Lines Matching +full:differential +full:- +full:pair
1 // SPDX-License-Identifier: GPL-2.0
44 #include <linux/memory-tiers.h>
62 * The initial- and re-scaling of tunables is configurable
66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
75 * Minimal preemption granularity for CPU-bound tasks:
97 return -cpu; in arch_asym_cpu_priority()
118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
169 lw->weight += inc; in update_load_add()
170 lw->inv_weight = 0; in update_load_add()
175 lw->weight -= dec; in update_load_sub()
176 lw->inv_weight = 0; in update_load_sub()
181 lw->weight = w; in update_load_set()
182 lw->inv_weight = 0; in update_load_set()
189 * so pick a second-best guess by going with the log2 of the
237 if (likely(lw->inv_weight)) in __update_inv_weight()
240 w = scale_load_down(lw->weight); in __update_inv_weight()
243 lw->inv_weight = 1; in __update_inv_weight()
245 lw->inv_weight = WMULT_CONST; in __update_inv_weight()
247 lw->inv_weight = WMULT_CONST / w; in __update_inv_weight()
253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273 shift -= fs; in __calc_delta()
277 fact = mul_u32_u32(fact, lw->inv_weight); in __calc_delta()
282 shift -= fs; in __calc_delta()
294 if (unlikely(se->load.weight != NICE_0_LOAD)) in calc_delta_fair()
295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); in calc_delta_fair()
310 for (; se; se = se->parent)
317 if (cfs_rq->on_list) in list_add_leaf_cfs_rq()
318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; in list_add_leaf_cfs_rq()
320 cfs_rq->on_list = 1; in list_add_leaf_cfs_rq()
325 * enqueued. The fact that we always enqueue bottom-up in list_add_leaf_cfs_rq()
331 if (cfs_rq->tg->parent && in list_add_leaf_cfs_rq()
332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { in list_add_leaf_cfs_rq()
339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, in list_add_leaf_cfs_rq()
340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); in list_add_leaf_cfs_rq()
346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; in list_add_leaf_cfs_rq()
350 if (!cfs_rq->tg->parent) { in list_add_leaf_cfs_rq()
355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, in list_add_leaf_cfs_rq()
356 &rq->leaf_cfs_rq_list); in list_add_leaf_cfs_rq()
361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; in list_add_leaf_cfs_rq()
371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); in list_add_leaf_cfs_rq()
376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; in list_add_leaf_cfs_rq()
382 if (cfs_rq->on_list) { in list_del_leaf_cfs_rq()
389 * to the prev element but it will point to rq->leaf_cfs_rq_list in list_del_leaf_cfs_rq()
392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) in list_del_leaf_cfs_rq()
393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; in list_del_leaf_cfs_rq()
395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); in list_del_leaf_cfs_rq()
396 cfs_rq->on_list = 0; in list_del_leaf_cfs_rq()
402 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); in assert_list_leaf_cfs_rq()
407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
414 if (se->cfs_rq == pse->cfs_rq) in is_same_group()
415 return se->cfs_rq; in is_same_group()
422 return se->parent; in parent_entity()
438 se_depth = (*se)->depth; in find_matching_se()
439 pse_depth = (*pse)->depth; in find_matching_se()
442 se_depth--; in find_matching_se()
447 pse_depth--; in find_matching_se()
459 return tg->idle > 0; in tg_is_idle()
464 return cfs_rq->idle > 0; in cfs_rq_is_idle()
493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
531 s64 delta = (s64)(vruntime - max_vruntime); in max_vruntime()
540 s64 delta = (s64)(vruntime - min_vruntime); in min_vruntime()
554 return (s64)(a->deadline - b->deadline) < 0; in entity_before()
559 return (s64)(se->vruntime - cfs_rq->min_vruntime); in entity_key()
566 * Compute virtual time from the per-task service numbers:
574 * lag_i = S - s_i = w_i * (V - v_i)
580 * \Sum w_i * (V - v_i) = 0
581 * \Sum w_i * V - w_i * v_i = 0
584 * se->vruntime):
587 * V = -------------- = --------------
594 * virtual time has non-contiguous motion equivalent to:
596 * V +-= lag_i / W
603 * Substitute: v_i == (v_i - v0) + v0
605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
606 * V = ---------------------------- = --------------------- + v0
611 * v0 := cfs_rq->min_vruntime
612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613 * \Sum w_i := cfs_rq->avg_load
616 * the per-task service, these deltas: (v_i - v), will be in the order of the
626 unsigned long weight = scale_load_down(se->load.weight); in avg_vruntime_add()
629 cfs_rq->avg_vruntime += key * weight; in avg_vruntime_add()
630 cfs_rq->avg_load += weight; in avg_vruntime_add()
636 unsigned long weight = scale_load_down(se->load.weight); in avg_vruntime_sub()
639 cfs_rq->avg_vruntime -= key * weight; in avg_vruntime_sub()
640 cfs_rq->avg_load -= weight; in avg_vruntime_sub()
647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load in avg_vruntime_update()
649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; in avg_vruntime_update()
658 struct sched_entity *curr = cfs_rq->curr; in avg_vruntime()
659 s64 avg = cfs_rq->avg_vruntime; in avg_vruntime()
660 long load = cfs_rq->avg_load; in avg_vruntime()
662 if (curr && curr->on_rq) { in avg_vruntime()
663 unsigned long weight = scale_load_down(curr->load.weight); in avg_vruntime()
672 avg -= (load - 1); in avg_vruntime()
676 return cfs_rq->min_vruntime + avg; in avg_vruntime()
680 * lag_i = S - s_i = w_i * (V - v_i)
683 * is possible -- by addition/removal/reweight to the tree -- to move V around
691 * -r_max < lag < max(r_max, q)
699 SCHED_WARN_ON(!se->on_rq); in update_entity_lag()
701 vlag = avg_vruntime(cfs_rq) - se->vruntime; in update_entity_lag()
702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); in update_entity_lag()
704 se->vlag = clamp(vlag, -limit, limit); in update_entity_lag()
711 * lag_i = S - s_i = w_i*(V - v_i)
713 * lag_i >= 0 -> V >= v_i
715 * \Sum (v_i - v)*w_i
716 * V = ------------------ + v
719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
726 struct sched_entity *curr = cfs_rq->curr; in vruntime_eligible()
727 s64 avg = cfs_rq->avg_vruntime; in vruntime_eligible()
728 long load = cfs_rq->avg_load; in vruntime_eligible()
730 if (curr && curr->on_rq) { in vruntime_eligible()
731 unsigned long weight = scale_load_down(curr->load.weight); in vruntime_eligible()
737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; in vruntime_eligible()
742 return vruntime_eligible(cfs_rq, se->vruntime); in entity_eligible()
747 u64 min_vruntime = cfs_rq->min_vruntime; in __update_min_vruntime()
751 s64 delta = (s64)(vruntime - min_vruntime); in __update_min_vruntime()
762 struct sched_entity *curr = cfs_rq->curr; in update_min_vruntime()
763 u64 vruntime = cfs_rq->min_vruntime; in update_min_vruntime()
766 if (curr->on_rq) in update_min_vruntime()
767 vruntime = curr->vruntime; in update_min_vruntime()
774 vruntime = se->min_vruntime; in update_min_vruntime()
776 vruntime = min_vruntime(vruntime, se->min_vruntime); in update_min_vruntime()
780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); in update_min_vruntime()
786 struct sched_entity *curr = cfs_rq->curr; in cfs_rq_min_slice()
789 if (curr && curr->on_rq) in cfs_rq_min_slice()
790 min_slice = curr->slice; in cfs_rq_min_slice()
793 min_slice = min(min_slice, root->min_slice); in cfs_rq_min_slice()
803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
810 se->min_vruntime = rse->min_vruntime; in __min_vruntime_update()
818 if (rse->min_slice < se->min_slice) in __min_slice_update()
819 se->min_slice = rse->min_slice; in __min_slice_update()
824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
828 u64 old_min_vruntime = se->min_vruntime; in min_vruntime_update()
829 u64 old_min_slice = se->min_slice; in min_vruntime_update()
830 struct rb_node *node = &se->run_node; in min_vruntime_update()
832 se->min_vruntime = se->vruntime; in min_vruntime_update()
833 __min_vruntime_update(se, node->rb_right); in min_vruntime_update()
834 __min_vruntime_update(se, node->rb_left); in min_vruntime_update()
836 se->min_slice = se->slice; in min_vruntime_update()
837 __min_slice_update(se, node->rb_right); in min_vruntime_update()
838 __min_slice_update(se, node->rb_left); in min_vruntime_update()
840 return se->min_vruntime == old_min_vruntime && in min_vruntime_update()
841 se->min_slice == old_min_slice; in min_vruntime_update()
848 * Enqueue an entity into the rb-tree:
853 se->min_vruntime = se->vruntime; in __enqueue_entity()
854 se->min_slice = se->slice; in __enqueue_entity()
855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, in __enqueue_entity()
861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, in __dequeue_entity()
868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; in __pick_root_entity()
878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); in __pick_first_entity()
892 se->vlag = se->deadline; in set_protect_slice()
897 return se->vlag == se->deadline; in protect_slice()
903 se->vlag = se->deadline + 1; in cancel_protect_slice()
917 * We can do this in O(log n) time due to an augmented RB-tree. The
921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; in pick_eevdf()
929 struct sched_entity *curr = cfs_rq->curr; in pick_eevdf()
936 if (cfs_rq->nr_queued == 1) in pick_eevdf()
937 return curr && curr->on_rq ? curr : se; in pick_eevdf()
939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) in pick_eevdf()
953 struct rb_node *left = node->rb_left; in pick_eevdf()
960 __node_2_se(left)->min_vruntime)) { in pick_eevdf()
977 node = node->rb_right; in pick_eevdf()
989 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); in __pick_last_entity()
1023 if ((s64)(se->vruntime - se->deadline) < 0) in update_deadline()
1031 if (!se->custom_slice) in update_deadline()
1032 se->slice = sysctl_sched_base_slice; in update_deadline()
1037 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); in update_deadline()
1055 struct sched_avg *sa = &se->avg; in init_entity_runnable_average()
1066 sa->load_avg = scale_load_down(se->load.weight); in init_entity_runnable_average()
1075 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1085 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1100 struct sched_entity *se = &p->se; in post_init_entity_util_avg()
1102 struct sched_avg *sa = &se->avg; in post_init_entity_util_avg()
1104 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; in post_init_entity_util_avg()
1106 if (p->sched_class != &fair_sched_class) { in post_init_entity_util_avg()
1117 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); in post_init_entity_util_avg()
1122 if (cfs_rq->avg.util_avg != 0) { in post_init_entity_util_avg()
1123 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); in post_init_entity_util_avg()
