/**************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. **************************************************************************************** */ package xiangshan.backend.fu.vector import chipsalliance.rocketchip.config.Parameters import chisel3.{Mux, _} import chisel3.util._ import utils._ import utility._ import yunsuan.vector.{VectorFloatAdder,VectorFloatFMA,VectorFloatDivider} import yunsuan.VfpuType import xiangshan.{FuType, XSCoreParamsKey} class VFPU(implicit p: Parameters) extends VPUSubModule(p(XSCoreParamsKey).VLEN) { XSError(io.in.valid && io.in.bits.uop.ctrl.fuOpType === VfpuType.dummy, "VFPU OpType not supported") XSError(io.in.valid && (io.in.bits.uop.ctrl.vconfig.vtype.vsew === 0.U), "8 bits not supported in VFPU") override val dataModule = Seq( Module(new VfaluWrapper), Module(new VfmaccWrapper), Module(new VfdivWrapper) ) val select0 = io.in.bits.uop.ctrl.fuOpType === VfpuType.isVfalu val select1 = io.in.bits.uop.ctrl.fuOpType === VfpuType.isVfmacc val select2 = io.in.bits.uop.ctrl.fuOpType === VfpuType.isVfdiv override val select = Seq( io.in.bits.uop.ctrl.fuType === FuType.vfpu && select0, io.in.bits.uop.ctrl.fuType === FuType.vfpu && select1, io.in.bits.uop.ctrl.fuType === FuType.vfpu && select2 ) connectDataModule } class VfdivWrapper(implicit p: Parameters) extends VPUDataModule{ needReverse := false.B needClearMask := false.B val Latency = List(5, 7, 12) val AdderWidth = XLEN val NumAdder = VLEN / XLEN // TODO: Place these logic within the functional unit val inHs = io.in.fire() val s0_mask = DataHoldBypass(in.src(3), inHs) val s0_sew = DataHoldBypass(in.uop.ctrl.vconfig.vtype.vsew(1,0), inHs) val s0_vl = DataHoldBypass(in.uop.ctrl.vconfig.vl, inHs) val vfdiv = Seq.fill(NumAdder)(Module(new VectorFloatDivider())) for (i <- 0 until NumAdder) { vfdiv(i).io.opb_i := Mux(inHs, vs1(AdderWidth * (i + 1) - 1, AdderWidth * i), 0.U) vfdiv(i).io.opa_i := Mux(inHs, vs2(AdderWidth * (i + 1) - 1, AdderWidth * i), 0.U) vfdiv(i).io.is_vec_i := true.B // If you can enter, it must be vector vfdiv(i).io.frs2_i := in.src(0)(63,0) // f[rs2] vfdiv(i).io.frs1_i := in.src(1)(63,0) // f[rs1] vfdiv(i).io.is_frs1_i := false.B // if true, vs2 / f[rs1] vfdiv(i).io.is_frs2_i := false.B // if true, f[rs2] / vs1 vfdiv(i).io.is_sqrt_i := false.B // must false, not support sqrt now vfdiv(i).io.rm_i := rm vfdiv(i).io.fp_format_i := Mux(inHs, in.uop.ctrl.vconfig.vtype.vsew(1,0), 3.U(2.W)) vfdiv(i).io.start_valid_i := io.in.valid vfdiv(i).io.finish_ready_i := io.out.ready vfdiv(i).io.flush_i := false.B // TODO } val s4_fflagsVec = VecInit(vfdiv.map(_.io.fflags_o)).asUInt() val s4_fflags16vl = fflagsGen(s0_mask, s4_fflagsVec, List.range(0, 8)) val s4_fflags32vl = fflagsGen(s0_mask, s4_fflagsVec, List(0, 1, 4, 5)) val s4_fflags64vl = fflagsGen(s0_mask, s4_fflagsVec, List(0, 4)) val s4_fflags = LookupTree(s0_sew(1, 0), List( "b01".U -> Mux(s0_vl.orR, s4_fflags16vl(s0_vl - 1.U), 0.U(5.W)), "b10".U -> Mux(s0_vl.orR, s4_fflags32vl(s0_vl - 1.U), 