/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.cache import chisel3._ import chisel3.experimental.ExtModule import chisel3.util._ import coupledL2.VaddrField import coupledL2.IsKeywordField import coupledL2.IsKeywordKey import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.util.BundleFieldBase import huancun.{AliasField, PrefetchField} import org.chipsalliance.cde.config.Parameters import utility._ import utils._ import xiangshan._ import xiangshan.backend.Bundles.DynInst import xiangshan.backend.rob.RobDebugRollingIO import xiangshan.cache.wpu._ import xiangshan.mem.{AddPipelineReg, HasL1PrefetchSourceParameter} import xiangshan.mem.prefetch._ import xiangshan.mem.LqPtr // DCache specific parameters case class DCacheParameters ( nSets: Int = 128, nWays: Int = 8, rowBits: Int = 64, tagECC: Option[String] = None, dataECC: Option[String] = None, replacer: Option[String] = Some("setplru"), updateReplaceOn2ndmiss: Boolean = true, nMissEntries: Int = 1, nProbeEntries: Int = 1, nReleaseEntries: Int = 1, nMMIOEntries: Int = 1, nMMIOs: Int = 1, blockBytes: Int = 64, nMaxPrefetchEntry: Int = 1, alwaysReleaseData: Boolean = false, isKeywordBitsOpt: Option[Boolean] = Some(true), enableDataEcc: Boolean = false, enableTagEcc: Boolean = false, cacheCtrlAddressOpt: Option[AddressSet] = None, ) extends L1CacheParameters { // if sets * blockBytes > 4KB(page size), // cache alias will happen, // we need to avoid this by recoding additional bits in L2 cache val setBytes = nSets * blockBytes val aliasBitsOpt = if(setBytes > pageSize) Some(log2Ceil(setBytes / pageSize)) else None def tagCode: Code = Code.fromString(tagECC) def dataCode: Code = Code.fromString(dataECC) } // Physical Address // -------------------------------------- // | Physical Tag | PIndex | Offset | // -------------------------------------- // | // DCacheTagOffset // // Virtual Address // -------------------------------------- // | Above index | Set | Bank | Offset | // -------------------------------------- // | | | | // | | | 0 // | | DCacheBankOffset // | DCacheSetOffset // DCacheAboveIndexOffset // Default DCache size = 64 sets * 8 ways * 8 banks * 8 Byte = 32K Byte trait HasDCacheParameters extends HasL1CacheParameters with HasL1PrefetchSourceParameter{ val cacheParams = dcacheParameters val cfg = cacheParams def blockProbeAfterGrantCycles = 8 // give the processor some time to issue a request after a grant def nSourceType = 10 def sourceTypeWidth = log2Up(nSourceType) // non-prefetch source < 3 def LOAD_SOURCE = 0 def STORE_SOURCE = 1 def AMO_SOURCE = 2 // prefetch source >= 3 def DCACHE_PREFETCH_SOURCE = 3 def SOFT_PREFETCH = 4 // the following sources are only used inside SMS def HW_PREFETCH_AGT = 5 def HW_PREFETCH_PHT_CUR = 6 def HW_PREFETCH_PHT_INC = 7 def HW_PREFETCH_PHT_DEC = 8 def HW_PREFETCH_BOP = 9 def HW_PREFETCH_STRIDE = 10 def BLOOM_FILTER_ENTRY_NUM = 4096 // each source use a id to distinguish its multiple reqs def reqIdWidth = log2Up(nEntries) max log2Up(StoreBufferSize) require(isPow2(cfg.nMissEntries)) // TODO // require(isPow2(cfg.nReleaseEntries)) require(cfg.nMissEntries < cfg.nReleaseEntries) val nEntries = cfg.nMissEntries + cfg.nReleaseEntries + 1 // nMissEntries + nReleaseEntries + 1CMO_Entry val releaseIdBase = cfg.nMissEntries + 1 val EnableDataEcc = cacheParams.enableDataEcc val EnableTagEcc = cacheParams.enableTagEcc // banked dcache support val DCacheSetDiv = 1 val DCacheSets = cacheParams.nSets val DCacheWayDiv = 2 val DCacheWays = cacheParams.nWays val DCacheBanks = 8 // hardcoded val DCacheDupNum = 16 val DCacheSRAMRowBits = cacheParams.rowBits // hardcoded val DCacheWordBits = 64 // hardcoded val DCacheWordBytes = DCacheWordBits / 8 val MaxPrefetchEntry = cacheParams.nMaxPrefetchEntry val DCacheVWordBytes = VLEN / 8 require(DCacheSRAMRowBits == 64) val DCacheSetDivBits = log2Ceil(DCacheSetDiv) val DCacheSetBits = log2Ceil(DCacheSets) val DCacheSizeBits = DCacheSRAMRowBits * DCacheBanks * DCacheWays * DCacheSets val DCacheSizeBytes = DCacheSizeBits / 8 val DCacheSizeWords = DCacheSizeBits / 64 // TODO val DCacheSameVPAddrLength = 12 val DCacheSRAMRowBytes = DCacheSRAMRowBits / 8 val DCacheWordOffset = log2Up(DCacheWordBytes) val DCacheVWordOffset = log2Up(DCacheVWordBytes) val DCacheBankOffset = log2Up(DCacheSRAMRowBytes) val DCacheSetOffset = DCacheBankOffset + log2Up(DCacheBanks) val DCacheAboveIndexOffset = DCacheSetOffset + log2Up(DCacheSets) val DCacheTagOffset = DCacheAboveIndexOffset min DCacheSameVPAddrLength val DCacheLineOffset = DCacheSetOffset def encWordBits = cacheParams.dataCode.width(wordBits) def encRowBits = encWordBits * rowWords // for DuplicatedDataArray only def eccBits = encWordBits - wordBits def encTagBits = if (EnableTagEcc) cacheParams.tagCode.width(tagBits) else tagBits def tagECCBits = encTagBits - tagBits def encDataBits = if (EnableDataEcc) cacheParams.dataCode.width(DCacheSRAMRowBits) else DCacheSRAMRowBits def dataECCBits = encDataBits - DCacheSRAMRowBits // L1 DCache controller val cacheCtrlParamsOpt = OptionWrapper( cacheParams.cacheCtrlAddressOpt.nonEmpty, L1CacheCtrlParams(cacheParams.cacheCtrlAddressOpt.get) ) // uncache val uncacheIdxBits = log2Up(VirtualLoadQueueMaxStoreQueueSize + 1) // hardware prefetch parameters // high confidence hardware prefetch port val HighConfHWPFLoadPort = LoadPipelineWidth - 1 // use the last load port by default val IgnorePrefetchConfidence = false // parameters about duplicating regs to solve fanout // In Main Pipe: // tag_write.ready -> data_write.valid * 8 banks // tag_write.ready -> meta_write.valid // tag_write.ready -> tag_write.valid // tag_write.ready -> err_write.valid // tag_write.ready -> wb.valid val nDupTagWriteReady = DCacheBanks + 4 // In Main Pipe: // data_write.ready -> data_write.valid * 8 banks // data_write.ready -> meta_write.valid // data_write.ready -> tag_write.valid // data_write.ready -> err_write.valid // data_write.ready -> wb.valid val nDupDataWriteReady = DCacheBanks + 4 val nDupWbReady = DCacheBanks + 4 val nDupStatus = nDupTagWriteReady + nDupDataWriteReady val dataWritePort = 0 val metaWritePort = DCacheBanks val tagWritePort = metaWritePort + 1 val errWritePort = tagWritePort + 1 val wbPort = errWritePort + 1 def set_to_dcache_div(set: UInt) = { require(set.getWidth >= DCacheSetBits) if (DCacheSetDivBits == 0) 0.U else set(DCacheSetDivBits-1, 0) } def set_to_dcache_div_set(set: UInt) = { require(set.getWidth >= DCacheSetBits) set(DCacheSetBits - 1, DCacheSetDivBits) } def addr_to_dcache_bank(addr: UInt) = { require(addr.getWidth >= DCacheSetOffset) addr(DCacheSetOffset-1, DCacheBankOffset) } def addr_to_dcache_div(addr: UInt) = { require(addr.getWidth >= DCacheAboveIndexOffset) if(DCacheSetDivBits == 0) 0.U else addr(DCacheSetOffset + DCacheSetDivBits - 1, DCacheSetOffset) } def addr_to_dcache_div_set(addr: UInt) = { require(addr.getWidth >= DCacheAboveIndexOffset) addr(DCacheAboveIndexOffset - 1, DCacheSetOffset + DCacheSetDivBits) } def addr_to_dcache_set(addr: UInt) = { require(addr.getWidth >= DCacheAboveIndexOffset) addr(DCacheAboveIndexOffset-1, DCacheSetOffset) } def get_data_of_bank(bank: Int, data: UInt) = { require(data.getWidth >= (bank+1)*DCacheSRAMRowBits) data(DCacheSRAMRowBits * (bank + 1) - 1, DCacheSRAMRowBits * bank) } def get_mask_of_bank(bank: Int, data: UInt) = { require(data.getWidth >= (bank+1)*DCacheSRAMRowBytes) data(DCacheSRAMRowBytes * (bank + 1) - 1, DCacheSRAMRowBytes * bank) } def get_alias(vaddr: UInt): UInt ={ // require(blockOffBits + idxBits > pgIdxBits) if(blockOffBits + idxBits > pgIdxBits){ vaddr(blockOffBits + idxBits - 1, pgIdxBits) }else{ 0.U } } def is_alias_match(vaddr0: UInt, vaddr1: UInt): Bool = { require(vaddr0.getWidth == VAddrBits && vaddr1.getWidth == VAddrBits) if(blockOffBits + idxBits > pgIdxBits) { vaddr0(blockOffBits + idxBits - 1, pgIdxBits) === vaddr1(blockOffBits + idxBits - 1, pgIdxBits) }else { // no alias problem true.B } } def get_direct_map_way(addr:UInt): UInt = { addr(DCacheAboveIndexOffset + log2Up(DCacheWays) - 1, DCacheAboveIndexOffset) } def arbiter[T <: Bundle]( in: Seq[DecoupledIO[T]], out: DecoupledIO[T], name: Option[String] = None): Unit = { val arb = Module(new Arbiter[T](chiselTypeOf(out.bits), in.size)) if (name.nonEmpty) { arb.suggestName(s"${name.get}_arb") } for ((a, req) <- arb.io.in.zip(in)) { a <> req } out <> arb.io.out } def arbiter_with_pipereg[T <: Bundle]( in: Seq[DecoupledIO[T]], out: DecoupledIO[T], name: Option[String] = None): Unit = { val arb = Module(new Arbiter[T](chiselTypeOf(out.bits), in.size)) if (name.nonEmpty) { arb.suggestName(s"${name.get}_arb") } for ((a, req) <- arb.io.in.zip(in)) { a <> req } AddPipelineReg(arb.io.out, out, false.B) } def arbiter_with_pipereg_N_dup[T <: Bundle]( in: Seq[DecoupledIO[T]], out: DecoupledIO[T], dups: Seq[DecoupledIO[T]], name: Option[String] = None): Unit = { val arb = Module(new Arbiter[T](chiselTypeOf(out.bits), in.size)) if (name.nonEmpty) { arb.suggestName(s"${name.get}_arb") } for ((a, req) <- arb.io.in.zip(in)) { a <> req } for (dup <- dups) { AddPipelineReg(arb.io.out, dup, false.B) } AddPipelineReg(arb.io.out, out, false.B) } def rrArbiter[T <: Bundle]( in: Seq[DecoupledIO[T]], out: DecoupledIO[T], name: Option[String] = None): Unit = { val arb = Module(new RRArbiter[T](chiselTypeOf(out.bits), in.size)) if (name.nonEmpty) { arb.suggestName(s"${name.get}_arb") } for ((a, req) <- arb.io.in.zip(in)) { a <> req } out <> arb.io.out } def fastArbiter[T <: Bundle]( in: Seq[DecoupledIO[T]], out: DecoupledIO[T], name: Option[String] = None): Unit = { val arb = Module(new FastArbiter[T](chiselTypeOf(out.bits), in.size)) if (name.nonEmpty) { arb.suggestName(s"${name.get}_arb") } for ((a, req) <- arb.io.in.zip(in)) { a <> req } out <> arb.io.out } val numReplaceRespPorts = 2 require(isPow2(nSets), s"nSets($nSets) must be pow2") require(isPow2(nWays), s"nWays($nWays) must be pow2") require(full_divide(rowBits, wordBits), s"rowBits($rowBits) must be multiple of wordBits($wordBits)") require(full_divide(beatBits, rowBits), s"beatBits($beatBits) must be multiple of rowBits($rowBits)") } abstract class DCacheModule(implicit p: Parameters) extends L1CacheModule with HasDCacheParameters abstract class DCacheBundle(implicit p: Parameters) extends L1CacheBundle with HasDCacheParameters class ReplacementAccessBundle(implicit p: Parameters) extends DCacheBundle { val set = UInt(log2Up(nSets).W) val way = UInt(log2Up(nWays).W) } class ReplacementWayReqIO(implicit p: Parameters) extends DCacheBundle { val set = ValidIO(UInt(log2Up(nSets).W)) val dmWay = Output(UInt(log2Up(nWays).W)) val way = Input(UInt(log2Up(nWays).W)) } class DCacheExtraMeta(implicit p: Parameters) extends DCacheBundle { val error = Bool() // cache line has been marked as corrupted by l2 / ecc error detected when store val prefetch = UInt(L1PfSourceBits.W) // cache line is first required by prefetch val access = Bool() // cache line has been accessed by load / store // val debug_access_timestamp = UInt(64.W) // last time a load / store / refill access that cacheline } // memory request in word granularity(load, mmio, lr/sc, atomics) class DCacheWordReq(implicit p: Parameters) extends DCacheBundle { val cmd = UInt(M_SZ.W) val vaddr = UInt(VAddrBits.W) val vaddr_dup = UInt(VAddrBits.W) val data = UInt(VLEN.W) val mask = UInt((VLEN/8).W) val id = UInt(reqIdWidth.W) val instrtype = UInt(sourceTypeWidth.W) val isFirstIssue = Bool() val replayCarry = new ReplayCarry(nWays) val lqIdx = new LqPtr val debug_robIdx = UInt(log2Ceil(RobSize).W) def dump(cond: Bool) = { XSDebug(cond, "DCacheWordReq: cmd: %x vaddr: %x data: %x mask: %x id: %d\n", cmd, vaddr, data, mask, id) } } // memory request in word granularity(store) class DCacheLineReq(implicit p: Parameters) extends DCacheBundle { val cmd = UInt(M_SZ.W) val vaddr = UInt(VAddrBits.W) val addr = UInt(PAddrBits.W) val data = UInt((cfg.blockBytes * 8).W) val mask = UInt(cfg.blockBytes.W) val id = UInt(reqIdWidth.W) def dump(cond: Bool) = { XSDebug(cond, "DCacheLineReq: cmd: %x addr: %x data: %x mask: %x id: %d\n", cmd, addr, data, mask, id) } def idx: UInt = get_idx(vaddr) } class DCacheWordReqWithVaddr(implicit p: Parameters) extends DCacheWordReq { val addr = UInt(PAddrBits.W) val wline = Bool() } class DCacheWordReqWithVaddrAndPfFlag(implicit p: Parameters) extends DCacheWordReqWithVaddr { val prefetch = Bool() val vecValid = Bool() val sqNeedDeq = Bool() def toDCacheWordReqWithVaddr() = { val res = Wire(new DCacheWordReqWithVaddr) res.vaddr := vaddr res.wline := wline res.cmd := cmd res.addr := addr res.data := data res.mask := mask res.id := id res.instrtype := instrtype res.replayCarry := replayCarry res.isFirstIssue := isFirstIssue res.debug_robIdx := debug_robIdx res } } class BaseDCacheWordResp(implicit p: Parameters) extends DCacheBundle { // read in s2 val data = UInt(VLEN.W) // select in s3 val data_delayed = UInt(VLEN.W) val id = UInt(reqIdWidth.W) // cache req missed, send it to miss queue val miss = Bool() // cache miss, and failed to enter the missqueue, replay from RS is needed val replay = Bool() val replayCarry = new ReplayCarry(nWays) // data has been corrupted val tag_error = Bool() // tag error val mshr_id = UInt(log2Up(cfg.nMissEntries).W) val debug_robIdx = UInt(log2Ceil(RobSize).W) def dump(cond: Bool) = { XSDebug(cond, "DCacheWordResp: data: %x id: %d miss: %b replay: %b\n", data, id, miss, replay) } } class DCacheWordResp(implicit p: Parameters) extends BaseDCacheWordResp { val meta_prefetch = UInt(L1PfSourceBits.W) val meta_access = Bool() // s2 val handled = Bool() val real_miss = Bool() // s3: 1 cycle after data resp val error_delayed = Bool() // all kinds of errors, include tag error val replacementUpdated = Bool() } class BankedDCacheWordResp(implicit p: Parameters) extends DCacheWordResp { val bank_data = Vec(DCacheBanks, Bits(DCacheSRAMRowBits.W)) val bank_oh = UInt(DCacheBanks.W) } class DCacheWordRespWithError(implicit p: Parameters) extends BaseDCacheWordResp { val error = Bool() // all kinds of errors, include tag error val nderr = Bool() } class DCacheLineResp(implicit p: Parameters) extends DCacheBundle { val data = UInt((cfg.blockBytes * 8).W) // cache req missed, send it to miss queue val miss = Bool() // cache req nacked, replay it later val replay = Bool() val id = UInt(reqIdWidth.W) def dump(cond: Bool) = { XSDebug(cond, "DCacheLineResp: data: %x id: %d miss: %b replay: %b\n", data, id, miss, replay) } } class Refill(implicit p: Parameters) extends DCacheBundle { val addr = UInt(PAddrBits.W) val data = UInt(l1BusDataWidth.W) val error = Bool() // refilled data has been corrupted // for debug usage val data_raw = UInt((cfg.blockBytes * 8).W) val hasdata = Bool() val refill_done = Bool() def dump(cond: Bool) = { XSDebug(cond, "Refill: addr: %x data: %x\n", addr, data) } val id = UInt(log2Up(cfg.nMissEntries).W) } class Release(implicit p: Parameters) extends DCacheBundle { val paddr = UInt(PAddrBits.W) def dump(cond: Bool) = { XSDebug(cond, "Release: paddr: %x\n", paddr(PAddrBits-1, DCacheTagOffset)) } } class DCacheWordIO(implicit p: Parameters) extends DCacheBundle { val req = DecoupledIO(new DCacheWordReq) val resp = Flipped(DecoupledIO(new DCacheWordResp)) } class UncacheWordReq(implicit p: Parameters) extends DCacheBundle { val cmd = UInt(M_SZ.W) val addr = UInt(PAddrBits.W) val vaddr = UInt(VAddrBits.W) // for uncache buffer forwarding val data = UInt(XLEN.W) val mask = UInt((XLEN/8).W) val id = UInt(uncacheIdxBits.W) val instrtype = UInt(sourceTypeWidth.W) val atomic = Bool() val nc = Bool() val memBackTypeMM = Bool() val isFirstIssue = Bool() val replayCarry = new ReplayCarry(nWays) def dump(cond: Bool) = { XSDebug(cond, "UncacheWordReq: cmd: %x addr: %x data: %x mask: %x id: %d\n", cmd, addr, data, mask, id) } } class UncacheIdResp(implicit p: Parameters) extends DCacheBundle { val mid = UInt(uncacheIdxBits.W) val sid = UInt(UncacheBufferIndexWidth.W) val is2lq = Bool() val nc = Bool() } class UncacheWordResp(implicit p: Parameters) extends DCacheBundle { val data = UInt(XLEN.W) val data_delayed = UInt(XLEN.W) val id = UInt(UncacheBufferIndexWidth.W) // resp identified signals val nc = Bool() // resp identified signals val is2lq = Bool() // resp identified signals val miss = Bool() val replay = Bool() val tag_error = Bool() val error = Bool() val nderr = Bool() val replayCarry = new ReplayCarry(nWays) val mshr_id = UInt(log2Up(cfg.nMissEntries).W) // FIXME: why uncacheWordResp is not merged to baseDcacheResp val debug_robIdx = UInt(log2Ceil(RobSize).W) def dump(cond: Bool) = { XSDebug(cond, "UncacheWordResp: data: %x id: %d miss: %b replay: %b, tag_error: %b, error: %b\n", data, id, miss, replay, tag_error, error) } } class UncacheWordIO(implicit p: Parameters) extends DCacheBundle { val req = DecoupledIO(new UncacheWordReq) val idResp = Flipped(ValidIO(new UncacheIdResp)) val resp = Flipped(DecoupledIO(new UncacheWordResp)) } class MainPipeResp(implicit p: Parameters) extends DCacheBundle { //distinguish amo val source = UInt(sourceTypeWidth.W) val data = UInt(QuadWordBits.W) val miss = Bool() val miss_id = UInt(log2Up(cfg.nMissEntries).W) val replay = Bool() val error = Bool() val ack_miss_queue = Bool() val id = UInt(reqIdWidth.W) def isAMO: Bool = source === AMO_SOURCE.U def isStore: Bool = source === STORE_SOURCE.U } class AtomicWordIO(implicit p: Parameters) extends DCacheBundle { val req = DecoupledIO(new MainPipeReq) val resp = Flipped(ValidIO(new MainPipeResp)) val block_lr = Input(Bool()) } class CMOReq(implicit p: Parameters) extends Bundle { val opcode = UInt(3.W) // 0-cbo.clean, 1-cbo.flush, 2-cbo.inval, 3-cbo.zero val address = UInt(64.W) } class CMOResp(implicit p: Parameters) extends Bundle { val address = UInt(64.W) val nderr = Bool() } // used by load unit class DCacheLoadIO(implicit p: Parameters) extends DCacheWordIO { // kill previous cycle's req val s1_kill_data_read = Output(Bool()) // only kill bandedDataRead at s1 val s1_kill = Output(Bool()) // kill loadpipe req at s1 val s2_kill = Output(Bool()) val s0_pc = Output(UInt(VAddrBits.W)) val s1_pc = Output(UInt(VAddrBits.W)) val s2_pc = Output(UInt(VAddrBits.W)) // cycle 0: load has updated replacement before val replacementUpdated = Output(Bool()) val is128Req = Bool() // cycle 0: prefetch source bits val pf_source = Output(UInt(L1PfSourceBits.W)) // cycle0: load microop // val s0_uop = Output(new MicroOp) // cycle 0: virtual address: req.addr // cycle 1: physical address: s1_paddr val s1_paddr_dup_lsu = Output(UInt(PAddrBits.W)) // lsu side paddr val s1_paddr_dup_dcache = Output(UInt(PAddrBits.W)) // dcache side paddr val s1_disable_fast_wakeup = Input(Bool()) // cycle 2: hit signal val s2_hit = Input(Bool()) // hit signal for lsu, val s2_first_hit = Input(Bool()) val s2_bank_conflict = Input(Bool()) val s2_wpu_pred_fail = Input(Bool()) val s2_mq_nack = Input(Bool()) // debug val debug_s1_hit_way = Input(UInt(nWays.W)) val debug_s2_pred_way_num = Input(UInt(XLEN.W)) val debug_s2_dm_way_num = Input(UInt(XLEN.W)) val debug_s2_real_way_num = Input(UInt(XLEN.W)) } class DCacheLineIO(implicit p: Parameters) extends DCacheBundle { val req = DecoupledIO(new DCacheLineReq) val resp = Flipped(DecoupledIO(new DCacheLineResp)) } class DCacheToSbufferIO(implicit p: Parameters) extends DCacheBundle { // sbuffer will directly send request to dcache main pipe val req = Flipped(Decoupled(new DCacheLineReq)) val main_pipe_hit_resp = ValidIO(new DCacheLineResp) //val refill_hit_resp = ValidIO(new DCacheLineResp) val replay_resp = ValidIO(new DCacheLineResp) //def hit_resps: Seq[ValidIO[DCacheLineResp]] = Seq(main_pipe_hit_resp, refill_hit_resp) def hit_resps: Seq[ValidIO[DCacheLineResp]] = Seq(main_pipe_hit_resp) } // forward tilelink channel D's data to ldu class DcacheToLduForwardIO(implicit p: Parameters) extends DCacheBundle { val valid = Bool() val data = UInt(l1BusDataWidth.W) val mshrid = UInt(log2Up(cfg.nMissEntries).W) val last = Bool() val corrupt = Bool() def apply(d: DecoupledIO[TLBundleD], edge: TLEdgeOut) = { val isKeyword = d.bits.echo.lift(IsKeywordKey).getOrElse(false.B) val (_, _, done, _) = edge.count(d) valid := d.valid data := d.bits.data mshrid := d.bits.source last := isKeyword ^ done corrupt := d.bits.corrupt || d.bits.denied } def dontCare() = { valid := false.B data := DontCare mshrid := DontCare last := DontCare corrupt := false.B } def forward(req_valid : Bool, req_mshr_id : UInt, req_paddr : UInt) = { val all_match = req_valid && valid && req_mshr_id === mshrid && req_paddr(log2Up(refillBytes)) === last val forward_D = RegInit(false.B) val forwardData = RegInit(VecInit(List.fill(VLEN/8)(0.U(8.W)))) val block_idx = req_paddr(log2Up(refillBytes) - 1, 3) val block_data = Wire(Vec(l1BusDataWidth / 64, UInt(64.W))) (0 until l1BusDataWidth / 64).map(i => { block_data(i) := data(64 * i + 63, 64 * i) }) val selected_data = Wire(UInt(128.W)) selected_data := Mux(req_paddr(3), Fill(2, block_data(block_idx)), Cat(block_data(block_idx + 1.U), block_data(block_idx))) forward_D := all_match for (i <- 0 until VLEN/8) { when (all_match) { forwardData(i) := selected_data(8 * i + 7, 8 * i) } } (forward_D, forwardData, corrupt) } } class MissEntryForwardIO(implicit p: Parameters) extends DCacheBundle { val inflight = Bool() val paddr = UInt(PAddrBits.W) val raw_data = Vec(blockRows, UInt(rowBits.W)) val firstbeat_valid = Bool() val lastbeat_valid = Bool() val corrupt = Bool() // check if we can forward from mshr or D channel def check(req_valid : Bool, req_paddr : UInt) = { RegNext(req_valid && inflight && req_paddr(PAddrBits - 1, blockOffBits) === paddr(PAddrBits - 1, blockOffBits)) // TODO: clock gate(1-bit) } def forward(req_valid : Bool, req_paddr : UInt) = { val all_match = (req_paddr(log2Up(refillBytes)) === 0.U && firstbeat_valid) || (req_paddr(log2Up(refillBytes)) === 1.U && lastbeat_valid) val forward_mshr = RegInit(false.B) val forwardData = RegInit(VecInit(List.fill(VLEN/8)(0.U(8.W)))) val block_idx = req_paddr(log2Up(refillBytes), 3) val block_data = raw_data val selected_data = Wire(UInt(128.W)) selected_data := Mux(req_paddr(3), Fill(2, block_data(block_idx)), Cat(block_data(block_idx + 1.U), block_data(block_idx))) forward_mshr := all_match for (i <- 0 until VLEN/8) { forwardData(i) := selected_data(8 * i + 7, 8 * i) } (forward_mshr, forwardData) } } // forward mshr's data to ldu class LduToMissqueueForwardIO(implicit p: Parameters) extends DCacheBundle { // TODO: use separate Bundles for req and resp // req val valid = Input(Bool()) val mshrid = Input(UInt(log2Up(cfg.nMissEntries).W)) val paddr = Input(UInt(PAddrBits.W)) // resp val forward_mshr = Output(Bool()) val forwardData = Output(Vec(VLEN/8, UInt(8.W))) val forward_result_valid = Output(Bool()) val corrupt = Output(Bool()) // Why? What is the purpose of `connect`??? def connect(sink: LduToMissqueueForwardIO) = { sink.valid := valid sink.mshrid := mshrid sink.paddr := paddr forward_mshr := sink.forward_mshr forwardData := sink.forwardData forward_result_valid := sink.forward_result_valid corrupt := sink.corrupt } def forward() = { (forward_result_valid, forward_mshr, forwardData, corrupt) } } class StorePrefetchReq(implicit p: Parameters) extends DCacheBundle { val paddr = UInt(PAddrBits.W) val vaddr = UInt(VAddrBits.W) } class DCacheToLsuIO(implicit