1124 sa->util_avg /= (cfs_rq->avg.load_avg + 1); in post_init_entity_util_avg()
1126 if (sa->util_avg > cap) in post_init_entity_util_avg()
1127 sa->util_avg = cap; in post_init_entity_util_avg()
1129 sa->util_avg = cap; in post_init_entity_util_avg()
1133 sa->runnable_avg = sa->util_avg; in post_init_entity_util_avg()
1153 delta_exec = now - curr->exec_start; in update_curr_se()
1157 curr->exec_start = now; in update_curr_se()
1158 curr->sum_exec_runtime += delta_exec; in update_curr_se()
1164 __schedstat_set(stats->exec_max, in update_curr_se()
1165 max(delta_exec, stats->exec_max)); in update_curr_se()
1183 if (curr->vlag == curr->deadline) in did_preempt_short()
1195 if (pse->slice >= se->slice) in do_preempt_short()
1215 struct task_struct *donor = rq->donor; in update_curr_common()
1218 delta_exec = update_curr_se(rq, &donor->se); in update_curr_common()
1230 struct sched_entity *curr = cfs_rq->curr; in update_curr()
1242 curr->vruntime += calc_delta_fair(delta_exec, curr); in update_curr()
1255 * - If the task is running on behalf of fair_server, we need in update_curr()
1257 * - Fair task that runs outside of fair_server should account in update_curr()
1261 if (dl_server_active(&rq->fair_server)) in update_curr()
1262 dl_server_update(&rq->fair_server, delta_exec); in update_curr()
1267 if (cfs_rq->nr_queued == 1) in update_curr()
1278 update_curr(cfs_rq_of(&rq->donor->se)); in update_curr_fair()
1311 * maybe already in the runqueue, the se->statistics.wait_start in update_stats_wait_end_fair()
1315 if (unlikely(!schedstat_val(stats->wait_start))) in update_stats_wait_end_fair()
1342 * Task is being enqueued - update stats:
1354 if (se != cfs_rq->curr) in update_stats_enqueue_fair()
1372 if (se != cfs_rq->curr) in update_stats_dequeue_fair()
1380 state = READ_ONCE(tsk->__state); in update_stats_dequeue_fair()
1382 __schedstat_set(tsk->stats.sleep_start, in update_stats_dequeue_fair()
1385 __schedstat_set(tsk->stats.block_start, in update_stats_dequeue_fair()
1391 * We are picking a new current task - update its stats:
1399 se->exec_start = rq_clock_task(rq_of(cfs_rq)); in update_stats_curr_start()
1440 * Allow a small imbalance based on a simple pair of communicating in adjust_numa_imbalance()
1491 * ->numa_group (see struct task_struct for locking rules).
1495 return rcu_dereference_check(p->numa_group, p == current || in deref_task_numa_group()
1496 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); in deref_task_numa_group()
1501 return rcu_dereference_protected(p->numa_group, p == current); in deref_curr_numa_group()
1513 * Calculations based on RSS as non-present and empty pages are skipped in task_nr_scan_windows()
1517 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); in task_nr_scan_windows()
1518 rss = get_mm_rss(p->mm); in task_nr_scan_windows()
1551 ng = rcu_dereference(p->numa_group); in task_scan_start()
1556 period *= refcount_read(&ng->refcount); in task_scan_start()
1581 period *= refcount_read(&ng->refcount); in task_scan_max()
1593 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); in account_numa_enqueue()
1594 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); in account_numa_enqueue()
1599 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); in account_numa_dequeue()
1600 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); in account_numa_dequeue()
1618 ng = rcu_dereference(p->numa_group); in task_numa_group_id()
1620 gid = ng->gid; in task_numa_group_id()
1639 if (!p->numa_faults) in task_faults()
1642 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + in task_faults()
1643 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; in task_faults()
1653 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + in group_faults()
1654 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; in group_faults()
1659 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + in group_faults_cpu()
1660 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; in group_faults_cpu()
1669 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; in group_faults_priv()
1681 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; in group_faults_shared()
1689 * considered part of a numa group's pseudo-interleaving set. Migrations
1696 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; in numa_is_active_node()
1755 faults *= (max_dist - dist); in score_nearby_nodes()
1756 faults /= (max_dist - LOCAL_DISTANCE); in score_nearby_nodes()
1776 if (!p->numa_faults) in task_weight()
1779 total_faults = p->total_numa_faults; in task_weight()
1799 total_faults = ng->total_faults; in group_weight()
1835 pgdat->node_present_pages >> 4); in pgdat_free_space_enough()
1836 for (z = pgdat->nr_zones - 1; z >= 0; z--) { in pgdat_free_space_enough()
1837 struct zone *zone = pgdat->node_zones + z; in pgdat_free_space_enough()
1857 * hint page fault latency = hint page fault time - scan time
1869 return (time - last_time) & PAGE_ACCESS_TIME_MASK; in numa_hint_fault_latency()
1886 start = pgdat->nbp_rl_start; in numa_promotion_rate_limit()
1887 if (now - start > MSEC_PER_SEC && in numa_promotion_rate_limit()
1888 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) in numa_promotion_rate_limit()
1889 pgdat->nbp_rl_nr_cand = nr_cand; in numa_promotion_rate_limit()
1890 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) in numa_promotion_rate_limit()
1906 start = pgdat->nbp_th_start; in numa_promotion_adjust_threshold()
1907 if (now - start > th_period && in numa_promotion_adjust_threshold()
1908 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { in numa_promotion_adjust_threshold()
1912 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; in numa_promotion_adjust_threshold()
1914 th = pgdat->nbp_threshold ? : ref_th; in numa_promotion_adjust_threshold()
1916 th = max(th - unit_th, unit_th); in numa_promotion_adjust_threshold()
1919 pgdat->nbp_th_nr_cand = nr_cand; in numa_promotion_adjust_threshold()
1920 pgdat->nbp_threshold = th; in numa_promotion_adjust_threshold()
1949 pgdat->nbp_threshold = 0; in should_numa_migrate_memory()
1955 (20 - PAGE_SHIFT); in should_numa_migrate_memory()
1958 th = pgdat->nbp_threshold ? : def_th; in should_numa_migrate_memory()
1967 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); in should_numa_migrate_memory()
1977 * two full passes of the "multi-stage node selection" test that is in should_numa_migrate_memory()
1980 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && in should_numa_migrate_memory()
1985 * Multi-stage node selection is used in conjunction with a periodic in should_numa_migrate_memory()
1986 * migration fault to build a temporal task<->page relation. By using in should_numa_migrate_memory()
1987 * a two-stage filter we remove short/unlikely relations. in should_numa_migrate_memory()
1991 * page (n_t) (in a given time-span) to a probability. in should_numa_migrate_memory()
1999 * act on an unlikely task<->page relation. in should_numa_migrate_memory()
2009 /* A shared fault, but p->numa_group has not been set up yet. */ in should_numa_migrate_memory()
2026 * --------------- * - > --------------- in should_numa_migrate_memory()
2088 if ((ns->nr_running > ns->weight) && in numa_classify()
2089 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || in numa_classify()
2090 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) in numa_classify()
2093 if ((ns->nr_running < ns->weight) || in numa_classify()
2094 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && in numa_classify()
2095 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) in numa_classify()
2136 int cpu, idle_core = -1; in update_numa_stats()
2139 ns->idle_cpu = -1; in update_numa_stats()
2145 ns->load += cpu_load(rq); in update_numa_stats()
2146 ns->runnable += cpu_runnable(rq); in update_numa_stats()
2147 ns->util += cpu_util_cfs(cpu); in update_numa_stats()
2148 ns->nr_running += rq->cfs.h_nr_runnable; in update_numa_stats()
2149 ns->compute_capacity += capacity_of(cpu); in update_numa_stats()
2151 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { in update_numa_stats()
2152 if (READ_ONCE(rq->numa_migrate_on) || in update_numa_stats()
2153 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) in update_numa_stats()
2156 if (ns->idle_cpu == -1) in update_numa_stats()
2157 ns->idle_cpu = cpu; in update_numa_stats()
2164 ns->weight = cpumask_weight(cpumask_of_node(nid)); in update_numa_stats()
2166 ns->node_type = numa_classify(env->imbalance_pct, ns); in update_numa_stats()
2169 ns->idle_cpu = idle_core; in update_numa_stats()
2175 struct rq *rq = cpu_rq(env->dst_cpu); in task_numa_assign()
2177 /* Check if run-queue part of active NUMA balance. */ in task_numa_assign()
2178 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { in task_numa_assign()
2180 int start = env->dst_cpu; in task_numa_assign()
2183 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { in task_numa_assign()
2184 if (cpu == env->best_cpu || !idle_cpu(cpu) || in task_numa_assign()
2185 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { in task_numa_assign()
2189 env->dst_cpu = cpu; in task_numa_assign()
2190 rq = cpu_rq(env->dst_cpu); in task_numa_assign()
2191 if (!xchg(&rq->numa_migrate_on, 1)) in task_numa_assign()
2201 * Clear previous best_cpu/rq numa-migrate flag, since task now in task_numa_assign()
2204 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { in task_numa_assign()
2205 rq = cpu_rq(env->best_cpu); in task_numa_assign()
2206 WRITE_ONCE(rq->numa_migrate_on, 0); in task_numa_assign()
2209 if (env->best_task) in task_numa_assign()
2210 put_task_struct(env->best_task); in task_numa_assign()
2214 env->best_task = p; in task_numa_assign()
2215 env->best_imp = imp; in task_numa_assign()
2216 env->best_cpu = env->dst_cpu; in task_numa_assign()
2230 * ------------ vs --------- in load_too_imbalanced()
2233 src_capacity = env->src_stats.compute_capacity; in load_too_imbalanced()
2234 dst_capacity = env->dst_stats.compute_capacity; in load_too_imbalanced()
2236 imb = abs(dst_load * src_capacity - src_load * dst_capacity); in load_too_imbalanced()
2238 orig_src_load = env->src_stats.load; in load_too_imbalanced()
2239 orig_dst_load = env->dst_stats.load; in load_too_imbalanced()
2241 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); in load_too_imbalanced()
2263 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); in task_numa_compare()
2264 struct rq *dst_rq = cpu_rq(env->dst_cpu); in task_numa_compare()
2268 int dist = env->dist; in task_numa_compare()
2273 if (READ_ONCE(dst_rq->numa_migrate_on)) in task_numa_compare()
2277 cur = rcu_dereference(dst_rq->curr); in task_numa_compare()
2278 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) in task_numa_compare()
