumulate("prefetch_req_primary", primary_fire && io.req.bits.source === DCACHE_PREFETCH_SOURCE.U) XSPerfAccumulate("prefetch_req_merged", secondary_fire && io.req.bits.source === DCACHE_PREFETCH_SOURCE.U) XSPerfAccumulate("can_not_send_acquire_because_of_merging_store", !s_acquire && io.miss_req_pipe_reg.merge && io.miss_req_pipe_reg.cancel && miss_req_pipe_reg_bits.isFromStore) val (mshr_penalty_sample, mshr_penalty) = TransactionLatencyCounter(GatedValidRegNextN(primary_fire, 2), release_entry) XSPerfHistogram("miss_penalty", mshr_penalty, mshr_penalty_sample, 0, 20, 1, true, true) XSPerfHistogram("miss_penalty", mshr_penalty, mshr_penalty_sample, 20, 100, 10, true, false) val load_miss_begin = primary_fire && io.req.bits.isFromLoad val refill_finished = GatedValidRegNext(!w_grantlast && refill_done) && should_refill_data val (load_miss_penalty_sample, load_miss_penalty) = TransactionLatencyCounter(load_miss_begin, refill_finished) // not real refill finish time XSPerfHistogram("load_miss_penalty_to_use", load_miss_penalty, load_miss_penalty_sample, 0, 20, 1, true, true) XSPerfHistogram("load_miss_penalty_to_use", load_miss_penalty, load_miss_penalty_sample, 20, 100, 10, true, false) XSPerfHistogram("load_miss_penalty_to_use", load_miss_penalty, load_miss_penalty_sample, 100, 400, 30, true, false) val (a_to_d_penalty_sample, a_to_d_penalty) = TransactionLatencyCounter(start_counting, GatedValidRegNext(io.mem_grant.fire && refill_done)) XSPerfHistogram("a_to_d_penalty", a_to_d_penalty, a_to_d_penalty_sample, 0, 20, 1, true, true) XSPerfHistogram("a_to_d_penalty", a_to_d_penalty, a_to_d_penalty_sample, 20, 100, 10, true, false) } class MissQueue(edge: TLEdgeOut, reqNum: Int)(implicit p: Parameters) extends DCacheModule with HasPerfEvents { val io = IO(new Bundle { val hartId = Input(UInt(hartIdLen.W)) val req = Flipped(DecoupledIO(new MissReq)) val resp = Output(new MissResp) val refill_to_ldq = ValidIO(new Refill) // cmo req val cmo_req = Flipped(DecoupledIO(new CMOReq)) val cmo_resp = DecoupledIO(new CMOResp) val queryMQ = Vec(reqNum, Flipped(new DCacheMQQueryIOBundle)) val mem_acquire = DecoupledIO(new TLBundleA(edge.bundle)) val mem_grant = Flipped(DecoupledIO(new TLBundleD(edge.bundle))) val mem_finish = DecoupledIO(new TLBundleE(edge.bundle)) val l2_hint = Input(Valid(new L2ToL1Hint())) // Hint from L2 Cache val main_pipe_req = DecoupledIO(new MainPipeReq) val main_pipe_resp = Flipped(ValidIO(new MainPipeResp)) val mainpipe_info = Input(new MainPipeInfoToMQ) val refill_info = ValidIO(new MissQueueRefillInfo) // block probe val probe_addr = Input(UInt(PAddrBits.W)) val probe_block = Output(Bool()) // block replace when release an addr valid in mshr val replace_addr = Flipped(ValidIO(UInt(PAddrBits.W))) val replace_block = Output(Bool()) // req blocked by wbq val wbq_block_miss_req = Input(Bool()) val full = Output(Bool()) // forward missqueue val forward = Vec(LoadPipelineWidth, new LduToMissqueueForwardIO) val l2_pf_store_only = Input(Bool()) val memSetPattenDetected = Output(Bool()) val lqEmpty = Input(Bool()) val prefetch_info = new Bundle { val naive = new Bundle { val late_miss_prefetch = Output(Bool()) } val fdp = new Bundle { val late_miss_prefetch = Output(Bool()) val prefetch_monitor_cnt = Output(Bool()) val total_prefetch = Output(Bool()) } } val