p: Parameters) extends DCacheBundle { val load = Vec(LoadPipelineWidth, Flipped(new DCacheLoadIO)) // for speculative load val sta = Vec(StorePipelineWidth, Flipped(new DCacheStoreIO)) // for non-blocking store //val lsq = ValidIO(new Refill) // refill to load queue, wake up load misses val tl_d_channel = Output(new DcacheToLduForwardIO) val store = new DCacheToSbufferIO // for sbuffer val atomics = Flipped(new AtomicWordIO) // atomics reqs val release = ValidIO(new Release) // cacheline release hint for ld-ld violation check val forward_D = Output(Vec(LoadPipelineWidth, new DcacheToLduForwardIO)) val forward_mshr = Vec(LoadPipelineWidth, new LduToMissqueueForwardIO) } class DCacheTopDownIO(implicit p: Parameters) extends DCacheBundle { val robHeadVaddr = Flipped(Valid(UInt(VAddrBits.W))) val robHeadMissInDCache = Output(Bool()) val robHeadOtherReplay = Input(Bool()) } class DCacheIO(implicit p: Parameters) extends DCacheBundle { val hartId = Input(UInt(hartIdLen.W)) val l2_pf_store_only = Input(Bool()) val lsu = new DCacheToLsuIO val error = ValidIO(new L1CacheErrorInfo) val mshrFull = Output(Bool()) val memSetPattenDetected = Output(Bool()) val lqEmpty = Input(Bool()) val pf_ctrl = Output(new PrefetchControlBundle) val force_write = Input(Bool()) val sms_agt_evict_req = DecoupledIO(new AGTEvictReq) val debugTopDown = new DCacheTopDownIO val debugRolling = Flipped(new RobDebugRollingIO) val l2_hint = Input(Valid(new L2ToL1Hint())) val cmoOpReq = Flipped(DecoupledIO(new CMOReq)) val cmoOpResp = DecoupledIO(new CMOResp) val l1Miss = Output(Bool()) } private object ArbiterCtrl { def apply(request: Seq[Bool]): Seq[Bool] = request.length match { case 0 => Seq() case 1 => Seq(true.B) case _ => true.B +: request.tail.init.scanLeft(request.head)(_ || _).map(!_) } } class TreeArbiter[T <: MissReqWoStoreData](val gen: T, val n: Int) extends Module{ val io = IO(new ArbiterIO(gen, n)) def selectTree(in: Vec[Valid[T]], sIdx: UInt): Tuple2[UInt, T] = { if (in.length == 1) { (sIdx, in(0).bits) } else if (in.length == 2) { ( Mux(in(0).valid, sIdx, sIdx + 1.U), Mux(in(0).valid, in(0).bits, in(1).bits) ) } else { val half = in.length / 2 val leftValid = in.slice(0, half).map(_.valid).reduce(_ || _) val (leftIdx, leftSel) = selectTree(VecInit(in.slice(0, half)), sIdx) val (rightIdx, rightSel) = selectTree(VecInit(in.slice(half, in.length)), sIdx + half.U) ( Mux(leftValid, leftIdx, rightIdx), Mux(leftValid, leftSel, rightSel) ) } } val ins = Wire(Vec(n, Valid(gen))) for (i <- 0 until n) { ins(i).valid := io.in(i).valid ins(i).bits := io.in(i).bits } val (idx, sel) = selectTree(ins, 0.U) // NOTE: io.chosen is very slow, dont use it io.chosen := idx io.out.bits := sel val grant = ArbiterCtrl(io.in.map(_.valid)) for ((in, g) <- io.in.zip(grant)) in.ready := g && io.out.ready io.out.valid := !grant.last || io.in.last.valid } class DCacheMEQueryIOBundle(implicit p: Parameters) extends DCacheBundle { val req = ValidIO(new MissReqWoStoreData) val primary_ready = Input(Bool()) val secondary_ready = Input(Bool()) val secondary_reject = Input(Bool()) } class DCacheMQQueryIOBundle(implicit p: Parameters) extends DCacheBundle { val req = ValidIO(new MissReq) val ready = Input(Bool()) } class MissReadyGen(val n: Int)(implicit p: Parameters) extends XSModule { val io = IO(new Bundle { val in = Vec(n, Flipped(DecoupledIO(new MissReq))) val queryMQ = Vec(n, new DCacheMQQueryIOBundle) }) val mqReadyVec = io.queryMQ.map(_.ready) io.queryMQ.zipWithIndex.foreach{ case (q, idx) => { q.req.valid := io.in(idx).valid q.req.bits := io.in(idx).bits } } io.in.zipWithIndex.map { case (r, idx) => { if (idx == 0) { r.ready := mqReadyVec(idx) } else { r.ready := mqReadyVec(idx) && !Cat(io.in.slice(0, idx).map(_.valid)).orR } } } } class DCache()(implicit p: Parameters) extends LazyModule with HasDCacheParameters { override def shouldBeInlined: Boolean = false val reqFields: Seq[BundleFieldBase] = Seq( PrefetchField(), ReqSourceField(), VaddrField(VAddrBits - blockOffBits), // IsKeywordField() ) ++ cacheParams.aliasBitsOpt.map(AliasField) val echoFields: Seq[BundleFieldBase] = Seq( IsKeywordField() ) val clientParameters = TLMasterPortParameters.v1( Seq(TLMasterParameters.v1( name = "dcache", sourceId = IdRange(0, nEntries + 1), supportsProbe = TransferSizes(cfg.blockBytes) )), requestFields = reqFields, echoFields = echoFields ) val clientNode = TLClientNode(Seq(clientParameters)) val cacheCtrlOpt = cacheCtrlParamsOpt.map(params => LazyModule(new CtrlUnit(params))) lazy val module = new DCacheImp(this) } class DCacheImp(outer: DCache) extends LazyModuleImp(outer) with HasDCacheParameters with HasPerfEvents with HasL1PrefetchSourceParameter { val io = IO(new DCacheIO) val (bus, edge) = outer.clientNode.out.head require(bus.d.bits.data.getWidth == l1BusDataWidth, "DCache: tilelink width does not match") println("DCache:") println(" DCacheSets: " + DCacheSets) println(" DCacheSetDiv: " + DCacheSetDiv) println(" DCacheWays: " + DCacheWays) println(" DCacheBanks: " + DCacheBanks) println(" DCacheSRAMRowBits: " + DCacheSRAMRowBits) println(" DCacheWordOffset: " + DCacheWordOffset) println(" DCacheBankOffset: " + DCacheBankOffset) println(" DCacheSetOffset: " + DCacheSetOffset) println(" DCacheTagOffset: " + DCacheTagOffset) println(" DCacheAboveIndexOffset: " + DCacheAboveIndexOffset) println(" DcacheMaxPrefetchEntry: " + MaxPrefetchEntry) println(" WPUEnable: " + dwpuParam.enWPU) println(" WPUEnableCfPred: " + dwpuParam.enCfPred) println(" WPUAlgorithm: " + dwpuParam.algoName) println(" HasCMO: " + HasCMO) // Enable L1 Store prefetch val StorePrefetchL1Enabled = EnableStorePrefetchAtCommit || EnableStorePrefetchAtIssue || EnableStorePrefetchSPB val MetaReadPort = if (StorePrefetchL1Enabled) 1 + backendParams.LduCnt + backendParams.StaCnt + backendParams.HyuCnt else 1 + backendParams.LduCnt + backendParams.HyuCnt val TagReadPort = if (StorePrefetchL1Enabled) 1 + backendParams.LduCnt + backendParams.StaCnt + backendParams.HyuCnt else 1 + backendParams.LduCnt + backendParams.HyuCnt // Enable L1 Load prefetch val LoadPrefetchL1Enabled = true val AccessArrayReadPort = if(LoadPrefetchL1Enabled) LoadPipelineWidth + 1 + 1 else LoadPipelineWidth + 1 val PrefetchArrayReadPort = if(LoadPrefetchL1Enabled) LoadPipelineWidth + 1 + 1 else LoadPipelineWidth + 1 //---------------------------------------- // core data structures val bankedDataArray = if(dwpuParam.enWPU) Module(new SramedDataArray) else Module(new BankedDataArray) val metaArray = Module(new L1CohMetaArray(readPorts = LoadPipelineWidth + 1, writePorts = 1)) val errorArray = Module(new L1FlagMetaArray(readPorts = LoadPipelineWidth + 1, writePorts = 1)) val prefetchArray = Module(new L1PrefetchSourceArray(readPorts = PrefetchArrayReadPort, writePorts = 1 + LoadPipelineWidth)) // prefetch flag array val accessArray = Module(new L1FlagMetaArray(readPorts = AccessArrayReadPort, writePorts = LoadPipelineWidth + 1)) val tagArray = Module(new DuplicatedTagArray(readPorts = TagReadPort)) val prefetcherMonitor = Module(new PrefetcherMonitor) val fdpMonitor = Module(new FDPrefetcherMonitor) val bloomFilter = Module(new BloomFilter(BLOOM_FILTER_ENTRY_NUM, true)) val counterFilter = Module(new CounterFilter) bankedDataArray.dump() //---------------------------------------- // miss queue // missReqArb port: // enableStorePrefetch: main pipe * 1 + load pipe * 2 + store pipe * 1 + // hybrid * 1; disable: main pipe * 1 + load pipe * 2 + hybrid * 1 // higher priority is given to lower indices val MissReqPortCount = if(StorePrefetchL1Enabled) 1 + backendParams.LduCnt + backendParams.StaCnt + backendParams.HyuCnt else 1 + backendParams.LduCnt + backendParams.HyuCnt val MainPipeMissReqPort = 0 val HybridMissReqBase = MissReqPortCount - backendParams.HyuCnt //---------------------------------------- // core modules val ldu = Seq.tabulate(LoadPipelineWidth)({ i => Module(new LoadPipe(i))}) val stu = Seq.tabulate(StorePipelineWidth)({ i => Module(new StorePipe(i))}) val mainPipe = Module(new MainPipe) // val refillPipe = Module(new RefillPipe) val missQueue = Module(new MissQueue(edge, MissReqPortCount)) val probeQueue = Module(new ProbeQueue(edge)) val wb = Module(new WritebackQueue(edge)) missQueue.io.lqEmpty := io.lqEmpty missQueue.io.hartId := io.hartId missQueue.io.l2_pf_store_only := RegNext(io.l2_pf_store_only, false.B) missQueue.io.debugTopDown <> io.debugTopDown missQueue.io.l2_hint <> RegNext(io.l2_hint) missQueue.io.mainpipe_info := mainPipe.io.mainpipe_info mainPipe.io.refill_info := missQueue.io.refill_info mainPipe.io.replace_block := missQueue.io.replace_block mainPipe.io.sms_agt_evict_req <> io.sms_agt_evict_req io.memSetPattenDetected := missQueue.io.memSetPattenDetected // l1 dcache controller outer.cacheCtrlOpt.foreach { case mod => mod.module.io_pseudoError.foreach { case x => x.ready := false.B } } ldu.foreach { case mod => mod.io.pseudo_error.valid := false.B mod.io.pseudo_error.bits := DontCare } mainPipe.io.pseudo_error.valid := false.B mainPipe.io.pseudo_error.bits := DontCare bankedDataArray.io.pseudo_error.valid := false.B bankedDataArray.io.pseudo_error.bits := DontCare // pseudo tag ecc error if (outer.cacheCtrlOpt.nonEmpty && EnableTagEcc) { val ctrlUnit = outer.cacheCtrlOpt.head.module ldu.map(mod => mod.io.pseudo_error <> ctrlUnit.io_pseudoError(0)) mainPipe.io.pseudo_error <> ctrlUnit.io_pseudoError(0) ctrlUnit.io_pseudoError(0).ready := mainPipe.io.pseudo_tag_error_inj_done || ldu.map(_.io.pseudo_tag_error_inj_done).reduce(_|_) } // pseudo data ecc error if (outer.cacheCtrlOpt.nonEmpty && EnableDataEcc) { val ctrlUnit = outer.cacheCtrlOpt.head.module bankedDataArray.io.pseudo_error <> ctrlUnit.io_pseudoError(1) ctrlUnit.io_pseudoError(1).ready := bankedDataArray.io.pseudo_error.ready && (mainPipe.io.pseudo_data_error_inj_done || ldu.map(_.io.pseudo_data_error_inj_done).reduce(_|_)) } val errors = ldu.map(_.io.error) ++ // load error Seq(mainPipe.io.error) // store / misc error val error_valid = errors.map(e => e.valid).reduce(_|_) io.error.bits <> RegEnable( ParallelMux(errors.map(e => RegNext(e.valid) -> RegEnable(e.bits, e.valid))), RegNext(error_valid)) io.error.valid := RegNext(RegNext(error_valid, init = false.B), init = false.B) //---------------------------------------- // meta array val HybridLoadReadBase = LoadPipelineWidth - backendParams.HyuCnt val HybridStoreReadBase = StorePipelineWidth - backendParams.HyuCnt val hybrid_meta_read_ports = Wire(Vec(backendParams.HyuCnt, DecoupledIO(new MetaReadReq))) val hybrid_meta_resp_ports = Wire(Vec(backendParams.HyuCnt, ldu(0).io.meta_resp.cloneType)) for (i <- 0 until backendParams.HyuCnt) { val HybridLoadMetaReadPort = HybridLoadReadBase + i val HybridStoreMetaReadPort = HybridStoreReadBase + i hybrid_meta_read_ports(i).valid := ldu(HybridLoadMetaReadPort).io.meta_read.valid || (stu(HybridStoreMetaReadPort).io.meta_read.valid && StorePrefetchL1Enabled.B) hybrid_meta_read_ports(i).bits := Mux(ldu(HybridLoadMetaReadPort).io.meta_read.valid, ldu(HybridLoadMetaReadPort).io.meta_read.bits, stu(HybridStoreMetaReadPort).io.meta_read.bits) ldu(HybridLoadMetaReadPort).io.meta_read.ready := hybrid_meta_read_ports(i).ready stu(HybridStoreMetaReadPort).io.meta_read.ready := hybrid_meta_read_ports(i).ready && StorePrefetchL1Enabled.B ldu(HybridLoadMetaReadPort).io.meta_resp := hybrid_meta_resp_ports(i) stu(HybridStoreMetaReadPort).io.meta_resp := hybrid_meta_resp_ports(i) } // read / write coh meta val meta_read_ports = ldu.map(_.io.meta_read).take(HybridLoadReadBase) ++ Seq(mainPipe.io.meta_read) ++ stu.map(_.io.meta_read).take(HybridStoreReadBase) ++ hybrid_meta_read_ports val meta_resp_ports = ldu.map(_.io.meta_resp).take(HybridLoadReadBase) ++ Seq(mainPipe.io.meta_resp) ++ stu.map(_.io.meta_resp).take(HybridStoreReadBase) ++ hybrid_meta_resp_ports val meta_write_ports = Seq( mainPipe.io.meta_write // refillPipe.io.meta_write ) if(StorePrefetchL1Enabled) { meta_read_ports.zip(metaArray.io.read).foreach { case (p, r) => r <> p } meta_resp_ports.zip(metaArray.io.resp).foreach { case (p, r) => p := r } } else { (meta_read_ports.take(HybridLoadReadBase + 1) ++ meta_read_ports.takeRight(backendParams.HyuCnt)).zip(metaArray.io.read).foreach { case (p, r) => r <> p } (meta_resp_ports.take(HybridLoadReadBase + 1) ++ meta_resp_ports.takeRight(backendParams.HyuCnt)).zip(metaArray.io.resp).foreach { case (p, r) => p := r } meta_read_ports.drop(HybridLoadReadBase + 1).take(HybridStoreReadBase).foreach { case p => p.ready := false.B } meta_resp_ports.drop(HybridLoadReadBase + 1).take(HybridStoreReadBase).foreach { case p => p := 0.U.asTypeOf(p) } } meta_write_ports.zip(metaArray.io.write).foreach { case (p, w) => w <> p } // read extra meta (exclude stu) (meta_read_ports.take(HybridLoadReadBase + 1) ++ meta_read_ports.takeRight(backendParams.HyuCnt)).zip(errorArray.io.read).foreach { case (p, r) => r <> p } (meta_read_ports.take(HybridLoadReadBase + 1) ++ meta_read_ports.takeRight(backendParams.HyuCnt)).zip(prefetchArray.io.read).foreach { case (p, r) => r <> p } (meta_read_ports.take(HybridLoadReadBase + 1) ++ meta_read_ports.takeRight(backendParams.HyuCnt)).zip(accessArray.io.read).foreach { case (p, r) => r <> p } val extra_meta_resp_ports = ldu.map(_.io.extra_meta_resp).take(HybridLoadReadBase) ++ Seq(mainPipe.io.extra_meta_resp) ++ ldu.map(_.io.extra_meta_resp).takeRight(backendParams.HyuCnt) extra_meta_resp_ports.zip(errorArray.io.resp).foreach { case (p, r) => { (0 until nWays).map(i => { p(i).error := r(i) }) }} extra_meta_resp_ports.zip(prefetchArray.io.resp).foreach { case (p, r) => { (0 until nWays).map(i => { p(i).prefetch := r(i) }) }} extra_meta_resp_ports.zip(accessArray.io.resp).foreach { case (p, r) => { (0 until nWays).map(i => { p(i).access := r(i) }) }} if(LoadPrefetchL1Enabled) { // use last port to read prefetch and access flag // prefetchArray.io.read.last.valid := refillPipe.io.prefetch_flag_write.valid // prefetchArray.io.read.last.bits.idx := refillPipe.io.prefetch_flag_write.bits.idx // prefetchArray.io.read.last.bits.way_en := refillPipe.io.prefetch_flag_write.bits.way_en // // accessArray.io.read.last.valid := refillPipe.io.prefetch_flag_write.valid // accessArray.io.read.last.bits.idx := refillPipe.io.prefetch_flag_write.bits.idx // accessArray.io.read.last.bits.way_en := refillPipe.io.prefetch_flag_write.bits.way_en prefetchArray.io.read.last.valid := mainPipe.io.prefetch_flag_write.valid prefetchArray.io.read.last.bits.idx := mainPipe.io.prefetch_flag_write.bits.idx prefetchArray.io.read.last.bits.way_en := mainPipe.io.prefetch_flag_write.bits.way_en accessArray.io.read.last.valid := mainPipe.io.prefetch_flag_write.valid accessArray.io.read.last.bits.idx := mainPipe.io.prefetch_flag_write.bits.idx accessArray.io.read.last.bits.way_en := mainPipe.io.prefetch_flag_write.bits.way_en val extra_flag_valid = RegNext(mainPipe.io.prefetch_flag_write.valid) val extra_flag_way_en = RegEnable(mainPipe.io.prefetch_flag_write.bits.way_en, mainPipe.io.prefetch_flag_write.valid) val extra_flag_prefetch = Mux1H(extra_flag_way_en, prefetchArray.io.resp.last) val extra_flag_access = Mux1H(extra_flag_way_en, accessArray.io.resp.last) prefetcherMonitor.io.validity.good_prefetch := extra_flag_valid && isPrefetchRelated(extra_flag_prefetch) && extra_flag_access prefetcherMonitor.io.validity.bad_prefetch := extra_flag_valid && isPrefetchRelated(extra_flag_prefetch) && !extra_flag_access } // write extra meta val error_flag_write_ports = Seq( mainPipe.io.error_flag_write // error flag generated by