2283 * end try selecting ourselves (current == env->p) as a swap candidate. in task_numa_compare()
2285 if (cur == env->p) { in task_numa_compare()
2291 if (maymove && moveimp >= env->best_imp) in task_numa_compare()
2298 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) in task_numa_compare()
2305 if (env->best_task && in task_numa_compare()
2306 env->best_task->numa_preferred_nid == env->src_nid && in task_numa_compare()
2307 cur->numa_preferred_nid != env->src_nid) { in task_numa_compare()
2312 * "imp" is the fault differential for the source task between the in task_numa_compare()
2313 * source and destination node. Calculate the total differential for in task_numa_compare()
2321 cur_ng = rcu_dereference(cur->numa_group); in task_numa_compare()
2329 if (env->dst_stats.node_type == node_has_spare) in task_numa_compare()
2332 imp = taskimp + task_weight(cur, env->src_nid, dist) - in task_numa_compare()
2333 task_weight(cur, env->dst_nid, dist); in task_numa_compare()
2339 imp -= imp / 16; in task_numa_compare()
2346 imp += group_weight(cur, env->src_nid, dist) - in task_numa_compare()
2347 group_weight(cur, env->dst_nid, dist); in task_numa_compare()
2349 imp += task_weight(cur, env->src_nid, dist) - in task_numa_compare()
2350 task_weight(cur, env->dst_nid, dist); in task_numa_compare()
2354 if (cur->numa_preferred_nid == env->dst_nid) in task_numa_compare()
2355 imp -= imp / 16; in task_numa_compare()
2363 if (cur->numa_preferred_nid == env->src_nid) in task_numa_compare()
2366 if (maymove && moveimp > imp && moveimp > env->best_imp) { in task_numa_compare()
2376 if (env->best_task && cur->numa_preferred_nid == env->src_nid && in task_numa_compare()
2377 env->best_task->numa_preferred_nid != env->src_nid) { in task_numa_compare()
2387 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) in task_numa_compare()
2393 load = task_h_load(env->p) - task_h_load(cur); in task_numa_compare()
2397 dst_load = env->dst_stats.load + load; in task_numa_compare()
2398 src_load = env->src_stats.load - load; in task_numa_compare()
2406 int cpu = env->dst_stats.idle_cpu; in task_numa_compare()
2410 cpu = env->dst_cpu; in task_numa_compare()
2416 if (!idle_cpu(cpu) && env->best_cpu >= 0 && in task_numa_compare()
2417 idle_cpu(env->best_cpu)) { in task_numa_compare()
2418 cpu = env->best_cpu; in task_numa_compare()
2421 env->dst_cpu = cpu; in task_numa_compare()
2431 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) in task_numa_compare()
2438 if (!maymove && env->best_task && in task_numa_compare()
2439 env->best_task->numa_preferred_nid == env->src_nid) { in task_numa_compare()
2458 if (env->dst_stats.node_type == node_has_spare) { in task_numa_find_cpu()
2468 src_running = env->src_stats.nr_running - 1; in task_numa_find_cpu()
2469 dst_running = env->dst_stats.nr_running + 1; in task_numa_find_cpu()
2470 imbalance = max(0, dst_running - src_running); in task_numa_find_cpu()
2472 env->imb_numa_nr); in task_numa_find_cpu()
2477 if (env->dst_stats.idle_cpu >= 0) { in task_numa_find_cpu()
2478 env->dst_cpu = env->dst_stats.idle_cpu; in task_numa_find_cpu()
2486 * If the improvement from just moving env->p direction is better in task_numa_find_cpu()
2489 load = task_h_load(env->p); in task_numa_find_cpu()
2490 dst_load = env->dst_stats.load + load; in task_numa_find_cpu()
2491 src_load = env->src_stats.load - load; in task_numa_find_cpu()
2495 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { in task_numa_find_cpu()
2497 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) in task_numa_find_cpu()
2500 env->dst_cpu = cpu; in task_numa_find_cpu()
2518 .best_cpu = -1, in task_numa_migrate()
2532 * random movement of tasks -- counter the numa conditions we're trying in task_numa_migrate()
2538 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; in task_numa_migrate()
2539 env.imb_numa_nr = sd->imb_numa_nr; in task_numa_migrate()
2551 return -EINVAL; in task_numa_migrate()
2554 env.dst_nid = p->numa_preferred_nid; in task_numa_migrate()
2559 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; in task_numa_migrate()
2560 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; in task_numa_migrate()
2568 * - there is no space available on the preferred_nid in task_numa_migrate()
2569 * - the task is part of a numa_group that is interleaved across in task_numa_migrate()
2574 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { in task_numa_migrate()
2576 if (nid == env.src_nid || nid == p->numa_preferred_nid) in task_numa_migrate()
2587 taskimp = task_weight(p, nid, dist) - taskweight; in task_numa_migrate()
2588 groupimp = group_weight(p, nid, dist) - groupweight; in task_numa_migrate()
2608 if (env.best_cpu == -1) in task_numa_migrate()
2613 if (nid != p->numa_preferred_nid) in task_numa_migrate()
2618 if (env.best_cpu == -1) { in task_numa_migrate()
2619 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); in task_numa_migrate()
2620 return -EAGAIN; in task_numa_migrate()
2626 WRITE_ONCE(best_rq->numa_migrate_on, 0); in task_numa_migrate()
2633 WRITE_ONCE(best_rq->numa_migrate_on, 0); in task_numa_migrate()
2647 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) in numa_migrate_preferred()
2651 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); in numa_migrate_preferred()
2652 p->numa_migrate_retry = jiffies + interval; in numa_migrate_preferred()
2655 if (task_node(p) == p->numa_preferred_nid) in numa_migrate_preferred()
2685 numa_group->max_faults_cpu = max_faults; in numa_group_count_active_nodes()
2686 numa_group->active_nodes = active_nodes; in numa_group_count_active_nodes()
2712 unsigned long remote = p->numa_faults_locality[0]; in update_task_scan_period()
2713 unsigned long local = p->numa_faults_locality[1]; in update_task_scan_period()
2722 if (local + shared == 0 || p->numa_faults_locality[2]) { in update_task_scan_period()
2723 p->numa_scan_period = min(p->numa_scan_period_max, in update_task_scan_period()
2724 p->numa_scan_period << 1); in update_task_scan_period()
2726 p->mm->numa_next_scan = jiffies + in update_task_scan_period()
2727 msecs_to_jiffies(p->numa_scan_period); in update_task_scan_period()
2738 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); in update_task_scan_period()
2747 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; in update_task_scan_period()
2757 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; in update_task_scan_period()
2763 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, in update_task_scan_period()
2768 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; in update_task_scan_period()
2771 p->numa_scan_period = clamp(p->numa_scan_period + diff, in update_task_scan_period()
2773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); in update_task_scan_period()
2780 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2787 now = p->se.exec_start; in numa_get_avg_runtime()
2788 runtime = p->se.sum_exec_runtime; in numa_get_avg_runtime()
2790 if (p->last_task_numa_placement) { in numa_get_avg_runtime()
2791 delta = runtime - p->last_sum_exec_runtime; in numa_get_avg_runtime()
2792 *period = now - p->last_task_numa_placement; in numa_get_avg_runtime()
2798 delta = p->se.avg.load_sum; in numa_get_avg_runtime()
2802 p->last_sum_exec_runtime = runtime; in numa_get_avg_runtime()
2803 p->last_task_numa_placement = now; in numa_get_avg_runtime()
2853 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { in preferred_group_nid()
2907 * The p->mm->numa_scan_seq field gets updated without in task_numa_placement()
2911 seq = READ_ONCE(p->mm->numa_scan_seq); in task_numa_placement()
2912 if (p->numa_scan_seq == seq) in task_numa_placement()
2914 p->numa_scan_seq = seq; in task_numa_placement()
2915 p->numa_scan_period_max = task_scan_max(p); in task_numa_placement()
2917 total_faults = p->numa_faults_locality[0] + in task_numa_placement()
2918 p->numa_faults_locality[1]; in task_numa_placement()
2924 group_lock = &ng->lock; in task_numa_placement()
2944 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; in task_numa_placement()
2945 fault_types[priv] += p->numa_faults[membuf_idx]; in task_numa_placement()
2946 p->numa_faults[membuf_idx] = 0; in task_numa_placement()
2952 * little over-all impact on throughput, and thus their in task_numa_placement()
2956 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / in task_numa_placement()
2958 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; in task_numa_placement()
2959 p->numa_faults[cpubuf_idx] = 0; in task_numa_placement()
2961 p->numa_faults[mem_idx] += diff; in task_numa_placement()
2962 p->numa_faults[cpu_idx] += f_diff; in task_numa_placement()
2963 faults += p->numa_faults[mem_idx]; in task_numa_placement()
2964 p->total_numa_faults += diff; in task_numa_placement()
2973 ng->faults[mem_idx] += diff; in task_numa_placement()
2974 ng->faults[cpu_idx] += f_diff; in task_numa_placement()
2975 ng->total_faults += diff; in task_numa_placement()
2976 group_faults += ng->faults[mem_idx]; in task_numa_placement()
2991 /* Cannot migrate task to CPU-less node */ in task_numa_placement()
3002 if (max_nid != p->numa_preferred_nid) in task_numa_placement()
3011 return refcount_inc_not_zero(&grp->refcount); in get_numa_group()
3016 if (refcount_dec_and_test(&grp->refcount)) in put_numa_group()
3038 refcount_set(&grp->refcount, 1); in task_numa_group()
3039 grp->active_nodes = 1; in task_numa_group()
3040 grp->max_faults_cpu = 0; in task_numa_group()
3041 spin_lock_init(&grp->lock); in task_numa_group()
3042 grp->gid = p->pid; in task_numa_group()
3045 grp->faults[i] = p->numa_faults[i]; in task_numa_group()
3047 grp->total_faults = p->total_numa_faults; in task_numa_group()
3049 grp->nr_tasks++; in task_numa_group()
3050 rcu_assign_pointer(p->numa_group, grp); in task_numa_group()
3054 tsk = READ_ONCE(cpu_rq(cpu)->curr); in task_numa_group()
3059 grp = rcu_dereference(tsk->numa_group); in task_numa_group()
3071 if (my_grp->nr_tasks > grp->nr_tasks) in task_numa_group()
3075 * Tie-break on the grp address. in task_numa_group()
3077 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) in task_numa_group()
3081 if (tsk->mm == current->mm) in task_numa_group()
3100 double_lock_irq(&my_grp->lock, &grp->lock); in task_numa_group()
3103 my_grp->faults[i] -= p->numa_faults[i]; in task_numa_group()
3104 grp->faults[i] += p->numa_faults[i]; in task_numa_group()
3106 my_grp->total_faults -= p->total_numa_faults; in task_numa_group()
3107 grp->total_faults += p->total_numa_faults; in task_numa_group()
3109 my_grp->nr_tasks--; in task_numa_group()
3110 grp->nr_tasks++; in task_numa_group()
3112 spin_unlock(&my_grp->lock); in task_numa_group()
3113 spin_unlock_irq(&grp->lock); in task_numa_group()
3115 rcu_assign_pointer(p->numa_group, grp); in task_numa_group()
3130 * reset the data back to default state without freeing ->numa_faults.
