/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.backend.exu import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.experimental.hierarchy.{Definition, instantiable} import chisel3.util._ import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} import utility._ import xiangshan.backend.fu.{CSRFileIO, FenceIO, FuncUnitInput} import xiangshan.backend.Bundles.{ExuInput, ExuOutput, MemExuInput, MemExuOutput} import xiangshan.{AddrTransType, FPUCtrlSignals, HasXSParameter, Redirect, XSBundle, XSModule} import xiangshan.backend.datapath.WbConfig.{PregWB, _} import xiangshan.backend.fu.FuType import xiangshan.backend.fu.vector.Bundles.{VType, Vxrm} import xiangshan.backend.fu.fpu.Bundles.Frm import xiangshan.backend.fu.wrapper.{CSRInput, CSRToDecode} class ExeUnitIO(params: ExeUnitParams)(implicit p: Parameters) extends XSBundle { val flush = Flipped(ValidIO(new Redirect())) val in = Flipped(DecoupledIO(new ExuInput(params, hasCopySrc = true))) val out = DecoupledIO(new ExuOutput(params)) val csrin = Option.when(params.hasCSR)(new CSRInput) val csrio = Option.when(params.hasCSR)(new CSRFileIO) val csrToDecode = Option.when(params.hasCSR)(Output(new CSRToDecode)) val fenceio = Option.when(params.hasFence)(new FenceIO) val frm = Option.when(params.needSrcFrm)(Input(Frm())) val vxrm = Option.when(params.needSrcVxrm)(Input(Vxrm())) val vtype = Option.when(params.writeVConfig)((Valid(new VType))) val vlIsZero = Option.when(params.writeVConfig)(Output(Bool())) val vlIsVlmax = Option.when(params.writeVConfig)(Output(Bool())) val instrAddrTransType = Option.when(params.hasJmpFu || params.hasBrhFu)(Input(new AddrTransType)) } class ExeUnit(val exuParams: ExeUnitParams)(implicit p: Parameters) extends LazyModule { override def shouldBeInlined: Boolean = false lazy val module = new ExeUnitImp(this)(p, exuParams) } class ExeUnitImp( override val wrapper: ExeUnit )(implicit p: Parameters, exuParams: ExeUnitParams ) extends LazyModuleImp(wrapper) with HasXSParameter with HasCriticalErrors { private val fuCfgs = exuParams.fuConfigs val io = IO(new ExeUnitIO(exuParams)) val funcUnits = fuCfgs.map(cfg => { assert(cfg.fuGen != null, cfg.name + "Cfg'fuGen is null !!!") val module = cfg.fuGen(p, cfg) module }) if (EnableClockGate) { fuCfgs.zip(funcUnits).foreach { case (cfg, fu) => val clk_en = WireInit(false.B) val fuVld_en = WireInit(false.B) val fuVld_en_reg = RegInit(false.B) val uncer_en_reg = RegInit(false.B) def latReal: Int = cfg.latency.latencyVal.getOrElse(0) def extralat: Int = cfg.latency.extraLatencyVal.getOrElse(0) val uncerLat = cfg.latency.uncertainEnable.nonEmpty val lat0 = (latReal == 0 && !uncerLat).asBool val latN = (latReal > 0 && !uncerLat).asBool val fuVldVec = (fu.io.in.valid && latN) +: Seq.fill(latReal)(RegInit(false.B)) val fuRdyVec = Seq.fill(latReal)(Wire(Bool())) :+ fu.io.out.ready for (i <- 0 until latReal) { fuRdyVec(i) := !fuVldVec(i + 1) || fuRdyVec(i + 1) } for (i <- 1 to latReal) { when(fuRdyVec(i - 1) && fuVldVec(i - 1)) { fuVldVec(i) := fuVldVec(i - 1) }.elsewhen(fuRdyVec(i)) { fuVldVec(i) := false.B } } fuVld_en := fuVldVec.map(v => v).reduce(_ || _) fuVld_en_reg := fuVld_en when(uncerLat.asBool && fu.io.in.fire) { uncer_en_reg := true.B }.elsewhen(uncerLat.asBool && fu.io.out.fire) { uncer_en_reg := false.B } when(lat0 && fu.io.in.fire) { clk_en := true.B }.elsewhen(latN && fuVld_en || fuVld_en_reg) { clk_en := true.B }.elsewhen(uncerLat.asBool && fu.io.in.fire || uncer_en_reg) { clk_en := true.B } if (cfg.ckAlwaysEn) { clk_en := true.B } if (latReal != 0 || uncerLat) { fu.clock := ClockGate(false.B, clk_en, clock) } XSPerfAccumulate(s"clock_gate_en_${fu.cfg.name}", clk_en) } } val busy = RegInit(false.B) if (exuParams.latencyCertain){ busy := false.B } else { val robIdx = RegEnable(io.in.bits.robIdx, io.in.fire) when(io.in.fire && io.in.bits.robIdx.needFlush(io.flush)) { busy := false.B }.elsewhen(busy && robIdx.needFlush(io.flush)) { busy := false.B }.elsewhen(io.out.fire) { busy := false.B }.elsewhen(io.in.fire) { busy := true.B } } exuParams.wbPortConfigs.map{ x => x match { case IntWB(port, priority) => assert(priority >= 0 && priority <= 2, s"${exuParams.name}: WbPort must priority=0 or priority=1") case FpWB(port, priority) => assert(priority >= 0 && priority <= 2, s"${exuParams.name}: WbPort must priority=0 or priority=1") case VfWB (port, priority) => assert(priority >= 0 && priority <= 2, s"${exuParams.name}: WbPort must priority=0 or priority=1") case _ => } } val intWbPort = exuParams.getIntWBPort if (intWbPort.isDefined){ val sameIntPortExuParam = backendParams.allExuParams.filter(_.getIntWBPort.isDefined) .filter(_.getIntWBPort.get.port == intWbPort.get.port) val samePortOneCertainOneUncertain = sameIntPortExuParam.map(_.latencyCertain).contains(true) && sameIntPortExuParam.map(_.latencyCertain).contains(false) if (samePortOneCertainOneUncertain) sameIntPortExuParam.map(samePort => samePort.wbPortConfigs.map( x => x match { case IntWB(port, priority) => { if (!samePort.latencyCertain) assert(priority == sameIntPortExuParam.size - 1, s"${samePort.name}: IntWbPort $port must latencyCertain priority=0 or latencyUnCertain priority=max(${sameIntPortExuParam.size - 1})") // Certain latency can be handled by WbBusyTable, so there is no need to limit the exu's WB priority } case _ => } ) ) } val fpWbPort = exuParams.getFpWBPort if (fpWbPort.isDefined) { val sameFpPortExuParam = backendParams.allExuParams.filter(_.getFpWBPort.isDefined) .filter(_.getFpWBPort.get.port == fpWbPort.get.port) val samePortOneCertainOneUncertain = sameFpPortExuParam.map(_.latencyCertain).contains(true) && sameFpPortExuParam.map(_.latencyCertain).contains(false) if (samePortOneCertainOneUncertain) sameFpPortExuParam.map(samePort => samePort.wbPortConfigs.map( x => x match { case FpWB(port, priority) => { if (!samePort.latencyCertain) assert(priority == sameFpPortExuParam.size - 1, s"${samePort.name}: FpWbPort $port must latencyCertain priority=0 or latencyUnCertain priority=max(${sameFpPortExuParam.size - 1})") // Certain latency can be handled by WbBusyTable, so there is no need to limit the exu's WB priority } case _ => } ) ) } val vfWbPort = exuParams.getVfWBPort if (vfWbPort.isDefined) { val sameVfPortExuParam = backendParams.allExuParams.filter(_.getVfWBPort.isDefined) .filter(_.getVfWBPort.get.port == vfWbPort.get.port) val samePortOneCertainOneUncertain = sameVfPortExuParam.map(_.latencyCertain).contains(true) && sameVfPortExuParam.map(_.latencyCertain).contains(false) if (samePortOneCertainOneUncertain) sameVfPortExuParam.map(samePort => samePort.wbPortConfigs.map( x => x match { case VfWB(port, priority) => { if (!samePort.latencyCertain) assert(priority == sameVfPortExuParam.size - 1, s"${samePort.name}: VfWbPort $port must latencyCertain priority=0 or latencyUnCertain priority=max(${sameVfPortExuParam.size - 1})") // Certain latency can be handled by WbBusyTable, so there is no need to limit the exu's WB priority } case _ => } ) ) } if(backendParams.debugEn) { dontTouch(io.out.ready) } // rob flush --> funcUnits funcUnits.zipWithIndex.foreach { case (fu, i) => fu.io.flush <> io.flush } def acceptCond(input: ExuInput): Seq[Bool] = { input.params.fuConfigs.map(_.fuSel(input)) } val in1ToN = Module(new Dispatcher(new ExuInput(exuParams), funcUnits.length, acceptCond)) // ExeUnit.in <---> Dispatcher.in in1ToN.io.in.valid := io.in.valid && !busy in1ToN.io.in.bits := io.in.bits io.in.ready := !busy && in1ToN.io.in.ready def pipelineReg(init: ExuInput, valid: Bool, latency: Int, flush: ValidIO[Redirect]): (Seq[ExuInput], Seq[Bool]) = { val validVec = valid +: Seq.fill(latency)(RegInit(false.B)) val inVec = init +: Seq.fill(latency)(Reg(new ExuInput(exuParams))) val robIdxVec = inVec.map(_.robIdx) // if flush(0), valid 0 will not given, so set flushVec(0) to false.B val flushVec = validVec.zip(robIdxVec).map(x => x._1 && x._2.needFlush(flush)) for (i <- 1 to latency) { validVec(i) := validVec(i - 1) && !flushVec(i - 1) inVec(i) := inVec(i - 1) } (inVec, validVec) } val latencyMax = fuCfgs.map(_.latency.latencyVal.getOrElse(0)).max val inPipe = pipelineReg(io.in.bits, io.in.valid, latencyMax, io.flush) // Dispatcher.out <---> FunctionUnits in1ToN.io.out.zip(funcUnits.map(_.io.in)).foreach { case (source: DecoupledIO[ExuInput], sink: DecoupledIO[FuncUnitInput]) => sink.valid := source.valid source.ready := sink.ready sink.bits.data.pc .foreach(x => x := source.bits.pc.get) sink.bits.data.nextPcOffset.foreach(x => x := source.bits.nextPcOffset.get) sink.bits.data.imm := source.bits.imm sink.bits.ctrl.fuOpType := source.bits.fuOpType sink.bits.ctrl.robIdx := source.bits.robIdx sink.bits.ctrl.pdest := source.bits.pdest sink.bits.ctrl.rfWen .foreach(x => x := source.bits.rfWen.get) sink.bits.ctrl.fpWen .foreach(x => x := source.bits.fpWen.get) sink.bits.ctrl.vecWen .foreach(x => x := source.bits.vecWen.get) sink.bits.ctrl.v0Wen .foreach(x => x := source.bits.v0Wen.get) sink.bits.ctrl.vlWen .foreach(x => x := source.bits.vlWen.get) sink.bits.ctrl.flushPipe .foreach(x => x := source.bits.flushPipe.get) sink.bits.ctrl.preDecode .foreach(x => x := source.bits.preDecode.get) sink.bits.ctrl.ftqIdx .foreach(x => x := source.bits.ftqIdx.get) sink.bits.ctrl.ftqOffset .foreach(x => x := source.bits.ftqOffset.get) sink.bits.ctrl.predictInfo .foreach(x => x := source.bits.predictInfo.get) sink.bits.ctrl.fpu .foreach(x => x := source.bits.fpu.get) sink.bits.ctrl.vpu .foreach(x => x := source.bits.vpu.get) sink.bits.ctrl.vpu .foreach(x => x.fpu.isFpToVecInst := 0.U) sink.bits.ctrl.vpu .foreach(x => x.fpu.isFP32Instr := 0.U) sink.bits.ctrl.vpu .foreach(x => x.fpu.isFP64Instr := 0.U) sink.bits.perfDebugInfo := source.bits.perfDebugInfo } funcUnits.filter(_.cfg.latency.latencyVal.nonEmpty).map{ fu => val latency = fu.cfg.latency.latencyVal.getOrElse(0) for (i <- 0 until (latency+1)) { val sink = fu.io.in.bits.ctrlPipe.get(i) val source = inPipe._1(i) fu.io.in.bits.validPipe.get(i) := inPipe._2(i) sink.fuOpType := source.fuOpType sink.robIdx := source.robIdx sink.pdest := source.pdest sink.rfWen.foreach(x => x := source.rfWen.get) sink.fpWen.foreach(x => x := source.fpWen.get) sink.vecWen.foreach(x => x := source.vecWen.get) sink.v0Wen.foreach(x => x := source.v0Wen.get) sink.vlWen.foreach(x => x := source.vlWen.get) sink.flushPipe.foreach(x => x := source.flushPipe.get) sink.preDecode.foreach(x => x := source.preDecode.get) sink.ftqIdx.foreach(x => x := source.ftqIdx.get) sink.ftqOffset.foreach(x => x := source.ftqOffset.get) sink.predictInfo.foreach(x => x := source.predictInfo.get) sink.fpu.foreach(x => x := source.fpu.get) sink.vpu.foreach(x => x := source.vpu.get) sink.vpu.foreach(x => x.fpu.isFpToVecInst := 0.U) sink.vpu.foreach(x => x.fpu.isFP32Instr := 0.U) sink.vpu.foreach(x => x.fpu.isFP64Instr := 0.U) val sinkData = fu.io.in.bits.dataPipe.get(i) val sourceData = inPipe._1(i) sinkData.src.zip(sourceData.src).foreach { case (fuSrc, exuSrc) => fuSrc := exuSrc } sinkData.pc.foreach(x => x := sourceData.pc.get) sinkData.nextPcOffset.foreach(x => x := sourceData.nextPcOffset.get) sinkData.imm := sourceData.imm } } funcUnits.zip(exuParams.idxCopySrc).map{ case(fu, idx) => (fu.io.in.bits.data.src).zip(io.in.bits.src).foreach { case(fuSrc, exuSrc) => fuSrc := exuSrc } if(fu.cfg.srcNeedCopy) { (fu.io.in.bits.data.src).zip(io.in.bits.copySrc.get(idx)).foreach { case(fuSrc, copySrc) => fuSrc := copySrc } } } private val OutresVecs = funcUnits.map { fu => def latDiff :Int = fu.cfg.latency.extraLatencyVal.getOrElse(0) val OutresVec = fu.io.out.bits.res +: Seq.fill(latDiff)(Reg(chiselTypeOf(fu.io.out.bits.res))) for (i <- 1 to latDiff) { OutresVec(i) := OutresVec(i - 1) } OutresVec } OutresVecs.foreach(vec => vec.foreach(res =>dontTouch(res))) private val fuOutValidOH = funcUnits.map(_.io.out.valid) XSError(PopCount(fuOutValidOH) > 1.U, p"fuOutValidOH ${Binary(VecInit(fuOutValidOH).asUInt)} should be one-hot)\n") private val fuOutBitsVec = funcUnits.map(_.io.out.bits) private val fuOutresVec = OutresVecs.map(_.last) private val fuRedirectVec: Seq[Option[ValidIO[Redirect]]] = fuOutresVec.map(_.redirect) // Assume that one fu can only write int or fp or vec, // otherwise, wenVec should be assigned to wen in fu. private val fuIntWenVec = funcUnits.map(x => x.cfg.needIntWen.B && x.io.out.bits.ctrl.rfWen.getOrElse(false.B)) private val fuFpWenVec = funcUnits.map( x => x.cfg.needFpWen.B && x.io.out.bits.ctrl.fpWen.getOrElse(false.B)) private val fuVecWenVec = funcUnits.map(x => x.cfg.needVecWen.B && x.io.out.bits.ctrl.vecWen.getOrElse(false.B)) private val fuV0WenVec = funcUnits.map(x => x.cfg.needV0Wen.B && x.io.out.bits.ctrl.v0Wen.getOrElse(false.B)) private val fuVlWenVec = funcUnits.map(x => x.cfg.needVlWen.B && x.io.out.bits.ctrl.vlWen.getOrElse(false.B)) // FunctionUnits <---> ExeUnit.out private val outDataVec = Seq( Some(fuOutresVec.map(_.data)), Option.when(funcUnits.exists(_.cfg.writeIntRf)) (funcUnits.zip(fuOutresVec).filter{ case (fu, _) => fu.cfg.writeIntRf}.map{ case(_, fuout) => fuout.data}), Option.when(funcUnits.exists(_.cfg.writeFpRf)) (funcUnits.zip(fuOutresVec).filter{ case (fu, _) => fu.cfg.writeFpRf}.map{ case(_, fuout) => fuout.data}), Option.when(funcUnits.exists(_.cfg.writeVecRf)) (funcUnits.zip(fuOutresVec).filter{ case (fu, _) => fu.cfg.writeVecRf}.map{ case(_, fuout) => fuout.data}), Option.when(funcUnits.exists(_.cfg.writeV0Rf)) (funcUnits.zip(fuOutresVec).filter{ case (fu, _) => fu.cfg.writeV0Rf}.map{ case(_, fuout) => fuout.data}), Option.when(funcUnits.exists(_.cfg.writeVlRf)) (funcUnits.zip(fuOutresVec).filter{ case (fu, _) => fu.cfg.writeVlRf}.map{ case(_, fuout) => fuout.data}), ).flatten private val outDataValidOH = Seq( Some(fuOutValidOH), Option.when(funcUnits.exists(_.cfg.writeIntRf)) (funcUnits.zip(fuOutValidOH).filter{ case (fu, _) => fu.cfg.writeIntRf}.map{ case(_, fuoutOH) => fuoutOH}), Option.when(funcUnits.exists(_.cfg.writeFpRf)) (funcUnits.zip(fuOutValidOH).filter{ case (fu, _) => fu.cfg.writeFpRf}.map{ case(_, fuoutOH) => fuoutOH}), Option.when(funcUnits.exists(_.cfg.writeVecRf)) (funcUnits.zip(fuOutValidOH).filter{ case (fu, _) => fu.cfg.writeVecRf}.map{ case(_, fuoutOH) => fuoutOH}), Option.when(funcUnits.exists(_.cfg.writeV0Rf)) (funcUnits.zip(fuOutValidOH).filter{ case (fu, _) => fu.cfg.writeV0Rf}.map{ case(_, fuoutOH) => fuoutOH}), Option.when(funcUnits.exists(_.cfg.writeVlRf)) (funcUnits.zip(fuOutValidOH).filter{ case (fu, _) => fu.cfg.writeVlRf}.map{ case(_, fuoutOH) => fuoutOH}), ).flatten val criticalErrors = funcUnits.filter(fu => fu.cfg.needCriticalErrors).flatMap(fu => fu.getCriticalErrors) generateCriticalErrors() io.out.valid := Cat(fuOutValidOH).orR funcUnits.foreach(fu => fu.io.out.ready := io.out.ready) // select one fu's result io.out.bits.data := VecInit(outDataVec.zip(outDataValidOH).map{ case(data, validOH) => Mux1H(validOH, data)}) io.out.bits.robIdx := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.ctrl.robIdx)) io.out.bits.pdest := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.ctrl.pdest)) io.out.bits.intWen.foreach(x => x := Mux1H(fuOutValidOH, fuIntWenVec)) io.out.bits.fpWen.foreach(x => x := Mux1H(fuOutValidOH, fuFpWenVec)) io.out.bits.vecWen.foreach(x => x := Mux1H(fuOutValidOH, fuVecWenVec)) io.out.bits.v0Wen.foreach(x => x := Mux1H(fuOutValidOH, fuV0WenVec)) io.out.bits.vlWen.foreach(x => x := Mux1H(fuOutValidOH, fuVlWenVec)) io.out.bits.redirect.foreach(x => x := Mux1H((fuOutValidOH zip fuRedirectVec).filter(_._2.isDefined).map(x => (x._1, x._2.get)))) io.out.bits.fflags.foreach(x => x := Mux1H(fuOutValidOH, fuOutresVec.map(_.fflags.getOrElse(0.U.asTypeOf(io.out.bits.fflags.get))))) io.out.bits.wflags.foreach(x => x := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.ctrl.fpu.getOrElse(0.U.asTypeOf(new FPUCtrlSignals)).wflags))) io.out.bits.vxsat.foreach(x => x := Mux1H(fuOutValidOH, fuOutresVec.map(_.vxsat.getOrElse(0.U.asTypeOf(io.out.bits.vxsat.get))))) io.out.bits.exceptionVec.foreach(x => x := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.ctrl.exceptionVec.getOrElse(0.U.asTypeOf(io.out.bits.exceptionVec.get))))) io.out.bits.flushPipe.foreach(x => x := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.ctrl.flushPipe.getOrElse(0.U.asTypeOf(io.out.bits.flushPipe.get))))) io.out.bits.replay.foreach(x => x := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.ctrl.replay.getOrElse(0.U.asTypeOf(io.out.bits.replay.get))))) io.out.bits.predecodeInfo.foreach(x => x := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.ctrl.preDecode.getOrElse(0.U.asTypeOf(io.out.bits.predecodeInfo.get))))) io.csrio.foreach(exuio => funcUnits.foreach(fu => fu.io.csrio.foreach{ fuio => exuio <> fuio fuio.exception := DelayN(exuio.exception, 