corrupted store // refillPipe.io.error_flag_write // corrupted signal from l2 ) error_flag_write_ports.zip(errorArray.io.write).foreach { case (p, w) => w <> p } val prefetch_flag_write_ports = ldu.map(_.io.prefetch_flag_write) ++ Seq( mainPipe.io.prefetch_flag_write // set prefetch_flag to false if coh is set to Nothing // refillPipe.io.prefetch_flag_write // refill required by prefetch will set prefetch_flag ) prefetch_flag_write_ports.zip(prefetchArray.io.write).foreach { case (p, w) => w <> p } // FIXME: add hybrid unit? val same_cycle_update_pf_flag = ldu(0).io.prefetch_flag_write.valid && ldu(1).io.prefetch_flag_write.valid && (ldu(0).io.prefetch_flag_write.bits.idx === ldu(1).io.prefetch_flag_write.bits.idx) && (ldu(0).io.prefetch_flag_write.bits.way_en === ldu(1).io.prefetch_flag_write.bits.way_en) XSPerfAccumulate("same_cycle_update_pf_flag", same_cycle_update_pf_flag) val access_flag_write_ports = ldu.map(_.io.access_flag_write) ++ Seq( mainPipe.io.access_flag_write // refillPipe.io.access_flag_write ) access_flag_write_ports.zip(accessArray.io.write).foreach { case (p, w) => w <> p } //---------------------------------------- // tag array if(StorePrefetchL1Enabled) { require(tagArray.io.read.size == (LoadPipelineWidth + StorePipelineWidth - backendParams.HyuCnt + 1)) }else { require(tagArray.io.read.size == (LoadPipelineWidth + 1)) } // val tag_write_intend = missQueue.io.refill_pipe_req.valid || mainPipe.io.tag_write_intend val tag_write_intend = mainPipe.io.tag_write_intend assert(!RegNext(!tag_write_intend && tagArray.io.write.valid)) ldu.take(HybridLoadReadBase).zipWithIndex.foreach { case (ld, i) => tagArray.io.read(i) <> ld.io.tag_read ld.io.tag_resp := tagArray.io.resp(i) ld.io.tag_read.ready := !tag_write_intend } if(StorePrefetchL1Enabled) { stu.take(HybridStoreReadBase).zipWithIndex.foreach { case (st, i) => tagArray.io.read(HybridLoadReadBase + i) <> st.io.tag_read st.io.tag_resp := tagArray.io.resp(HybridLoadReadBase + i) st.io.tag_read.ready := !tag_write_intend } }else { stu.foreach { case st => st.io.tag_read.ready := false.B st.io.tag_resp := 0.U.asTypeOf(st.io.tag_resp) } } for (i <- 0 until backendParams.HyuCnt) { val HybridLoadTagReadPort = HybridLoadReadBase + i val HybridStoreTagReadPort = HybridStoreReadBase + i val TagReadPort = if (EnableStorePrefetchSPB) HybridLoadReadBase + HybridStoreReadBase + i else HybridLoadReadBase + i // read tag ldu(HybridLoadTagReadPort).io.tag_read.ready := false.B stu(HybridStoreTagReadPort).io.tag_read.ready := false.B if (StorePrefetchL1Enabled) { when (ldu(HybridLoadTagReadPort).io.tag_read.valid) { tagArray.io.read(TagReadPort) <> ldu(HybridLoadTagReadPort).io.tag_read ldu(HybridLoadTagReadPort).io.tag_read.ready := !tag_write_intend } .otherwise { tagArray.io.read(TagReadPort) <> stu(HybridStoreTagReadPort).io.tag_read stu(HybridStoreTagReadPort).io.tag_read.ready := !tag_write_intend } } else { tagArray.io.read(TagReadPort) <> ldu(HybridLoadTagReadPort).io.tag_read ldu(HybridLoadTagReadPort).io.tag_read.ready := !tag_write_intend } // tag resp ldu(HybridLoadTagReadPort).io.tag_resp := tagArray.io.resp(TagReadPort) stu(HybridStoreTagReadPort).io.tag_resp := tagArray.io.resp(TagReadPort) } tagArray.io.read.last <> mainPipe.io.tag_read mainPipe.io.tag_resp := tagArray.io.resp.last val fake_tag_read_conflict_this_cycle = PopCount(ldu.map(ld=> ld.io.tag_read.valid)) XSPerfAccumulate("fake_tag_read_conflict", fake_tag_read_conflict_this_cycle) val tag_write_arb = Module(new Arbiter(new TagWriteReq, 1)) // tag_write_arb.io.in(0) <> refillPipe.io.tag_write tag_write_arb.io.in(0) <> mainPipe.io.tag_write tagArray.io.write <> tag_write_arb.io.out ldu.map(m => { m.io.vtag_update.valid := tagArray.io.write.valid m.io.vtag_update.bits := tagArray.io.write.bits }) //---------------------------------------- // data array mainPipe.io.data_read.zip(ldu).map(x => x._1 := x._2.io.lsu.req.valid) val dataWriteArb = Module(new Arbiter(new L1BankedDataWriteReq, 1)) // dataWriteArb.io.in(0) <> refillPipe.io.data_write dataWriteArb.io.in(0) <> mainPipe.io.data_write bankedDataArray.io.write <> dataWriteArb.io.out for (bank <- 0 until DCacheBanks) { val dataWriteArb_dup = Module(new Arbiter(new L1BankedDataWriteReqCtrl, 1)) // dataWriteArb_dup.io.in(0).valid := refillPipe.io.data_write_dup(bank).valid // dataWriteArb_dup.io.in(0).bits := refillPipe.io.data_write_dup(bank).bits dataWriteArb_dup.io.in(0).valid := mainPipe.io.data_write_dup(bank).valid dataWriteArb_dup.io.in(0).bits := mainPipe.io.data_write_dup(bank).bits bankedDataArray.io.write_dup(bank) <> dataWriteArb_dup.io.out } bankedDataArray.io.readline <> mainPipe.io.data_readline bankedDataArray.io.readline_can_go := mainPipe.io.data_readline_can_go bankedDataArray.io.readline_stall := mainPipe.io.data_readline_stall bankedDataArray.io.readline_can_resp := mainPipe.io.data_readline_can_resp bankedDataArray.io.readline_intend := mainPipe.io.data_read_intend mainPipe.io.readline_error_delayed := bankedDataArray.io.readline_error_delayed mainPipe.io.data_resp := bankedDataArray.io.readline_resp (0 until LoadPipelineWidth).map(i => { bankedDataArray.io.read(i) <> ldu(i).io.banked_data_read bankedDataArray.io.is128Req(i) <> ldu(i).io.is128Req bankedDataArray.io.read_error_delayed(i) <> ldu(i).io.read_error_delayed ldu(i).io.banked_data_resp := bankedDataArray.io.read_resp(i) ldu(i).io.bank_conflict_slow := bankedDataArray.io.bank_conflict_slow(i) }) (0 until LoadPipelineWidth).map(i => { when(bus.d.bits.opcode === TLMessages.GrantData) { io.lsu.forward_D(i).apply(bus.d, edge) }.otherwise { io.lsu.forward_D(i).dontCare() } }) // tl D channel wakeup when (bus.d.bits.opcode === TLMessages.GrantData || bus.d.bits.opcode === TLMessages.Grant) { io.lsu.tl_d_channel.apply(bus.d, edge) } .otherwise { io.lsu.tl_d_channel.dontCare() } mainPipe.io.force_write <> io.force_write /** dwpu */ if (dwpuParam.enWPU) { val dwpu = Module(new DCacheWpuWrapper(LoadPipelineWidth)) for(i <- 0 until LoadPipelineWidth){ dwpu.io.req(i) <> ldu(i).io.dwpu.req(0) dwpu.io.resp(i) <> ldu(i).io.dwpu.resp(0) dwpu.io.lookup_upd(i) <> ldu(i).io.dwpu.lookup_upd(0) dwpu.io.cfpred(i) <> ldu(i).io.dwpu.cfpred(0) } dwpu.io.tagwrite_upd.valid := tagArray.io.write.valid dwpu.io.tagwrite_upd.bits.vaddr := tagArray.io.write.bits.vaddr dwpu.io.tagwrite_upd.bits.s1_real_way_en := tagArray.io.write.bits.way_en } else { for(i <- 0 until LoadPipelineWidth){ ldu(i).io.dwpu.req(0).ready := true.B ldu(i).io.dwpu.resp(0).valid := false.B ldu(i).io.dwpu.resp(0).bits := DontCare } } //---------------------------------------- // load pipe // the s1 kill signal // only lsu uses this, replay never kills for (w <- 0 until LoadPipelineWidth) { ldu(w).io.lsu <> io.lsu.load(w) // TODO:when have load128Req ldu(w).io.load128Req := io.lsu.load(w).is128Req // replay and nack not needed anymore // TODO: remove replay and nack ldu(w).io.nack := false.B ldu(w).io.disable_ld_fast_wakeup := bankedDataArray.io.disable_ld_fast_wakeup(w) // load pipe fast wake up should be disabled when bank conflict } prefetcherMonitor.io.timely.total_prefetch := ldu.map(_.io.prefetch_info.naive.total_prefetch).reduce(_ || _) prefetcherMonitor.io.timely.late_hit_prefetch := ldu.map(_.io.prefetch_info.naive.late_hit_prefetch).reduce(_ || _) prefetcherMonitor.io.timely.late_miss_prefetch := missQueue.io.prefetch_info.naive.late_miss_prefetch prefetcherMonitor.io.timely.prefetch_hit := PopCount(ldu.map(_.io.prefetch_info.naive.prefetch_hit)) io.pf_ctrl <> prefetcherMonitor.io.pf_ctrl XSPerfAccumulate("useless_prefetch", ldu.map(_.io.prefetch_info.naive.total_prefetch).reduce(_ || _) && !