3135 struct numa_group *grp = rcu_dereference_raw(p->numa_group); in task_numa_free()
3136 unsigned long *numa_faults = p->numa_faults; in task_numa_free()
3144 spin_lock_irqsave(&grp->lock, flags); in task_numa_free()
3146 grp->faults[i] -= p->numa_faults[i]; in task_numa_free()
3147 grp->total_faults -= p->total_numa_faults; in task_numa_free()
3149 grp->nr_tasks--; in task_numa_free()
3150 spin_unlock_irqrestore(&grp->lock, flags); in task_numa_free()
3151 RCU_INIT_POINTER(p->numa_group, NULL); in task_numa_free()
3156 p->numa_faults = NULL; in task_numa_free()
3159 p->total_numa_faults = 0; in task_numa_free()
3181 if (!p->mm) in task_numa_fault()
3193 /* Allocate buffer to track faults on a per-node basis */ in task_numa_fault()
3194 if (unlikely(!p->numa_faults)) { in task_numa_fault()
3195 int size = sizeof(*p->numa_faults) * in task_numa_fault()
3198 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); in task_numa_fault()
3199 if (!p->numa_faults) in task_numa_fault()
3202 p->total_numa_faults = 0; in task_numa_fault()
3203 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); in task_numa_fault()
3210 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { in task_numa_fault()
3225 if (!priv && !local && ng && ng->active_nodes > 1 && in task_numa_fault()
3234 if (time_after(jiffies, p->numa_migrate_retry)) { in task_numa_fault()
3240 p->numa_pages_migrated += pages; in task_numa_fault()
3242 p->numa_faults_locality[2] += pages; in task_numa_fault()
3244 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; in task_numa_fault()
3245 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; in task_numa_fault()
3246 p->numa_faults_locality[local] += pages; in task_numa_fault()
3253 * p->mm->numa_scan_seq is written to without exclusive access in reset_ptenuma_scan()
3259 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); in reset_ptenuma_scan()
3260 p->mm->numa_scan_offset = 0; in reset_ptenuma_scan()
3272 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) in vma_is_accessed()
3275 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; in vma_is_accessed()
3276 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) in vma_is_accessed()
3281 * some VMAs may never be scanned in multi-threaded applications: in vma_is_accessed()
3283 if (mm->numa_scan_offset > vma->vm_start) { in vma_is_accessed()
3293 if (READ_ONCE(mm->numa_scan_seq) > in vma_is_accessed()
3294 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) in vma_is_accessed()
3310 struct mm_struct *mm = p->mm; in task_numa_work()
3311 u64 runtime = p->se.sum_exec_runtime; in task_numa_work()
3322 work->next = work; in task_numa_work()
3326 * NOTE: make sure not to dereference p->mm before this check, in task_numa_work()
3328 * without p->mm even though we still had it when we enqueued this in task_numa_work()
3331 if (p->flags & PF_EXITING) in task_numa_work()
3334 if (!mm->numa_next_scan) { in task_numa_work()
3335 mm->numa_next_scan = now + in task_numa_work()
3342 migrate = mm->numa_next_scan; in task_numa_work()
3346 if (p->numa_scan_period == 0) { in task_numa_work()
3347 p->numa_scan_period_max = task_scan_max(p); in task_numa_work()
3348 p->numa_scan_period = task_scan_start(p); in task_numa_work()
3351 next_scan = now + msecs_to_jiffies(p->numa_scan_period); in task_numa_work()
3352 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) in task_numa_work()
3359 p->node_stamp += 2 * TICK_NSEC; in task_numa_work()
3362 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ in task_numa_work()
3379 start = mm->numa_scan_offset; in task_numa_work()
3391 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { in task_numa_work()
3399 * hinting faults in read-only file-backed mappings or the vDSO in task_numa_work()
3402 if (!vma->vm_mm || in task_numa_work()
3403 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { in task_numa_work()
3417 /* Initialise new per-VMA NUMAB state. */ in task_numa_work()
3418 if (!vma->numab_state) { in task_numa_work()
3425 if (cmpxchg(&vma->numab_state, NULL, ptr)) { in task_numa_work()
3430 vma->numab_state->start_scan_seq = mm->numa_scan_seq; in task_numa_work()
3432 vma->numab_state->next_scan = now + in task_numa_work()
3436 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + in task_numa_work()
3444 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; in task_numa_work()
3451 if (mm->numa_scan_seq && time_before(jiffies, in task_numa_work()
3452 vma->numab_state->next_scan)) { in task_numa_work()
3458 if (mm->numa_scan_seq && in task_numa_work()
3459 time_after(jiffies, vma->numab_state->pids_active_reset)) { in task_numa_work()
3460 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + in task_numa_work()
3462 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); in task_numa_work()
3463 vma->numab_state->pids_active[1] = 0; in task_numa_work()
3467 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { in task_numa_work()
3468 mm->numa_scan_offset = vma->vm_end; in task_numa_work()
3484 start = max(start, vma->vm_start); in task_numa_work()
3486 end = min(end, vma->vm_end); in task_numa_work()
3492 * is not already PTE-numa. If the VMA contains in task_numa_work()
3498 pages -= (end - start) >> PAGE_SHIFT; in task_numa_work()
3499 virtpages -= (end - start) >> PAGE_SHIFT; in task_numa_work()
3506 } while (end != vma->vm_end); in task_numa_work()
3509 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; in task_numa_work()
3537 mm->numa_scan_offset = start; in task_numa_work()
3548 if (unlikely(p->se.sum_exec_runtime != runtime)) { in task_numa_work()
3549 u64 diff = p->se.sum_exec_runtime - runtime; in task_numa_work()
3550 p->node_stamp += 32 * diff; in task_numa_work()
3557 struct mm_struct *mm = p->mm; in init_numa_balancing()
3560 mm_users = atomic_read(&mm->mm_users); in init_numa_balancing()
3562 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); in init_numa_balancing()
3563 mm->numa_scan_seq = 0; in init_numa_balancing()
3566 p->node_stamp = 0; in init_numa_balancing()
3567 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; in init_numa_balancing()
3568 p->numa_scan_period = sysctl_numa_balancing_scan_delay; in init_numa_balancing()
3569 p->numa_migrate_retry = 0; in init_numa_balancing()
3571 p->numa_work.next = &p->numa_work; in init_numa_balancing()
3572 p->numa_faults = NULL; in init_numa_balancing()
3573 p->numa_pages_migrated = 0; in init_numa_balancing()
3574 p->total_numa_faults = 0; in init_numa_balancing()
3575 RCU_INIT_POINTER(p->numa_group, NULL); in init_numa_balancing()
3576 p->last_task_numa_placement = 0; in init_numa_balancing()
3577 p->last_sum_exec_runtime = 0; in init_numa_balancing()
3579 init_task_work(&p->numa_work, task_numa_work); in init_numa_balancing()
3583 p->numa_preferred_nid = NUMA_NO_NODE; in init_numa_balancing()
3595 current->numa_scan_period * mm_users * NSEC_PER_MSEC); in init_numa_balancing()
3597 p->node_stamp = delay; in init_numa_balancing()
3606 struct callback_head *work = &curr->numa_work; in task_tick_numa()
3612 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) in task_tick_numa()
3621 now = curr->se.sum_exec_runtime; in task_tick_numa()
3622 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; in task_tick_numa()
3624 if (now > curr->node_stamp + period) { in task_tick_numa()
3625 if (!curr->node_stamp) in task_tick_numa()
3626 curr->numa_scan_period = task_scan_start(curr); in task_tick_numa()
3627 curr->node_stamp += period; in task_tick_numa()
3629 if (!time_before(jiffies, curr->mm->numa_next_scan)) in task_tick_numa()
3642 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) in update_scan_period()
3651 * is pulled cross-node due to wakeups or load balancing. in update_scan_period()
3653 if (p->numa_scan_seq) { in update_scan_period()