debugTopDown = new DCacheTopDownIO val l1Miss = Output(Bool()) }) // 128KBL1: FIXME: provide vaddr for l2 val entries = Seq.fill(cfg.nMissEntries)(Module(new MissEntry(edge, reqNum))) val cmo_unit = Module(new CMOUnit(edge)) val miss_req_pipe_reg = RegInit(0.U.asTypeOf(new MissReqPipeRegBundle(edge))) val acquire_from_pipereg = Wire(chiselTypeOf(io.mem_acquire)) val primary_ready_vec = entries.map(_.io.primary_ready) val secondary_ready_vec = entries.map(_.io.secondary_ready) val secondary_reject_vec = entries.map(_.io.secondary_reject) val probe_block_vec = entries.map { case e => e.io.block_addr.valid && e.io.block_addr.bits === io.probe_addr } val merge = ParallelORR(Cat(secondary_ready_vec ++ Seq(miss_req_pipe_reg.merge_req(io.req.bits)))) val reject = ParallelORR(Cat(secondary_reject_vec ++ Seq(miss_req_pipe_reg.reject_req(io.req.bits)))) val alloc = !reject && !merge && ParallelORR(Cat(primary_ready_vec)) val accept = alloc || merge // generate req_ready for each miss request for better timing for (i <- 0 until reqNum) { val _primary_ready_vec = entries.map(_.io.queryME(i).primary_ready) val _secondary_ready_vec = entries.map(_.io.queryME(i).secondary_ready) val _secondary_reject_vec = entries.map(_.io.queryME(i).secondary_reject) val _merge = ParallelORR(Cat(_secondary_ready_vec ++ Seq(miss_req_pipe_reg.merge_req(io.queryMQ(i).req.bits)))) val _reject = ParallelORR(Cat(_secondary_reject_vec ++ Seq(miss_req_pipe_reg.reject_req(io.queryMQ(i).req.bits)))) val _alloc = !_reject && !_merge && ParallelORR(Cat(_primary_ready_vec)) val _accept = _alloc || _merge io.queryMQ(i).ready := _accept } val req_mshr_handled_vec = entries.map(_.io.req_handled_by_this_entry) // merged to pipeline reg val req_pipeline_reg_handled = miss_req_pipe_reg.merge_req(io.req.bits) && io.req.valid assert(PopCount(Seq(req_pipeline_reg_handled, VecInit(req_mshr_handled_vec).asUInt.orR)) <= 1.U, "miss req will either go to mshr or pipeline reg") assert(PopCount(req_mshr_handled_vec) <= 1.U, "Only one mshr can handle a req") io.resp.id := Mux(!req_pipeline_reg_handled, OHToUInt(req_mshr_handled_vec), miss_req_pipe_reg.mshr_id) io.resp.handled := Cat(req_mshr_handled_vec).orR || req_pipeline_reg_handled io.resp.merged := merge /* MissQueue enq logic is now splitted into 2 cycles * */ when(io.req.valid){ miss_req_pipe_reg.req := io.req.bits } // miss_req_pipe_reg.req := io.req.bits miss_req_pipe_reg.alloc := alloc && io.req.valid && !io.req.bits.cancel && !io.wbq_block_miss_req miss_req_pipe_reg.merge := merge && io.req.valid && !io.req.bits.cancel && !io.wbq_block_miss_req miss_req_pipe_reg.cancel := io.wbq_block_miss_req miss_req_pipe_reg.mshr_id := io.resp.id assert(PopCount(Seq(alloc && io.req.valid, merge && io.req.valid)) <= 1.U, "allocate and merge a mshr in same cycle!") val source_except_load_cnt = RegInit(0.U(10.W)) when(VecInit(req_mshr_handled_vec).asUInt.orR || req_pipeline_reg_handled) { when(io.req.bits.isFromLoad) { source_except_load_cnt := 0.U }.otherwise { when(io.req.bits.isFromStore) { source_except_load_cnt := source_except_load_cnt + 1.U } } } val Threshold = 8 val memSetPattenDetected = GatedValidRegNext((source_except_load_cnt >= Threshold.U) && io.lqEmpty) io.memSetPattenDetected := memSetPattenDetected val forwardInfo_vec = VecInit(entries.map(_.io.forwardInfo)) (0 