(ldu.map(_.io.prefetch_info.naive.useful_prefetch).reduce(_ || _))) XSPerfAccumulate("useful_prefetch", ldu.map(_.io.prefetch_info.naive.useful_prefetch).reduce(_ || _)) XSPerfAccumulate("late_prefetch_hit", ldu.map(_.io.prefetch_info.naive.late_prefetch_hit).reduce(_ || _)) XSPerfAccumulate("late_load_hit", ldu.map(_.io.prefetch_info.naive.late_load_hit).reduce(_ || _)) /** LoadMissDB: record load miss state */ val hartId = p(XSCoreParamsKey).HartId val isWriteLoadMissTable = Constantin.createRecord(s"isWriteLoadMissTable$hartId") val isFirstHitWrite = Constantin.createRecord(s"isFirstHitWrite$hartId") val tableName = s"LoadMissDB$hartId" val siteName = s"DcacheWrapper$hartId" val loadMissTable = ChiselDB.createTable(tableName, new LoadMissEntry) for( i <- 0 until LoadPipelineWidth){ val loadMissEntry = Wire(new LoadMissEntry) val loadMissWriteEn = (!ldu(i).io.lsu.resp.bits.replay && ldu(i).io.miss_req.fire) || (ldu(i).io.lsu.s2_first_hit && ldu(i).io.lsu.resp.valid && isFirstHitWrite.orR) loadMissEntry.timeCnt := GTimer() loadMissEntry.robIdx := ldu(i).io.lsu.resp.bits.debug_robIdx loadMissEntry.paddr := ldu(i).io.miss_req.bits.addr loadMissEntry.vaddr := ldu(i).io.miss_req.bits.vaddr loadMissEntry.missState := OHToUInt(Cat(Seq( ldu(i).io.miss_req.fire & ldu(i).io.miss_resp.merged, ldu(i).io.miss_req.fire & !ldu(i).io.miss_resp.merged, ldu(i).io.lsu.s2_first_hit && ldu(i).io.lsu.resp.valid ))) loadMissTable.log( data = loadMissEntry, en = isWriteLoadMissTable.orR && loadMissWriteEn, site = siteName, clock = clock, reset = reset ) } val isWriteLoadAccessTable = Constantin.createRecord(s"isWriteLoadAccessTable$hartId") val loadAccessTable = ChiselDB.createTable(s"LoadAccessDB$hartId", new LoadAccessEntry) for (i <- 0 until LoadPipelineWidth) { val loadAccessEntry = Wire(new LoadAccessEntry) loadAccessEntry.timeCnt := GTimer() loadAccessEntry.robIdx := ldu(i).io.lsu.resp.bits.debug_robIdx loadAccessEntry.paddr := ldu(i).io.miss_req.bits.addr loadAccessEntry.vaddr := ldu(i).io.miss_req.bits.vaddr loadAccessEntry.missState := OHToUInt(Cat(Seq( ldu(i).io.miss_req.fire & ldu(i).io.miss_resp.merged, ldu(i).io.miss_req.fire & !ldu(i).io.miss_resp.merged, ldu(i).io.lsu.s2_first_hit && ldu(i).io.lsu.resp.valid ))) loadAccessEntry.pred_way_num := ldu(i).io.lsu.debug_s2_pred_way_num loadAccessEntry.real_way_num := ldu(i).io.lsu.debug_s2_real_way_num loadAccessEntry.dm_way_num := ldu(i).io.lsu.debug_s2_dm_way_num loadAccessTable.log( data = loadAccessEntry, en = isWriteLoadAccessTable.orR && ldu(i).io.lsu.resp.valid, site = siteName + "_loadpipe" + i.toString, clock = clock, reset = reset ) } //---------------------------------------- // Sta pipe for (w <- 0 until StorePipelineWidth) { stu(w).io.lsu <> io.lsu.sta(w) } //---------------------------------------- // atomics // atomics not finished yet val atomic_resp_valid = mainPipe.io.atomic_resp.valid && mainPipe.io.atomic_resp.bits.isAMO io.lsu.atomics.resp.valid := RegNext(atomic_resp_valid) io.lsu.atomics.resp.bits := RegEnable(mainPipe.io.atomic_resp.bits, atomic_resp_valid) io.lsu.atomics.block_lr := mainPipe.io.block_lr // Request val missReqArb = Module(new TreeArbiter(new MissReq, MissReqPortCount)) // seperately generating miss queue enq ready for better timeing val missReadyGen = Module(new MissReadyGen(MissReqPortCount)) missReqArb.io.in(MainPipeMissReqPort) <> mainPipe.io.miss_req missReadyGen.io.in(MainPipeMissReqPort) <> mainPipe.io.miss_req for (w <- 0 until backendParams.LduCnt) { missReqArb.io.in(w + 1) <> ldu(w).io.miss_req missReadyGen.io.in(w + 1) <> ldu(w).io.miss_req } for (w <- 0 until LoadPipelineWidth) { ldu(w).io.miss_resp := missQueue.io.resp } mainPipe.io.miss_resp := missQueue.io.resp if(StorePrefetchL1Enabled) { for (w <- 0 until backendParams.StaCnt) { missReqArb.io.in(1 + backendParams.LduCnt + w) <> stu(w).io.miss_req missReadyGen.io.in(1 + backendParams.LduCnt + w) <> stu(w).io.miss_req } }else { for (w <- 0 until backendParams.StaCnt) { stu(w).io.miss_req.ready := false.B } } for (i <- 0 until backendParams.HyuCnt) { val HybridLoadReqPort = HybridLoadReadBase + i val HybridStoreReqPort = HybridStoreReadBase + i val HybridMissReqPort = HybridMissReqBase + i ldu(HybridLoadReqPort).io.miss_req.ready := false.B stu(HybridStoreReqPort).io.miss_req.ready := false.B if (StorePrefetchL1Enabled) { when (ldu(HybridLoadReqPort).io.miss_req.valid) { missReqArb.io.in(HybridMissReqPort) <> ldu(HybridLoadReqPort).io.miss_req missReadyGen.io.in(HybridMissReqPort) <> ldu(HybridLoadReqPort).io.miss_req } .otherwise { missReqArb.io.in(HybridMissReqPort) <> stu(HybridStoreReqPort).io.miss_req missReadyGen.io.in(HybridMissReqPort) <> stu(HybridStoreReqPort).io.miss_req } } else { missReqArb.io.in(HybridMissReqPort) <> ldu(HybridLoadReqPort).io.miss_req missReadyGen.io.in(HybridMissReqPort) <> ldu(HybridLoadReqPort).io.miss_req } } for(w <- 0 until LoadPipelineWidth) { wb.io.miss_req_conflict_check(w) := ldu(w).io.wbq_conflict_check ldu(w).io.wbq_block_miss_req := wb.io.block_miss_req(w) } wb.io.miss_req_conflict_check(3) := mainPipe.io.wbq_conflict_check mainPipe.io.wbq_block_miss_req := wb.io.block_miss_req(3) wb.io.miss_req_conflict_check(4).valid := missReqArb.io.out.valid wb.io.miss_req_conflict_check(4).bits := missReqArb.io.out.bits.addr missQueue.io.wbq_block_miss_req := wb.io.block_miss_req(4) missReqArb.io.out <> missQueue.io.req missReadyGen.io.queryMQ <> missQueue.io.queryMQ io.cmoOpReq <> missQueue.io.cmo_req io.cmoOpResp <> missQueue.io.cmo_resp XSPerfAccumulate("miss_queue_fire", PopCount(VecInit(missReqArb.io.in.map(_.fire))) >= 1.U) XSPerfAccumulate("miss_queue_muti_fire", PopCount(VecInit(missReqArb.io.in.map(_.fire))) > 1.U) XSPerfAccumulate("miss_queue_has_enq_req", PopCount(VecInit(missReqArb.io.in.map(_.valid))) >= 1.U) XSPerfAccumulate("miss_queue_has_muti_enq_req", PopCount(VecInit(missReqArb.io.in.map(_.valid))) > 1.U) XSPerfAccumulate("miss_queue_has_muti_enq_but_not_fire", PopCount(VecInit(missReqArb.io.in.map(_.valid))) > 1.U && PopCount(VecInit(missReqArb.io.in.map(_.fire))) === 0.U) // forward missqueue (0 until LoadPipelineWidth).map(i => io.lsu.forward_mshr(i).connect(missQueue.io.forward(i))) // refill to load queue // io.lsu.lsq <> missQueue.io.refill_to_ldq // tilelink stuff bus.a <> missQueue.io.mem_acquire bus.e <> missQueue.io.mem_finish missQueue.io.probe_addr := bus.b.bits.address missQueue.io.replace_addr := mainPipe.io.replace_addr missQueue.io.main_pipe_resp.valid := RegNext(mainPipe.io.atomic_resp.valid) missQueue.io.main_pipe_resp.bits := RegEnable(mainPipe.io.atomic_resp.bits, mainPipe.io.atomic_resp.valid) //---------------------------------------- // probe // probeQueue.io.mem_probe <> bus.b block_decoupled(bus.b, probeQueue.io.mem_probe, missQueue.io.probe_block) probeQueue.io.lrsc_locked_block <> mainPipe.io.lrsc_locked_block probeQueue.io.update_resv_set <> mainPipe.io.update_resv_set val refill_req = RegNext(missQueue.io.main_pipe_req.valid && ((missQueue.io.main_pipe_req.bits.isLoad) | (missQueue.io.main_pipe_req.bits.isStore))) //---------------------------------------- // mainPipe // when a req enters main pipe, if it is set-conflict with replace pipe or refill pipe, // block the req in main pipe probeQueue.io.pipe_req <> mainPipe.io.probe_req io.lsu.store.req <> mainPipe.io.store_req io.lsu.store.replay_resp.valid := RegNext(mainPipe.io.store_replay_resp.valid) io.lsu.store.replay_resp.bits := RegEnable(mainPipe.io.store_replay_resp.bits, mainPipe.io.store_replay_resp.valid) io.lsu.store.main_pipe_hit_resp := mainPipe.io.store_hit_resp mainPipe.io.atomic_req <> io.lsu.atomics.req mainPipe.io.invalid_resv_set := RegNext( wb.io.req.fire && wb.io.req.bits.addr === mainPipe.io.lrsc_locked_block.bits && mainPipe.io.lrsc_locked_block.valid ) //---------------------------------------- // replace (main pipe) val mpStatus = mainPipe.io.status mainPipe.io.refill_req <> missQueue.io.main_pipe_req mainPipe.io.data_write_ready_dup := VecInit(Seq.fill(nDupDataWriteReady)(true.B)) mainPipe.io.tag_write_ready_dup := VecInit(Seq.fill(nDupDataWriteReady)(true.B)) mainPipe.io.wb_ready_dup := wb.io.req_ready_dup //---------------------------------------- // wb // add a queue between MainPipe and WritebackUnit to reduce MainPipe stalls due to WritebackUnit busy wb.io.req <> mainPipe.io.wb bus.c <> wb.io.mem_release // wb.io.release_wakeup := refillPipe.io.release_wakeup // wb.io.release_update := mainPipe.io.release_update //wb.io.probe_ttob_check_req <> mainPipe.io.probe_ttob_check_req //wb.io.probe_ttob_check_resp <> mainPipe.io.probe_ttob_check_resp io.lsu.release.valid := RegNext(wb.io.req.fire) io.lsu.release.bits.paddr := RegEnable(wb.io.req.bits.addr, wb.io.req.fire) // Note: RegNext() is required by: // * load queue released flag update logic // * load / load violation check logic // * and timing requirements // CHANGE IT WITH CARE // connect bus d missQueue.io.mem_grant.valid := false.B missQueue.io.mem_grant.bits := DontCare wb.io.mem_grant.valid := false.B wb.io.mem_grant.bits := DontCare // in L1DCache, we ony expect Grant[Data] and ReleaseAck bus.d.ready := false.B when (bus.d.bits.opcode === TLMessages.Grant || bus.d.bits.opcode === TLMessages.GrantData || bus.d.bits.opcode === TLMessages.CBOAck) { missQueue.io.mem_grant <> bus.d } .elsewhen (bus.d.bits.opcode === TLMessages.ReleaseAck) { wb.io.mem_grant <> bus.d } .otherwise { assert (!bus.d.fire) } //---------------------------------------- // Feedback Direct Prefetch Monitor fdpMonitor.io.refill := missQueue.io.prefetch_info.fdp.prefetch_monitor_cnt fdpMonitor.io.timely.late_prefetch := missQueue.io.prefetch_info.fdp.late_miss_prefetch fdpMonitor.io.accuracy.total_prefetch := missQueue.io.prefetch_info.fdp.total_prefetch for (w <- 0 until LoadPipelineWidth) { if(w == 0) { fdpMonitor.io.accuracy.useful_prefetch(w) := ldu(w).io.prefetch_info.fdp.useful_prefetch }else { fdpMonitor.io.accuracy.useful_prefetch(w) := Mux(same_cycle_update_pf_flag, false.B, ldu(w).io.prefetch_info.fdp.useful_prefetch) } } for (w <- 0 until LoadPipelineWidth) { fdpMonitor.io.pollution.cache_pollution(w) := ldu(w).io.prefetch_info.fdp.pollution } for (w <- 0 until LoadPipelineWidth) { fdpMonitor.io.pollution.demand_miss(w) := ldu(w).io.prefetch_info.fdp.demand_miss } fdpMonitor.io.debugRolling := io.debugRolling //---------------------------------------- // Bloom Filter // bloomFilter.io.set <> missQueue.io.bloom_filter_query.set // bloomFilter.io.clr <> missQueue.io.bloom_filter_query.clr bloomFilter.io.set <> mainPipe.io.bloom_filter_query.set bloomFilter.io.clr <> mainPipe.io.bloom_filter_query.clr for (w <- 0 until LoadPipelineWidth) { bloomFilter.io.query(w) <> ldu(w).io.bloom_filter_query.query } for (w <- 0 until LoadPipelineWidth) { bloomFilter.io.resp(w) <> ldu(w).io.bloom_filter_query.resp } for (w <- 0 until LoadPipelineWidth) { counterFilter.io.ld_in(w) <> ldu(w).io.counter_filter_enq } for (w <- 0 until LoadPipelineWidth) { counterFilter.io.query(w) <> ldu(w).io.counter_filter_query } //---------------------------------------- // replacement algorithm val replacer = ReplacementPolicy.fromString(cacheParams.replacer, nWays, nSets) val replWayReqs = ldu.map(_.io.replace_way) ++ Seq(mainPipe.io.replace_way) ++ stu.map(_.io.replace_way) if (dwpuParam.enCfPred) { val victimList = VictimList(nSets) replWayReqs.foreach { case req => req.way := DontCare when(req.set.valid) { when(victimList.whether_sa(req.set.bits)) { req.way := replacer.way(req.set.bits) }.otherwise { req.way := req.dmWay } } } } else { replWayReqs.foreach { case req => req.way := DontCare when(req.set.valid) { req.way := replacer.way(req.set.bits) } } } val replAccessReqs = ldu.map(_.io.replace_access) ++ Seq( mainPipe.io.replace_access ) ++ stu.map(_.io.replace_access) val touchWays = Seq.fill(replAccessReqs.size)(Wire(ValidIO(UInt(log2Up(nWays).W)))) touchWays.zip(replAccessReqs).foreach { case (w, req) => w.valid := req.valid w.bits := req.bits.way } val touchSets = replAccessReqs.map(_.bits.set) replacer.access(touchSets, touchWays) //---------------------------------------- // assertions // dcache should only deal with DRAM addresses import freechips.rocketchip.util._ when (bus.a.fire) { assert(PmemRanges.map(_.cover(bus.a.bits.address)).reduce(_ || _)) } when (bus.b.fire) { assert(PmemRanges.map(_.cover(bus.b.bits.address)).reduce(_ || _)) } when (bus.c.fire) { assert(PmemRanges.map(_.cover(bus.c.bits.address)).reduce(_ || _)) } //---------------------------------------- // utility functions def block_decoupled[T <: Data](source: DecoupledIO[T], sink: DecoupledIO[T], block_signal: Bool) = { sink.valid := source.valid && !block_signal source.ready := sink.ready && !block_signal sink.bits := source.bits } //---------------------------------------- // performance counters val num_loads = PopCount(ldu.map(e => e.io.lsu.req.fire)) XSPerfAccumulate("num_loads", num_loads) io.mshrFull := missQueue.io.full io.l1Miss := missQueue.io.l1Miss // performance counter // val ld_access = Wire(Vec(LoadPipelineWidth, missQueue.io.debug_early_replace.last.cloneType)) // val st_access = Wire(ld_access.last.cloneType) // ld_access.zip(ldu).foreach { // case (a, u) => // a.valid := RegNext(u.io.lsu.req.fire) && !u.io.lsu.s1_kill // a.bits.idx := RegEnable(get_idx(u.io.lsu.req.bits.vaddr), u.io.lsu.req.fire) // a.bits.tag := get_tag(u.io.lsu.s1_paddr_dup_dcache) // } // st_access.valid := RegNext(mainPipe.io.store_req.fire) // st_access.bits.idx := RegEnable(get_idx(mainPipe.io.store_req.bits.vaddr), mainPipe.io.store_req.fire) // st_access.bits.tag := RegEnable(get_tag(mainPipe.io.store_req.bits.addr), mainPipe.io.store_req.fire) // val access_info = ld_access.toSeq ++ Seq(st_access) // val early_replace = RegNext(missQueue.io.debug_early_replace) // TODO: clock gate // val access_early_replace = access_info.map { // case acc => // Cat(early_replace.map { // case r => // acc.valid && r.valid && // acc.bits.tag === r.bits.tag && // acc.bits.idx === r.bits.idx // }) // } // XSPerfAccumulate("access_early_replace", PopCount(Cat(access_early_replace))) val perfEvents = (Seq(wb, mainPipe, missQueue, probeQueue) ++ ldu).flatMap(_.getPerfEvents) generatePerfEvent() } class AMOHelper() extends ExtModule { val clock = IO(Input(Clock())) val enable = IO(Input(Bool())) val cmd = IO(Input(UInt(5.W))) val addr = IO(Input(UInt(64.W))) val wdata = IO(Input(UInt(64.W))) val mask = IO(Input(UInt(8.W))) val rdata = IO(Output(UInt(64.W))) } class DCacheWrapper()(implicit p: Parameters) extends LazyModule with HasXSParameter with HasDCacheParameters { override def shouldBeInlined: Boolean = false val useDcache = coreParams.dcacheParametersOpt.nonEmpty val clientNode = if (useDcache) TLIdentityNode() else null val dcache = if (useDcache) LazyModule(new DCache()) else null if (useDcache) { clientNode := dcache.clientNode } val uncacheNode = OptionWrapper(cacheCtrlParamsOpt.isDefined, TLIdentityNode()) require( (uncacheNode.isDefined && dcache.cacheCtrlOpt.isDefined) || (!uncacheNode.isDefined && !dcache.cacheCtrlOpt.isDefined), "uncacheNode and ctrlUnitOpt are not connected!") if (uncacheNode.isDefined && dcache.cacheCtrlOpt.isDefined) { dcache.cacheCtrlOpt.get.node := uncacheNode.get } class DCacheWrapperImp(wrapper: LazyModule) extends LazyModuleImp(wrapper) with HasPerfEvents { val io = IO(new DCacheIO) val perfEvents = if (!useDcache) { // a fake dcache which uses dpi-c to access memory, only for debug usage! val fake_dcache = Module(new FakeDCache()) io <> fake_dcache.io Seq() } else { io <> dcache.module.io dcache.module.getPerfEvents } generatePerfEvent() } lazy val module = new DCacheWrapperImp(this) }