2) fuio.robDeqPtr := DelayN(exuio.robDeqPtr, 2) })) io.csrin.foreach(exuio => funcUnits.foreach(fu => fu.io.csrin.foreach{fuio => fuio := exuio})) io.csrToDecode.foreach(toDecode => funcUnits.foreach(fu => fu.io.csrToDecode.foreach(fuOut => toDecode := fuOut))) io.vtype.foreach(exuio => funcUnits.foreach(fu => fu.io.vtype.foreach(fuio => exuio := fuio))) io.fenceio.foreach(exuio => funcUnits.foreach(fu => fu.io.fenceio.foreach(fuio => fuio <> exuio))) io.frm.foreach(exuio => funcUnits.foreach(fu => fu.io.frm.foreach(fuio => fuio <> exuio))) io.vxrm.foreach(exuio => funcUnits.foreach(fu => fu.io.vxrm.foreach(fuio => fuio <> exuio))) io.vlIsZero.foreach(exuio => funcUnits.foreach(fu => fu.io.vlIsZero.foreach(fuio => exuio := fuio))) io.vlIsVlmax.foreach(exuio => funcUnits.foreach(fu => fu.io.vlIsVlmax.foreach(fuio => exuio := fuio))) io.instrAddrTransType.foreach(exuio => funcUnits.foreach(fu => fu.io.instrAddrTransType.foreach(fuio => fuio := exuio))) // debug info io.out.bits.debug := 0.U.asTypeOf(io.out.bits.debug) io.out.bits.debug.isPerfCnt := funcUnits.map(_.io.csrio.map(_.isPerfCnt)).map(_.getOrElse(false.B)).reduce(_ || _) io.out.bits.debugInfo := Mux1H(fuOutValidOH, fuOutBitsVec.map(_.perfDebugInfo)) } class DispatcherIO[T <: Data](private val gen: T, n: Int) extends Bundle { val in = Flipped(DecoupledIO(gen)) val out = Vec(n, DecoupledIO(gen)) } class Dispatcher[T <: Data](private val gen: T, n: Int, acceptCond: T => Seq[Bool]) (implicit p: Parameters) extends Module { val io = IO(new DispatcherIO(gen, n)) private val acceptVec: Vec[Bool] = VecInit(acceptCond(io.in.bits)) XSError(io.in.valid && PopCount(acceptVec) > 1.U, p"[ExeUnit] accept vec should no more than 1, ${Binary(acceptVec.asUInt)} ") XSError(io.in.valid && PopCount(acceptVec) === 0.U, "[ExeUnit] there is a inst not dispatched to any fu") io.out.zipWithIndex.foreach { case (out, i) => out.valid := acceptVec(i) && io.in.valid out.bits := io.in.bits } io.in.ready := Cat(io.out.map(_.ready)).andR } class MemExeUnitIO (implicit p: Parameters) extends XSBundle { val flush = Flipped(ValidIO(new Redirect())) val in = Flipped(DecoupledIO(new MemExuInput())) val out = DecoupledIO(new MemExuOutput()) } class MemExeUnit(exuParams: ExeUnitParams)(implicit p: Parameters) extends XSModule { val io = IO(new MemExeUnitIO) val fu = exuParams.fuConfigs.head.fuGen(p, exuParams.fuConfigs.head) fu.io.flush := io.flush fu.io.in.valid := io.in.valid io.in.ready := fu.io.in.ready fu.io.in.bits.ctrl.robIdx := io.in.bits.uop.robIdx fu.io.in.bits.ctrl.pdest := io.in.bits.uop.pdest fu.io.in.bits.ctrl.fuOpType := io.in.bits.uop.fuOpType fu.io.in.bits.data.imm := io.in.bits.uop.imm fu.io.in.bits.data.src.zip(io.in.bits.src).foreach(x => x._1 := x._2) fu.io.in.bits.perfDebugInfo := io.in.bits.uop.debugInfo io.out.valid := fu.io.out.valid fu.io.out.ready := io.out.ready io.out.bits := 0.U.asTypeOf(io.out.bits) // dontCare other fields io.out.bits.data := fu.io.out.bits.res.data io.out.bits.uop.robIdx := fu.io.out.bits.ctrl.robIdx io.out.bits.uop.pdest := fu.io.out.bits.ctrl.pdest io.out.bits.uop.fuType := io.in.bits.uop.fuType io.out.bits.uop.fuOpType:= io.in.bits.uop.fuOpType io.out.bits.uop.sqIdx := io.in.bits.uop.sqIdx io.out.bits.uop.debugInfo := fu.io.out.bits.perfDebugInfo io.out.bits.debug := 0.U.asTypeOf(io.out.bits.debug) }