0.U(5.W)), "b11".U -> Mux(s0_vl.orR, s4_fflags64vl(s0_vl - 1.U), 0.U(5.W)), )) val s4_result = VecInit(vfdiv.map(_.io.fpdiv_res_o)).asUInt() io.out.bits.data := s4_result fflags := s4_fflags io.in.ready := VecInit(vfdiv.map(_.io.start_ready_o)).asUInt().andR() io.out.valid := VecInit(vfdiv.map(_.io.finish_valid_o)).asUInt().andR() } class VfmaccWrapper(implicit p: Parameters) extends VPUDataModule{ needReverse := false.B needClearMask := false.B val Latency = 3 val AdderWidth = XLEN val NumAdder = VLEN / XLEN val inHs = io.in.fire() val validPipe = Seq.fill(Latency)(RegInit(false.B)) validPipe.zipWithIndex.foreach { case (valid, idx) => val _valid = if (idx == 0) Mux(inHs, true.B, false.B) else validPipe(idx - 1) valid := _valid } // TODO: Place these logic within the functional unit val s0_mask = DataHoldBypass(in.src(3), inHs) val s0_sew = DataHoldBypass(in.uop.ctrl.vconfig.vtype.vsew(1, 0), inHs) val s0_vl = DataHoldBypass(in.uop.ctrl.vconfig.vl, inHs) val vfmacc = Seq.fill(NumAdder)(Module(new VectorFloatFMA())) for (i <- 0 until NumAdder) { vfmacc(i).io.fp_a := Mux(inHs, vs1(AdderWidth * (i + 1) - 1, AdderWidth * i), 0.U) vfmacc(i).io.fp_b := Mux(inHs, vs2(AdderWidth * (i + 1) - 1, AdderWidth * i), 0.U) vfmacc(i).io.fp_c := Mux(inHs, in.src(2)(AdderWidth * (i + 1) - 1, AdderWidth * i), 0.U) vfmacc(i).io.widen_b := Mux(inHs, Cat(vs1((AdderWidth / 2) * (i + 3) - 1, (AdderWidth / 2) * (i + 2)), vs1((AdderWidth / 2) * (i + 1) - 1, (AdderWidth / 2) * i)), 0.U) vfmacc(i).io.widen_a := Mux(inHs, Cat(vs2((AdderWidth / 2) * (i + 3) - 1, (AdderWidth / 2) * (i + 2)), vs2((AdderWidth / 2) * (i + 1) - 1, (AdderWidth / 2) * i)), 0.U) vfmacc(i).io.frs1 := in.src(0)(63,0) vfmacc(i).io.is_frs1 := false.B // TODO: support vf inst vfmacc(i).io.uop_idx := in.uop.ctrl.uopIdx // TODO vfmacc(i).io.op_code := DontCare // TODO vfmacc(i).io.is_vec := true.B // If you can enter, it must be vector vfmacc(i).io.round_mode := rm vfmacc(i).io.fp_format := Mux(inHs, in.uop.ctrl.vconfig.vtype.vsew(1,0), 3.U(2.W)) vfmacc(i).io.res_widening := false.B // TODO } // output signal generation val s2_fflagsVec = VecInit(vfmacc.map(_.io.fflags)).asUInt() val s2_fflags16vl = fflagsGen(s0_mask, s2_fflagsVec, List.range(0, 8)) val s2_fflags32vl = fflagsGen(s0_mask, s2_fflagsVec, List(0, 1, 4, 5)) val s2_fflags64vl = fflagsGen(s0_mask, s2_fflagsVec, List(0, 4)) val s2_fflags = LookupTree(s0_sew(1, 0), List( "b01".U -> Mux(s0_vl.orR, s2_fflags16vl(s0_vl - 1.U), 0.U(5.W)), "b10".U -> Mux(s0_vl.orR, s2_fflags32vl(s0_vl - 1.U), 0.U(5.W)), "b11".U -> Mux(s0_vl.orR, s2_fflags64vl(s0_vl - 1.U), 0.U(5.W)), )) val s2_result = VecInit(vfmacc.map(_.io.fp_result)).asUInt() io.out.bits.data := s2_result fflags := s2_fflags io.in.ready := true.B io.out.valid := validPipe(Latency - 1) } class VfaluWrapper(implicit p: Parameters) extends VPUDataModule{ needReverse := false.B needClearMask := false.B val Latency = 2 val AdderWidth = XLEN val NumAdder = VLEN / XLEN val inHs = io.in.fire() // reg input signal