3659 if (dst_nid == p->numa_preferred_nid || in update_scan_period()
3660 (p->numa_preferred_nid != NUMA_NO_NODE && in update_scan_period()
3661 src_nid != p->numa_preferred_nid)) in update_scan_period()
3665 p->numa_scan_period = task_scan_start(p); in update_scan_period()
3690 update_load_add(&cfs_rq->load, se->load.weight); in account_entity_enqueue()
3696 list_add(&se->group_node, &rq->cfs_tasks); in account_entity_enqueue()
3699 cfs_rq->nr_queued++; in account_entity_enqueue()
3705 update_load_sub(&cfs_rq->load, se->load.weight); in account_entity_dequeue()
3709 list_del_init(&se->group_node); in account_entity_dequeue()
3712 cfs_rq->nr_queued--; in account_entity_dequeue()
3718 * Explicitly do a load-store to ensure the intermediate value never hits
3738 * Explicitly do a load-store to ensure the intermediate value never hits
3746 res = var - val; \
3755 * A variant of sub_positive(), which does not use explicit load-store
3760 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3767 cfs_rq->avg.load_avg += se->avg.load_avg; in enqueue_load_avg()
3768 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; in enqueue_load_avg()
3774 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); in dequeue_load_avg()
3775 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); in dequeue_load_avg()
3777 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, in dequeue_load_avg()
3778 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); in dequeue_load_avg()
3792 bool curr = cfs_rq->curr == se; in reweight_entity()
3794 if (se->on_rq) { in reweight_entity()
3798 se->deadline -= se->vruntime; in reweight_entity()
3799 se->rel_deadline = 1; in reweight_entity()
3802 update_load_sub(&cfs_rq->load, se->load.weight); in reweight_entity()
3807 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), in reweight_entity()
3808 * we need to scale se->vlag when w_i changes. in reweight_entity()
3810 se->vlag = div_s64(se->vlag * se->load.weight, weight); in reweight_entity()
3811 if (se->rel_deadline) in reweight_entity()
3812 se->deadline = div_s64(se->deadline * se->load.weight, weight); in reweight_entity()
3814 update_load_set(&se->load, weight); in reweight_entity()
3818 u32 divider = get_pelt_divider(&se->avg); in reweight_entity()
3820 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); in reweight_entity()
3825 if (se->on_rq) { in reweight_entity()
3826 update_load_add(&cfs_rq->load, se->load.weight); in reweight_entity()
3833 * whether the rq-wide min_vruntime needs updated too. Since in reweight_entity()
3835 * than up-to-date one, we do the update at the end of the in reweight_entity()
3845 struct sched_entity *se = &p->se; in reweight_task_fair()
3847 struct load_weight *load = &se->load; in reweight_task_fair()
3849 reweight_entity(cfs_rq, se, lw->weight); in reweight_task_fair()
3850 load->inv_weight = lw->inv_weight; in reweight_task_fair()
3864 * tg->weight * grq->load.weight
3865 * ge->load.weight = ----------------------------- (1)
3866 * \Sum grq->load.weight
3874 * grq->load.weight -> grq->avg.load_avg (2)
3878 * tg->weight * grq->avg.load_avg
3879 * ge->load.weight = ------------------------------ (3)
3880 * tg->load_avg
3882 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3886 * The problem with it is that because the average is slow -- it was designed
3887 * to be exactly that of course -- this leads to transients in boundary
3889 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3894 * tg->weight * grq->load.weight
3895 * ge->load.weight = ----------------------------- = tg->weight (4)
3896 * grp->load.weight
3903 * ge->load.weight =
3905 * tg->weight * grq->load.weight
3906 * --------------------------------------------------- (5)
3907 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3909 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3910 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3913 * tg->weight * grq->load.weight
3914 * ge->load.weight = ----------------------------- (6)
3919 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3920 * max(grq->load.weight, grq->avg.load_avg)
3924 * overestimates the ge->load.weight and therefore:
3926 * \Sum ge->load.weight >= tg->weight
3933 struct task_group *tg = cfs_rq->tg; in calc_group_shares()
3935 tg_shares = READ_ONCE(tg->shares); in calc_group_shares()
3937 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); in calc_group_shares()
3939 tg_weight = atomic_long_read(&tg->load_avg); in calc_group_shares()
3942 tg_weight -= cfs_rq->tg_load_avg_contrib; in calc_group_shares()
3950 * MIN_SHARES has to be unscaled here to support per-CPU partitioning in calc_group_shares()
3951 * of a group with small tg->shares value. It is a floor value which is in calc_group_shares()
3955 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 in calc_group_shares()
3956 * on an 8-core system with 8 tasks each runnable on one CPU shares has in calc_group_shares()
3978 if (!gcfs_rq || !gcfs_rq->load.weight) in update_cfs_group()
3985 shares = READ_ONCE(gcfs_rq->tg->shares); in update_cfs_group()
3989 if (unlikely(se->load.weight != shares)) in update_cfs_group()
4003 if (&rq->cfs == cfs_rq) { in cfs_rq_util_change()
4013 * As is, the util number is not freq-invariant (we'd have to in cfs_rq_util_change()
4025 if (sa->load_sum) in load_avg_is_decayed()
4028 if (sa->util_sum) in load_avg_is_decayed()
4031 if (sa->runnable_sum) in load_avg_is_decayed()
4039 SCHED_WARN_ON(sa->load_avg || in load_avg_is_decayed()
4040 sa->util_avg || in load_avg_is_decayed()
4041 sa->runnable_avg); in load_avg_is_decayed()
4048 return u64_u32_load_copy(cfs_rq->avg.last_update_time, in cfs_rq_last_update_time()
4049 cfs_rq->last_update_time_copy); in cfs_rq_last_update_time()
4055 * bottom-up, we only have to test whether the cfs_rq before us on the list
4066 if (cfs_rq->on_list) { in child_cfs_rq_on_list()
4067 prev = cfs_rq->leaf_cfs_rq_list.prev; in child_cfs_rq_on_list()
4069 prev = rq->tmp_alone_branch; in child_cfs_rq_on_list()
4072 if (prev == &rq->leaf_cfs_rq_list) in child_cfs_rq_on_list()
4077 return (prev_cfs_rq->tg->parent == cfs_rq->tg); in child_cfs_rq_on_list()
4082 if (cfs_rq->load.weight) in cfs_rq_is_decayed()
4085 if (!load_avg_is_decayed(&cfs_rq->avg)) in cfs_rq_is_decayed()
4095 * update_tg_load_avg - update the tg's load avg
4098 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4099 * However, because tg->load_avg is a global value there are performance
4103 * differential update where we store the last value we propagated. This in
4104 * turn allows skipping updates if the differential is 'small'.
4116 if (cfs_rq->tg == &root_task_group) in update_tg_load_avg()
4124 * For migration heavy workloads, access to tg->load_avg can be in update_tg_load_avg()
4128 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) in update_tg_load_avg()
4131 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; in update_tg_load_avg()
4132 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { in update_tg_load_avg()
4133 atomic_long_add(delta, &cfs_rq->tg->load_avg); in update_tg_load_avg()
4134 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; in update_tg_load_avg()
4135 cfs_rq->last_update_tg_load_avg = now; in update_tg_load_avg()
4147 if (cfs_rq->tg == &root_task_group) in clear_tg_load_avg()
4151 delta = 0 - cfs_rq->tg_load_avg_contrib; in clear_tg_load_avg()
4152 atomic_long_add(delta, &cfs_rq->tg->load_avg); in clear_tg_load_avg()
4153 cfs_rq->tg_load_avg_contrib = 0; in clear_tg_load_avg()
4154 cfs_rq->last_update_tg_load_avg = now; in clear_tg_load_avg()
4173 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; in clear_tg_offline_cfs_rqs()
4184 * caller only guarantees p->pi_lock is held; no other assumptions,
4185 * including the state of rq->lock, should be made.