until LoadPipelineWidth).map(i => { val id = io.forward(i).mshrid val req_valid = io.forward(i).valid val paddr = io.forward(i).paddr val (forward_mshr, forwardData) = forwardInfo_vec(id).forward(req_valid, paddr) io.forward(i).forward_result_valid := forwardInfo_vec(id).check(req_valid, paddr) io.forward(i).forward_mshr := forward_mshr io.forward(i).forwardData := forwardData io.forward(i).corrupt := RegNext(forwardInfo_vec(id).corrupt) }) assert(RegNext(PopCount(secondary_ready_vec) <= 1.U || !io.req.valid)) // assert(RegNext(PopCount(secondary_reject_vec) <= 1.U)) // It is possible that one mshr wants to merge a req, while another mshr wants to reject it. // That is, a coming req has the same paddr as that of mshr_0 (merge), // while it has the same set and the same way as mshr_1 (reject). // In this situation, the coming req should be merged by mshr_0 // assert(RegNext(PopCount(Seq(merge, reject)) <= 1.U)) def select_valid_one[T <: Bundle]( in: Seq[DecoupledIO[T]], out: DecoupledIO[T], name: Option[String] = None): Unit = { if (name.nonEmpty) { out.suggestName(s"${name.get}_select") } out.valid := Cat(in.map(_.valid)).orR out.bits := ParallelMux(in.map(_.valid) zip in.map(_.bits)) in.map(_.ready := out.ready) assert(!RegNext(out.valid && PopCount(Cat(in.map(_.valid))) > 1.U)) } io.mem_grant.ready := false.B val nMaxPrefetchEntry = Constantin.createRecord(s"nMaxPrefetchEntry${p(XSCoreParamsKey).HartId}", initValue = 14) entries.zipWithIndex.foreach { case (e, i) => val former_primary_ready = if(i == 0) false.B else Cat((0 until i).map(j => entries(j).io.primary_ready)).orR e.io.hartId := io.hartId e.io.id := i.U e.io.l2_pf_store_only := io.l2_pf_store_only e.io.req.valid := io.req.valid e.io.wbq_block_miss_req := io.wbq_block_miss_req e.io.primary_valid := io.req.valid && !merge && !reject && !former_primary_ready && e.io.primary_ready e.io.req.bits := io.req.bits.toMissReqWoStoreData() e.io.mem_grant.valid := false.B e.io.mem_grant.bits := DontCare when (io.mem_grant.bits.source === i.U) { e.io.mem_grant <> io.mem_grant } when(miss_req_pipe_reg.reg_valid() && miss_req_pipe_reg.mshr_id === i.U) { e.io.miss_req_pipe_reg := miss_req_pipe_reg }.otherwise { e.io.miss_req_pipe_reg := DontCare e.io.miss_req_pipe_reg.merge := false.B e.io.miss_req_pipe_reg.alloc := false.B } e.io.acquire_fired_by_pipe_reg := acquire_from_pipereg.fire e.io.main_pipe_resp := io.main_pipe_resp.valid && io.main_pipe_resp.bits.ack_miss_queue && io.main_pipe_resp.bits.miss_id === i.U e.io.main_pipe_replay := io.mainpipe_info.s2_valid && io.mainpipe_info.s2_replay_to_mq && io.mainpipe_info.s2_miss_id === i.U e.io.main_pipe_refill_resp := io.mainpipe_info.s3_valid && io.mainpipe_info.s3_refill_resp && io.mainpipe_info.s3_miss_id === i.U e.io.memSetPattenDetected := memSetPattenDetected e.io.nMaxPrefetchEntry := nMaxPrefetchEntry e.io.main_pipe_req.ready := io.main_pipe_req.ready for (j <- 0 until reqNum) { e.io.queryME(j).req.valid := io.queryMQ(j).req.valid e.io.queryME(j).req.bits := io.queryMQ(j).req.bits.toMissReqWoStoreData() } when(io.l2_hint.bits.sourceId === i.U) { e.io.l2_hint <> io.l2_hint } .otherwise { e.io.l2_hint.valid := false.B e.io.l2_hint.bits := DontCare } } cmo_unit.io.req <> io.cmo_req io.cmo_resp <> cmo_unit.io.resp_to_lsq when (io.mem_grant.valid && io.mem_grant.bits.opcode === TLMessages.CBOAck) { cmo_unit.io.resp_chanD <> io.mem_grant } .otherwise { cmo_unit.io.resp_chanD.valid := false.B cmo_unit.io.resp_chanD.bits := DontCare } io.req.ready := accept io.refill_to_ldq.valid := Cat(entries.map(_.io.refill_to_ldq.valid)).orR io.refill_to_ldq.bits := ParallelMux(entries.map(_.io.refill_to_ldq.valid) zip entries.map(_.io.refill_to_ldq.bits)) io.refill_info.valid := VecInit(entries.zipWithIndex.map{ case(e,i) => e.io.refill_info.valid && io.mainpipe_info.s2_valid && io.mainpipe_info.s2_miss_id === i.U}).asUInt.orR io.refill_info.bits := Mux1H(entries.zipWithIndex.map{ case(e,i) => (io.mainpipe_info.s2_miss_id === i.U) -> e.io.refill_info.bits }) acquire_from_pipereg.valid := miss_req_pipe_reg.can_send_acquire(io.req.valid, io.req.bits) acquire_from_pipereg.bits := miss_req_pipe_reg.get_acquire(io.l2_pf_store_only) XSPerfAccumulate("acquire_fire_from_pipereg", acquire_from_pipereg.fire) XSPerfAccumulate("pipereg_valid", miss_req_pipe_reg.reg_valid()) val acquire_sources = Seq(cmo_unit.io.req_chanA, acquire_from_pipereg) ++ entries.map(_.io.mem_acquire) TLArbiter.lowest(edge, io.mem_acquire, acquire_sources:_*) TLArbiter.lowest(edge, io.mem_finish, entries.map(_.io.mem_finish):_*) // amo's main pipe req out fastArbiter(entries.map(_.io.main_pipe_req), io.main_pipe_req, Some("main_pipe_req")) io.probe_block := Cat(probe_block_vec).orR io.replace_block := io.replace_addr.valid && Cat(entries.map(e => e.io.req_addr.valid && e.io.req_addr.bits === io.replace_addr.bits) ++ Seq(miss_req_pipe_reg.block_match(io.replace_addr.bits))).orR io.full := ~Cat(entries.map(_.io.primary_ready)).andR // prefetch related io.prefetch_info.naive.late_miss_prefetch := io.req.valid && io.req.bits.isPrefetchRead && (miss_req_pipe_reg.matched(io.req.bits) || Cat(entries.map(_.io.matched)).orR) io.prefetch_info.fdp.late_miss_prefetch := (miss_req_pipe_reg.prefetch_late_en(io.req.bits.toMissReqWoStoreData(), io.req.valid) || Cat(entries.map(_.io.prefetch_info.late_prefetch)).orR) io.prefetch_info.fdp.prefetch_monitor_cnt := io.main_pipe_req.fire io.prefetch_info.fdp.total_prefetch := alloc && io.req.valid && !io.req.bits.cancel && isFromL1Prefetch(io.req.bits.pf_source) // L1MissTrace Chisel DB val debug_miss_trace = Wire(new L1MissTrace) debug_miss_trace.vaddr := io.req.bits.vaddr debug_miss_trace.paddr := io.req.bits.addr debug_miss_trace.source := io.req.bits.source debug_miss_trace.pc := io.req.bits.pc val isWriteL1MissQMissTable = Constantin.createRecord(s"isWriteL1MissQMissTable${p(XSCoreParamsKey).HartId}") val table = ChiselDB.createTable(s"L1MissQMissTrace_hart${p(XSCoreParamsKey).HartId}", new L1MissTrace) table.log(debug_miss_trace, isWriteL1MissQMissTable.orR && io.req.valid && !io.req.bits.cancel && alloc, "MissQueue", clock, reset) // Difftest if (env.EnableDifftest) { val difftest = DifftestModule(new DiffRefillEvent, dontCare = true) difftest.coreid := io.hartId difftest.index := 1.U difftest.valid := io.refill_to_ldq.valid && io.refill_to_ldq.bits.hasdata && io.refill_to_ldq.bits.refill_done difftest.addr := io.refill_to_ldq.bits.addr difftest.data := io.refill_to_ldq.bits.data_raw.asTypeOf(difftest.data) difftest.idtfr := DontCare } // Perf count XSPerfAccumulate("miss_req", io.req.fire && !io.req.bits.cancel) XSPerfAccumulate("miss_req_allocate", io.req.fire && !io.req.bits.cancel && alloc) XSPerfAccumulate("miss_req_load_allocate", io.req.fire && !io.req.bits.cancel && alloc && io.req.bits.isFromLoad) XSPerfAccumulate("miss_req_store_allocate", io.req.fire && !io.req.bits.cancel && alloc && io.req.bits.isFromStore) XSPerfAccumulate("miss_req_amo_allocate", io.req.fire && !io.req.bits.cancel && alloc && io.req.bits.isFromAMO) XSPerfAccumulate("miss_req_prefetch_allocate", io.req.fire && !io.req.bits.cancel && alloc && io.req.bits.isFromPrefetch) XSPerfAccumulate("miss_req_merge_load", io.req.fire && !io.req.bits.cancel && merge && io.req.bits.isFromLoad) XSPerfAccumulate("miss_req_reject_load", io.req.valid && !io.req.bits.cancel && reject && io.req.bits.isFromLoad) XSPerfAccumulate("probe_blocked_by_miss", io.probe_block) XSPerfAccumulate("prefetch_primary_fire", io.req.fire && !io.req.bits.cancel && alloc && io.req.bits.isFromPrefetch) XSPerfAccumulate("prefetch_secondary_fire", io.req.fire && !io.req.bits.cancel && merge && io.req.bits.isFromPrefetch) XSPerfAccumulate("memSetPattenDetected", memSetPattenDetected) val max_inflight = RegInit(0.U((log2Up(cfg.nMissEntries) + 1).W)) val num_valids = PopCount(~Cat(primary_ready_vec).asUInt) when (num_valids > max_inflight) { max_inflight := num_valids } // max inflight (average) = max_inflight_total / cycle cnt XSPerfAccumulate("max_inflight", max_inflight) QueuePerf(cfg.nMissEntries, num_valids, num_valids === cfg.nMissEntries.U) io.full := num_valids === cfg.nMissEntries.U io.l1Miss := RegNext(Cat(entries.map(_.io.l1Miss)).orR) XSPerfHistogram("num_valids", num_valids, true.B, 0, cfg.nMissEntries, 1) XSPerfHistogram("L1DMLP_CPUData", PopCount(VecInit(entries.map(_.io.perf_pending_normal)).asUInt), true.B, 0, cfg.nMissEntries, 1) XSPerfHistogram("L1DMLP_Prefetch", PopCount(VecInit(entries.map(_.io.perf_pending_prefetch)).asUInt), true.B, 0, cfg.nMissEntries, 1) XSPerfHistogram("L1DMLP_Total", num_valids, true.B, 0, cfg.nMissEntries, 1) XSPerfAccumulate("miss_load_refill_latency", PopCount(entries.map(_.io.latency_monitor.load_miss_refilling))) XSPerfAccumulate("miss_store_refill_latency", PopCount(entries.map(_.io.latency_monitor.store_miss_refilling))) XSPerfAccumulate("miss_amo_refill_latency", PopCount(entries.map(_.io.latency_monitor.amo_miss_refilling))) XSPerfAccumulate("miss_pf_refill_latency", PopCount(entries.map(_.io.latency_monitor.pf_miss_refilling))) val rob_head_miss_in_dcache = VecInit(entries.map(_.io.rob_head_query.resp)).asUInt.orR entries.foreach { case e => { e.io.rob_head_query.query_valid := io.debugTopDown.robHeadVaddr.valid e.io.rob_head_query.vaddr := io.debugTopDown.robHeadVaddr.bits } } io.debugTopDown.robHeadMissInDCache := rob_head_miss_in_dcache val perfValidCount = RegNext(PopCount(entries.map(entry => (!entry.io.primary_ready)))) val perfEvents = Seq( ("dcache_missq_req ", io.req.fire), ("dcache_missq_1_4_valid", (perfValidCount < (cfg.nMissEntries.U/4.U))), ("dcache_missq_2_4_valid", (perfValidCount > (cfg.nMissEntries.U/4.U)) & (perfValidCount <= (cfg.nMissEntries.U/2.U))), ("dcache_missq_3_4_valid", (perfValidCount > (cfg.nMissEntries.U/2.U)) & (perfValidCount <= (cfg.nMissEntries.U*3.U/4.U))), ("dcache_missq_4_4_valid", (perfValidCount > (cfg.nMissEntries.U*3.U/4.U))), ) generatePerfEvent() }