val validPipe = Seq.fill(Latency)(RegInit(false.B)) validPipe.zipWithIndex.foreach { case (valid, idx) => val _valid = if (idx == 0) Mux(inHs, true.B, false.B) else validPipe(idx - 1) valid := _valid } // TODO: Place these logic within the functional unit val s0_mask = DataHoldBypass(in.src(3), inHs) val s0_sew = DataHoldBypass(in.uop.ctrl.vconfig.vtype.vsew(1, 0), inHs) val s0_vl = DataHoldBypass(in.uop.ctrl.vconfig.vl, inHs) // connect the input signal val vfalu = Seq.fill(NumAdder)(Module(new VectorFloatAdder())) for (i <- 0 until NumAdder) { vfalu(i).io.fp_b := Mux(inHs, vs1(AdderWidth * (i + 1) - 1, AdderWidth * i), 0.U) vfalu(i).io.fp_a := Mux(inHs, vs2(AdderWidth * (i + 1) - 1, AdderWidth * i), 0.U) vfalu(i).io.widen_b := Mux(inHs, Cat(vs1((AdderWidth / 2) * (i + 3) - 1, (AdderWidth / 2) * (i + 2)), vs1((AdderWidth / 2) * (i + 1) - 1, (AdderWidth / 2) * i)), 0.U) vfalu(i).io.widen_a := Mux(inHs, Cat(vs2((AdderWidth / 2) * (i + 3) - 1, (AdderWidth / 2) * (i + 2)), vs2((AdderWidth / 2) * (i + 1) - 1, (AdderWidth / 2) * i)), 0.U) vfalu(i).io.frs1 := in.src(0)(63, 0) vfalu(i).io.is_frs1 := false.B // TODO: support vf inst vfalu(i).io.mask := 0.U //TODO vfalu(i).io.uop_idx := in.uop.ctrl.uopIdx // TODO vfalu(i).io.is_vec := true.B // If you can enter, it must be vector vfalu(i).io.round_mode := rm vfalu(i).io.fp_format := Mux(inHs, in.uop.ctrl.vconfig.vtype.vsew(1,0), 3.U(2.W)) vfalu(i).io.opb_widening := false.B // TODO vfalu(i).io.res_widening := false.B // TODO vfalu(i).io.op_code := in.uop.ctrl.fuOpType } // output signal generation val s0_fflagsVec = VecInit(vfalu.map(_.io.fflags)).asUInt() val s0_fflags16vl = fflagsGen(s0_mask, s0_fflagsVec, List.range(0, 8)) val s0_fflags32vl = fflagsGen(s0_mask, s0_fflagsVec, List(0, 1, 4, 5)) val s0_fflags64vl = fflagsGen(s0_mask, s0_fflagsVec, List(0, 4)) val s0_fflags = LookupTree(s0_sew(1, 0), List( "b01".U -> Mux(s0_vl.orR, s0_fflags16vl(s0_vl - 1.U), 0.U(5.W)), "b10".U -> Mux(s0_vl.orR, s0_fflags32vl(s0_vl - 1.U), 0.U(5.W)), "b11".U -> Mux(s0_vl.orR, s0_fflags64vl(s0_vl - 1.U), 0.U(5.W)), )) val s1_fflags = RegEnable(s0_fflags, validPipe(Latency-2)) val s0_result = VecInit(vfalu.map(_.io.fp_result)).asUInt() val s1_result = RegEnable(s0_result, validPipe(Latency-2)) fflags := s1_fflags io.out.bits.data := s1_result io.in.ready := true.B io.out.valid := validPipe(Latency-1) } object fflagsGen{ def fflagsGen(vmask: UInt, fflagsResult:UInt, idx:List[Int] = List(0, 1, 4, 5)): Vec[UInt] = { var num = idx.length val fflags = Seq.fill(num)(Wire(UInt(5.W))) fflags.zip(vmask(num-1, 0).asBools().reverse).zip(idx).foreach { case ((fflags0, mask), id) => fflags0 := Mux(mask, fflagsResult(id*5+4,id*5+0), 0.U) } val fflagsVl = Wire(Vec(num,UInt(5.W))) for (i <- 0 until num) { val _fflags = if (i == 0) fflags(i) else (fflagsVl(i - 1) | fflags(i)) fflagsVl(i) := _fflags } fflagsVl } def apply(vmask: UInt, fflagsResult:UInt, idx:List[Int] = List(0, 1, 4, 5)): Vec[UInt] = { fflagsGen(vmask, fflagsResult, idx) } }