4199 * getting what current time is, so simply throw away the out-of-date in set_task_rq_fair()
4203 if (!(se->avg.last_update_time && prev)) in set_task_rq_fair()
4210 se->avg.last_update_time = n_last_update_time; in set_task_rq_fair()
4218 * ge->avg == grq->avg (1)
4229 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4234 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4238 * ge->avg.runnable_avg == grq->avg.runnable_avg
4242 * ge->load.weight * grq->avg.load_avg
4243 * ge->avg.load_avg = ----------------------------------- (4)
4244 * grq->load.weight
4257 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4268 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4275 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4283 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; in update_tg_cfs_util()
4291 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. in update_tg_cfs_util()
4294 divider = get_pelt_divider(&cfs_rq->avg); in update_tg_cfs_util()
4298 se->avg.util_avg = gcfs_rq->avg.util_avg; in update_tg_cfs_util()
4299 new_sum = se->avg.util_avg * divider; in update_tg_cfs_util()
4300 delta_sum = (long)new_sum - (long)se->avg.util_sum; in update_tg_cfs_util()
4301 se->avg.util_sum = new_sum; in update_tg_cfs_util()
4304 add_positive(&cfs_rq->avg.util_avg, delta_avg); in update_tg_cfs_util()
4305 add_positive(&cfs_rq->avg.util_sum, delta_sum); in update_tg_cfs_util()
4308 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, in update_tg_cfs_util()
4309 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); in update_tg_cfs_util()
4315 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; in update_tg_cfs_runnable()
4323 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. in update_tg_cfs_runnable()
4326 divider = get_pelt_divider(&cfs_rq->avg); in update_tg_cfs_runnable()
4329 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; in update_tg_cfs_runnable()
4330 new_sum = se->avg.runnable_avg * divider; in update_tg_cfs_runnable()
4331 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; in update_tg_cfs_runnable()
4332 se->avg.runnable_sum = new_sum; in update_tg_cfs_runnable()
4335 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); in update_tg_cfs_runnable()
4336 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); in update_tg_cfs_runnable()
4338 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, in update_tg_cfs_runnable()
4339 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); in update_tg_cfs_runnable()
4345 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; in update_tg_cfs_load()
4354 gcfs_rq->prop_runnable_sum = 0; in update_tg_cfs_load()
4357 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. in update_tg_cfs_load()
4360 divider = get_pelt_divider(&cfs_rq->avg); in update_tg_cfs_load()
4367 runnable_sum += se->avg.load_sum; in update_tg_cfs_load()
4374 if (scale_load_down(gcfs_rq->load.weight)) { in update_tg_cfs_load()
4375 load_sum = div_u64(gcfs_rq->avg.load_sum, in update_tg_cfs_load()
4376 scale_load_down(gcfs_rq->load.weight)); in update_tg_cfs_load()
4380 runnable_sum = min(se->avg.load_sum, load_sum); in update_tg_cfs_load()
4389 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; in update_tg_cfs_load()
4395 delta_avg = load_avg - se->avg.load_avg; in update_tg_cfs_load()
4399 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; in update_tg_cfs_load()
4401 se->avg.load_sum = runnable_sum; in update_tg_cfs_load()
4402 se->avg.load_avg = load_avg; in update_tg_cfs_load()
4403 add_positive(&cfs_rq->avg.load_avg, delta_avg); in update_tg_cfs_load()
4404 add_positive(&cfs_rq->avg.load_sum, delta_sum); in update_tg_cfs_load()
4406 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, in update_tg_cfs_load()
4407 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); in update_tg_cfs_load()
4412 cfs_rq->propagate = 1; in add_tg_cfs_propagate()
4413 cfs_rq->prop_runnable_sum += runnable_sum; in add_tg_cfs_propagate()
4425 if (!gcfs_rq->propagate) in propagate_entity_load_avg()
4428 gcfs_rq->propagate = 0; in propagate_entity_load_avg()
4432 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); in propagate_entity_load_avg()
4456 if (se->avg.load_avg || se->avg.util_avg) in skip_blocked_update()
4463 if (gcfs_rq->propagate) in skip_blocked_update()
4497 if (load_avg_is_decayed(&se->avg)) in migrate_se_pelt_lag()
4504 is_idle = is_idle_task(rcu_dereference(rq->curr)); in migrate_se_pelt_lag()
4521 * - cfs->throttled_clock_pelt_time@cfs_rq_idle in migrate_se_pelt_lag()
4524 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle in migrate_se_pelt_lag()
4527 * = sched_clock_cpu() - rq_clock()@rq_idle in migrate_se_pelt_lag()
4531 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + in migrate_se_pelt_lag()
4532 * sched_clock_cpu() - rq_clock()@rq_idle in migrate_se_pelt_lag()
4534 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle in migrate_se_pelt_lag()
4535 * rq_clock()@rq_idle is rq->clock_idle in migrate_se_pelt_lag()
4536 * cfs->throttled_clock_pelt_time@cfs_rq_idle in migrate_se_pelt_lag()
4537 * is cfs_rq->throttled_pelt_idle in migrate_se_pelt_lag()
4541 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); in migrate_se_pelt_lag()
4546 now = u64_u32_load(rq->clock_pelt_idle); in migrate_se_pelt_lag()
4556 now -= throttled; in migrate_se_pelt_lag()
4559 * cfs_rq->avg.last_update_time is more recent than our in migrate_se_pelt_lag()
4564 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); in migrate_se_pelt_lag()
4573 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4580 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4584 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4591 struct sched_avg *sa = &cfs_rq->avg; in update_cfs_rq_load_avg()
4594 if (cfs_rq->removed.nr) { in update_cfs_rq_load_avg()
4596 u32 divider = get_pelt_divider(&cfs_rq->avg); in update_cfs_rq_load_avg()
4598 raw_spin_lock(&cfs_rq->removed.lock); in update_cfs_rq_load_avg()
4599 swap(cfs_rq->removed.util_avg, removed_util); in update_cfs_rq_load_avg()
4600 swap(cfs_rq->removed.load_avg, removed_load); in update_cfs_rq_load_avg()
4601 swap(cfs_rq->removed.runnable_avg, removed_runnable); in update_cfs_rq_load_avg()
4602 cfs_rq->removed.nr = 0; in update_cfs_rq_load_avg()
4603 raw_spin_unlock(&cfs_rq->removed.lock); in update_cfs_rq_load_avg()
4606 sub_positive(&sa->load_avg, r); in update_cfs_rq_load_avg()
4607 sub_positive(&sa->load_sum, r * divider); in update_cfs_rq_load_avg()
4608 /* See sa->util_sum below */ in update_cfs_rq_load_avg()
4609 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); in update_cfs_rq_load_avg()
4612 sub_positive(&sa->util_avg, r); in update_cfs_rq_load_avg()
4613 sub_positive(&sa->util_sum, r * divider); in update_cfs_rq_load_avg()
4615 * Because of rounding, se->util_sum might ends up being +1 more than in update_cfs_rq_load_avg()
4616 * cfs->util_sum. Although this is not a problem by itself, detaching in update_cfs_rq_load_avg()
4618 * util_avg (~1ms) can make cfs->util_sum becoming null whereas in update_cfs_rq_load_avg()
4625 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); in update_cfs_rq_load_avg()
4628 sub_positive(&sa->runnable_avg, r); in update_cfs_rq_load_avg()
4629 sub_positive(&sa->runnable_sum, r * divider); in update_cfs_rq_load_avg()
4630 /* See sa->util_sum above */ in update_cfs_rq_load_avg()
4631 sa->runnable_sum = max_t(u32, sa->runnable_sum, in update_cfs_rq_load_avg()
4632 sa->runnable_avg * PELT_MIN_DIVIDER); in update_cfs_rq_load_avg()
4639 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); in update_cfs_rq_load_avg()
4645 u64_u32_store_copy(sa->last_update_time, in update_cfs_rq_load_avg()
4646 cfs_rq->last_update_time_copy, in update_cfs_rq_load_avg()
4647 sa->last_update_time); in update_cfs_rq_load_avg()
4652 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4657 * cfs_rq->avg.last_update_time being current.
4662 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. in attach_entity_load_avg()
4665 u32 divider = get_pelt_divider(&cfs_rq->avg); in attach_entity_load_avg()
4674 se->avg.last_update_time = cfs_rq->avg.last_update_time; in attach_entity_load_avg()
4675 se->avg.period_contrib = cfs_rq->avg.period_contrib; in attach_entity_load_avg()
4683 se->avg.util_sum = se->avg.util_avg * divider; in attach_entity_load_avg()
4685 se->avg.runnable_sum = se->avg.runnable_avg * divider; in attach_entity_load_avg()
4687 se->avg.load_sum = se->avg.load_avg * divider; in attach_entity_load_avg()
4688 if (se_weight(se) < se->avg.load_sum) in attach_entity_load_avg()
4689 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); in attach_entity_load_avg()
4691 se->avg.load_sum = 1; in attach_entity_load_avg()
4694 cfs_rq->avg.util_avg += se->avg.util_avg; in attach_entity_load_avg()
4695 cfs_rq->avg.util_sum += se->avg.util_sum; in attach_entity_load_avg()
4696 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; in attach_entity_load_avg()
4697 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; in attach_entity_load_avg()
4699 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); in attach_entity_load_avg()
4707 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4712 * cfs_rq->avg.last_update_time being current.
4717 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); in detach_entity_load_avg()
4718 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); in detach_entity_load_avg()
4720 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, in detach_entity_load_avg()
4721 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); in detach_entity_load_avg()
4723 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); in detach_entity_load_avg()
4724 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); in detach_entity_load_avg()
4726 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, in detach_entity_load_avg()
4727 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); in detach_entity_load_avg()
4729 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); in detach_entity_load_avg()
4754 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) in update_load_avg()
4760 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { in update_load_avg()
4810 * tasks cannot exit without having gone through wake_up_new_task() -> in remove_entity_load_avg()
4817 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); in remove_entity_load_avg()
4818 ++cfs_rq->removed.nr; in remove_entity_load_avg()
4819 cfs_rq->removed.util_avg += se->avg.util_avg; in remove_entity_load_avg()
4820 cfs_rq->removed.load_avg += se->avg.load_avg; in remove_entity_load_avg()
4821 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; in remove_entity_load_avg()
4822 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); in remove_entity_load_avg()
4827 return cfs_rq->avg.runnable_avg; in cfs_rq_runnable_avg()
4832 return cfs_rq->avg.load_avg; in cfs_rq_load_avg()
4839 return READ_ONCE(p->se.avg.util_avg); in task_util()
4844 return READ_ONCE(p->se.avg.runnable_avg); in task_runnable()
4849 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; in _task_util_est()
4866 enqueued = cfs_rq->avg.util_est; in util_est_enqueue()
4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); in util_est_enqueue()
4882 enqueued = cfs_rq->avg.util_est; in util_est_dequeue()
4883 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); in util_est_dequeue()
4884 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); in util_est_dequeue()
4908 ewma = READ_ONCE(p->se.avg.util_est); in util_est_update()
4933 last_ewma_diff = ewma - dequeued; in util_est_update()
4959 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) in util_est_update()
4960 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) in util_est_update()
4961 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) in util_est_update()
4962 * = w * ( -last_ewma_diff ) + ewma(t-1) in util_est_update()
4963 * = w * (-last_ewma_diff + ewma(t-1) / w) in util_est_update()
4969 ewma -= last_ewma_diff; in util_est_update()
4973 WRITE_ONCE(p->se.avg.util_est, ewma); in util_est_update()
4975 trace_sched_util_est_se_tp(&p->se); in util_est_update()
4982 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); in get_actual_cpu_capacity()
5040 * +---------------------------------------- in util_fits_cpu()
5078 * +---------------------------------------- in util_fits_cpu()
5101 return -1; in util_fits_cpu()
5129 if (!p || (p->nr_cpus_allowed == 1) || in update_misfit_status()
5130 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || in update_misfit_status()
5133 rq->misfit_task_load = 0; in update_misfit_status()
5141 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); in update_misfit_status()
5148 return !cfs_rq->nr_queued; in cfs_rq_is_decayed()
5188 struct sched_entity *se = &p->se; in __setparam_fair()
5190 p->static_prio = NICE_TO_PRIO(attr->sched_nice); in __setparam_fair()
5191 if (attr->sched_runtime) { in __setparam_fair()
5192 se->custom_slice = 1; in __setparam_fair()
5193 se->slice = clamp_t(u64, attr->sched_runtime, in __setparam_fair()
5197 se->custom_slice = 0; in __setparam_fair()
5198 se->slice = sysctl_sched_base_slice; in __setparam_fair()
5208 if (!se->custom_slice) in place_entity()
5209 se->slice = sysctl_sched_base_slice; in place_entity()
5210 vslice = calc_delta_fair(se->slice, se); in place_entity()
5220 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { in place_entity()
5221 struct sched_entity *curr = cfs_rq->curr; in place_entity()
5224 lag = se->vlag; in place_entity()
5234 * lag_i = S - s_i = w_i * (V - v_i) in place_entity()
5239 * vl_i = V - v_i <=> v_i = V - vl_i in place_entity()
5251 * = (W*V + w_i*(V - vl_i)) / (W + w_i) in place_entity()
5252 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) in place_entity()
5253 * = (V*(W + w_i) - w_i*l) / (W + w_i) in place_entity()
5254 * = V - w_i*vl_i / (W + w_i) in place_entity()
5258 * vl'_i = V' - v_i in place_entity()
5259 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) in place_entity()
5260 * = vl_i - w_i*vl_i / (W + w_i) in place_entity()
5270 * vl'_i = vl_i - w_i*vl_i / (W + w_i) in place_entity()
5271 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) in place_entity()
5273 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i in place_entity()
5278 load = cfs_rq->avg_load; in place_entity()
5279 if (curr && curr->on_rq) in place_entity()
5280 load += scale_load_down(curr->load.weight); in place_entity()
5282 lag *= load + scale_load_down(se->load.weight); in place_entity()
5288 se->vruntime = vruntime - lag; in place_entity()
5290 if (se->rel_deadline) { in place_entity()
5291 se->deadline += se->vruntime; in place_entity()
5292 se->rel_deadline = 0; in place_entity()
5307 se->deadline = se->vruntime + vslice; in place_entity()
5319 bool curr = cfs_rq->curr == se; in enqueue_entity()
5332 * - Update loads to have both entity and cfs_rq synced with now. in enqueue_entity()
5333 * - For group_entity, update its runnable_weight to reflect the new in enqueue_entity()
5335 * - For group_entity, update its weight to reflect the new share of in enqueue_entity()
5337 * - Add its new weight to cfs_rq->load.weight in enqueue_entity()
5343 * but update_cfs_group() here will re-adjust the weight and have to in enqueue_entity()
5349 * XXX now that the entity has been re-weighted, and it's lag adjusted, in enqueue_entity()
5359 se->exec_start = 0; in enqueue_entity()
5365 se->on_rq = 1; in enqueue_entity()
5367 if (cfs_rq->nr_queued == 1) { in enqueue_entity()
5375 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) in enqueue_entity()
5376 cfs_rq->throttled_clock = rq_clock(rq); in enqueue_entity()
5377 if (!cfs_rq->throttled_clock_self) in enqueue_entity()
5378 cfs_rq->throttled_clock_self = rq_clock(rq); in enqueue_entity()
5388 if (cfs_rq->next != se) in __clear_buddies_next()
5391 cfs_rq->next = NULL; in __clear_buddies_next()
5397 if (cfs_rq->next == se) in clear_buddies()
5405 se->sched_delayed = 1; in set_delayed()
5418 cfs_rq->h_nr_runnable--; in set_delayed()
5426 se->sched_delayed = 0; in clear_delayed()
5440 cfs_rq->h_nr_runnable++; in clear_delayed()
5449 if (sched_feat(DELAY_ZERO) && se->vlag > 0) in finish_delayed_dequeue_entity()
5450 se->vlag = 0; in finish_delayed_dequeue_entity()
5463 SCHED_WARN_ON(!se->sched_delayed); in dequeue_entity()
5473 SCHED_WARN_ON(delay && se->sched_delayed); in dequeue_entity()
5488 * - Update loads to have both entity and cfs_rq synced with now. in dequeue_entity()
5489 * - For group_entity, update its runnable_weight to reflect the new in dequeue_entity()
5491 * - Subtract its previous weight from cfs_rq->load.weight. in dequeue_entity()
5492 * - For group entity, update its weight to reflect the new share in dequeue_entity()
5502 se->deadline -= se->vruntime; in dequeue_entity()
5503 se->rel_deadline = 1; in dequeue_entity()
5506 if (se != cfs_rq->curr) in dequeue_entity()
5508 se->on_rq = 0; in dequeue_entity()
5520 * further than we started -- i.e. we'll be penalized. in dequeue_entity()
5528 if (cfs_rq->nr_queued == 0) in dequeue_entity()
5540 if (se->on_rq) { in set_next_entity()
5554 SCHED_WARN_ON(cfs_rq->curr); in set_next_entity()
5555 cfs_rq->curr = se; in set_next_entity()
5560 * when there are only lesser-weight tasks around): in set_next_entity()
5563 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { in set_next_entity()
5567 __schedstat_set(stats->slice_max, in set_next_entity()
5568 max((u64)stats->slice_max, in set_next_entity()
5569 se->sum_exec_runtime - se->prev_sum_exec_runtime)); in set_next_entity()
5572 se->prev_sum_exec_runtime = se->sum_exec_runtime; in set_next_entity()
5590 * Picking the ->next buddy will affect latency but not fairness. in pick_next_entity()
5593 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { in pick_next_entity()
5594 /* ->next will never be delayed */ in pick_next_entity()
5595 SCHED_WARN_ON(cfs_rq->next->sched_delayed); in pick_next_entity()
5596 return cfs_rq->next; in pick_next_entity()
5600 if (se->sched_delayed) { in pick_next_entity()
5618 if (prev->on_rq) in put_prev_entity()
5624 if (prev->on_rq) { in put_prev_entity()
5631 SCHED_WARN_ON(cfs_rq->curr != prev); in put_prev_entity()
5632 cfs_rq->curr = NULL; in put_prev_entity()
5639 * Update run-time statistics of the 'current'. in entity_tick()
5711 * directly instead of rq->clock to avoid adding additional synchronization
5712 * around rq->lock.
5714 * requires cfs_b->lock
5720 if (unlikely(cfs_b->quota == RUNTIME_INF)) in __refill_cfs_bandwidth_runtime()
5723 cfs_b->runtime += cfs_b->quota; in __refill_cfs_bandwidth_runtime()
5724 runtime = cfs_b->runtime_snap - cfs_b->runtime; in __refill_cfs_bandwidth_runtime()
5726 cfs_b->burst_time += runtime; in __refill_cfs_bandwidth_runtime()
5727 cfs_b->nr_burst++; in __refill_cfs_bandwidth_runtime()
5730 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); in __refill_cfs_bandwidth_runtime()
5731 cfs_b->runtime_snap = cfs_b->runtime; in __refill_cfs_bandwidth_runtime()
5736 return &tg->cfs_bandwidth; in tg_cfs_bandwidth()
5745 lockdep_assert_held(&cfs_b->lock); in __assign_cfs_rq_runtime()
5748 min_amount = target_runtime - cfs_rq->runtime_remaining; in __assign_cfs_rq_runtime()
5750 if (cfs_b->quota == RUNTIME_INF) in __assign_cfs_rq_runtime()
5755 if (cfs_b->runtime > 0) { in __assign_cfs_rq_runtime()
5756 amount = min(cfs_b->runtime, min_amount); in __assign_cfs_rq_runtime()
5757 cfs_b->runtime -= amount; in __assign_cfs_rq_runtime()
5758 cfs_b->idle = 0; in __assign_cfs_rq_runtime()
5762 cfs_rq->runtime_remaining += amount; in __assign_cfs_rq_runtime()
5764 return cfs_rq->runtime_remaining > 0; in __assign_cfs_rq_runtime()
5770 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); in assign_cfs_rq_runtime()
5773 raw_spin_lock(&cfs_b->lock); in assign_cfs_rq_runtime()
5775 raw_spin_unlock(&cfs_b->lock); in assign_cfs_rq_runtime()
5783 cfs_rq->runtime_remaining -= delta_exec; in __account_cfs_rq_runtime()
5785 if (likely(cfs_rq->runtime_remaining > 0)) in __account_cfs_rq_runtime()
5788 if (cfs_rq->throttled) in __account_cfs_rq_runtime()
5794 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) in __account_cfs_rq_runtime()
5801 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) in account_cfs_rq_runtime()
5809 return cfs_bandwidth_used() && cfs_rq->throttled; in cfs_rq_throttled()
5815 return cfs_bandwidth_used() && cfs_rq->throttle_count; in throttled_hierarchy()
5821 * load-balance operations.
5828 src_cfs_rq = tg->cfs_rq[src_cpu]; in throttled_lb_pair()
5829 dest_cfs_rq = tg->cfs_rq[dest_cpu]; in throttled_lb_pair()
5838 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; in tg_unthrottle_up()
5840 cfs_rq->throttle_count--; in tg_unthrottle_up()
5841 if (!cfs_rq->throttle_count) { in tg_unthrottle_up()
5842 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - in tg_unthrottle_up()
5843 cfs_rq->throttled_clock_pelt; in tg_unthrottle_up()
5849 if (cfs_rq->throttled_clock_self) { in tg_unthrottle_up()
5850 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; in tg_unthrottle_up()
5852 cfs_rq->throttled_clock_self = 0; in tg_unthrottle_up()
5857 cfs_rq->throttled_clock_self_time += delta; in tg_unthrottle_up()
5867 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; in tg_throttle_down()
5870 if (!cfs_rq->throttle_count) { in tg_throttle_down()
5871 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); in tg_throttle_down()
5874 SCHED_WARN_ON(cfs_rq->throttled_clock_self); in tg_throttle_down()
5875 if (cfs_rq->nr_queued) in tg_throttle_down()
5876 cfs_rq->throttled_clock_self = rq_clock(rq); in tg_throttle_down()
5878 cfs_rq->throttle_count++; in tg_throttle_down()
5886 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); in throttle_cfs_rq()
5889 long rq_h_nr_queued = rq->cfs.h_nr_queued; in throttle_cfs_rq()
5891 raw_spin_lock(&cfs_b->lock); in throttle_cfs_rq()
5904 list_add_tail_rcu(&cfs_rq->throttled_list, in throttle_cfs_rq()
5905 &cfs_b->throttled_cfs_rq); in throttle_cfs_rq()
5907 raw_spin_unlock(&cfs_b->lock); in throttle_cfs_rq()
5912 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; in throttle_cfs_rq()
5916 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); in throttle_cfs_rq()
5919 queued_delta = cfs_rq->h_nr_queued; in throttle_cfs_rq()
5920 runnable_delta = cfs_rq->h_nr_runnable; in throttle_cfs_rq()
5921 idle_delta = cfs_rq->h_nr_idle; in throttle_cfs_rq()
5926 /* throttled entity or throttle-on-deactivate */ in throttle_cfs_rq()
5927 if (!se->on_rq) in throttle_cfs_rq()
5936 if (se->sched_delayed) in throttle_cfs_rq()
5941 idle_delta = cfs_rq->h_nr_queued; in throttle_cfs_rq()
5943 qcfs_rq->h_nr_queued -= queued_delta; in throttle_cfs_rq()
5944 qcfs_rq->h_nr_runnable -= runnable_delta; in throttle_cfs_rq()
5945 qcfs_rq->h_nr_idle -= idle_delta; in throttle_cfs_rq()
5947 if (qcfs_rq->load.weight) { in throttle_cfs_rq()
5948 /* Avoid re-evaluating load for this entity: */ in throttle_cfs_rq()
5956 /* throttled entity or throttle-on-deactivate */ in throttle_cfs_rq()
5957 if (!se->on_rq) in throttle_cfs_rq()
5964 idle_delta = cfs_rq->h_nr_queued; in throttle_cfs_rq()
5966 qcfs_rq->h_nr_queued -= queued_delta; in throttle_cfs_rq()
5967 qcfs_rq->h_nr_runnable -= runnable_delta; in throttle_cfs_rq()
5968 qcfs_rq->h_nr_idle -= idle_delta; in throttle_cfs_rq()
5975 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) in throttle_cfs_rq()
5976 dl_server_stop(&rq->fair_server); in throttle_cfs_rq()
5980 * throttled-list. rq->lock protects completion. in throttle_cfs_rq()
5982 cfs_rq->throttled = 1; in throttle_cfs_rq()
5983 SCHED_WARN_ON(cfs_rq->throttled_clock); in throttle_cfs_rq()
5984 if (cfs_rq->nr_queued) in throttle_cfs_rq()
5985 cfs_rq->throttled_clock = rq_clock(rq); in throttle_cfs_rq()
5992 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); in unthrottle_cfs_rq()
5995 long rq_h_nr_queued = rq->cfs.h_nr_queued; in unthrottle_cfs_rq()
5997 se = cfs_rq->tg->se[cpu_of(rq)]; in unthrottle_cfs_rq()
5999 cfs_rq->throttled = 0; in unthrottle_cfs_rq()
6003 raw_spin_lock(&cfs_b->lock); in unthrottle_cfs_rq()
6004 if (cfs_rq->throttled_clock) { in unthrottle_cfs_rq()
6005 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; in unthrottle_cfs_rq()
6006 cfs_rq->throttled_clock = 0; in unthrottle_cfs_rq()
6008 list_del_rcu(&cfs_rq->throttled_list); in unthrottle_cfs_rq()
6009 raw_spin_unlock(&cfs_b->lock); in unthrottle_cfs_rq()
6012 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); in unthrottle_cfs_rq()
6014 if (!cfs_rq->load.weight) { in unthrottle_cfs_rq()
6015 if (!cfs_rq->on_list) in unthrottle_cfs_rq()
6028 queued_delta = cfs_rq->h_nr_queued; in unthrottle_cfs_rq()
6029 runnable_delta = cfs_rq->h_nr_runnable; in unthrottle_cfs_rq()
6030 idle_delta = cfs_rq->h_nr_idle; in unthrottle_cfs_rq()
6035 if (se->sched_delayed) { in unthrottle_cfs_rq()
6039 } else if (se->on_rq) in unthrottle_cfs_rq()
6044 idle_delta = cfs_rq->h_nr_queued; in unthrottle_cfs_rq()
6046 qcfs_rq->h_nr_queued += queued_delta; in unthrottle_cfs_rq()
6047 qcfs_rq->h_nr_runnable += runnable_delta; in unthrottle_cfs_rq()
6048 qcfs_rq->h_nr_idle += idle_delta; in unthrottle_cfs_rq()
6062 idle_delta = cfs_rq->h_nr_queued; in unthrottle_cfs_rq()
6064 qcfs_rq->h_nr_queued += queued_delta; in unthrottle_cfs_rq()
6065 qcfs_rq->h_nr_runnable += runnable_delta; in unthrottle_cfs_rq()
6066 qcfs_rq->h_nr_idle += idle_delta; in unthrottle_cfs_rq()
6073 /* Start the fair server if un-throttling resulted in new runnable tasks */ in unthrottle_cfs_rq()
6074 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) in unthrottle_cfs_rq()
6075 dl_server_start(&rq->fair_server); in unthrottle_cfs_rq()
6084 if (rq->curr == rq->idle && rq->cfs.nr_queued) in unthrottle_cfs_rq()
6108 * fact that we pair with sched_free_group_rcu(), so that we cannot in __cfsb_csd_unthrottle()
6114 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, in __cfsb_csd_unthrottle()
6116 list_del_init(&cursor->throttled_csd_list); in __cfsb_csd_unthrottle()
6139 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) in __unthrottle_cfs_rq_async()
6142 first = list_empty(&rq->cfsb_csd_list); in __unthrottle_cfs_rq_async()
6143 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); in __unthrottle_cfs_rq_async()
6145 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); in __unthrottle_cfs_rq_async()
6159 cfs_rq->runtime_remaining <= 0)) in unthrottle_cfs_rq_async()
6176 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, in distribute_cfs_runtime()
6190 if (!list_empty(&cfs_rq->throttled_csd_list)) in distribute_cfs_runtime()
6194 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); in distribute_cfs_runtime()
6196 raw_spin_lock(&cfs_b->lock); in distribute_cfs_runtime()
6197 runtime = -cfs_rq->runtime_remaining + 1; in distribute_cfs_runtime()
6198 if (runtime > cfs_b->runtime) in distribute_cfs_runtime()
6199 runtime = cfs_b->runtime; in distribute_cfs_runtime()
6200 cfs_b->runtime -= runtime; in distribute_cfs_runtime()
6201 remaining = cfs_b->runtime; in distribute_cfs_runtime()
6202 raw_spin_unlock(&cfs_b->lock); in distribute_cfs_runtime()
6204 cfs_rq->runtime_remaining += runtime; in distribute_cfs_runtime()
6207 if (cfs_rq->runtime_remaining > 0) { in distribute_cfs_runtime()
6216 list_add_tail(&cfs_rq->throttled_csd_list, in distribute_cfs_runtime()
6233 list_del_init(&cfs_rq->throttled_csd_list); in distribute_cfs_runtime()
6250 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6258 if (cfs_b->quota == RUNTIME_INF) in do_sched_cfs_period_timer()
6261 throttled = !list_empty(&cfs_b->throttled_cfs_rq); in do_sched_cfs_period_timer()
6262 cfs_b->nr_periods += overrun; in do_sched_cfs_period_timer()
6264 /* Refill extra burst quota even if cfs_b->idle */ in do_sched_cfs_period_timer()
6271 if (cfs_b->idle && !throttled) in do_sched_cfs_period_timer()
6276 cfs_b->idle = 1; in do_sched_cfs_period_timer()
6281 cfs_b->nr_throttled += overrun; in do_sched_cfs_period_timer()
6284 * This check is repeated as we release cfs_b->lock while we unthrottle. in do_sched_cfs_period_timer()
6286 while (throttled && cfs_b->runtime > 0) { in do_sched_cfs_period_timer()
6287 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); in do_sched_cfs_period_timer()
6288 /* we can't nest cfs_b->lock while distributing bandwidth */ in do_sched_cfs_period_timer()
6290 raw_spin_lock_irqsave(&cfs_b->lock, flags); in do_sched_cfs_period_timer()
6299 cfs_b->idle = 0; in do_sched_cfs_period_timer()
6317 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6323 struct hrtimer *refresh_timer = &cfs_b->period_timer; in runtime_refresh_within()
6326 /* if the call-back is running a quota refresh is already occurring */ in runtime_refresh_within()
6347 if (cfs_b->slack_started) in start_cfs_slack_bandwidth()
6349 cfs_b->slack_started = true; in start_cfs_slack_bandwidth()
6351 hrtimer_start(&cfs_b->slack_timer, in start_cfs_slack_bandwidth()
6359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); in __return_cfs_rq_runtime()
6360 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; in __return_cfs_rq_runtime()
6365 raw_spin_lock(&cfs_b->lock); in __return_cfs_rq_runtime()
6366 if (cfs_b->quota != RUNTIME_INF) { in __return_cfs_rq_runtime()
6367 cfs_b->runtime += slack_runtime; in __return_cfs_rq_runtime()
6369 /* we are under rq->lock, defer unthrottling using a timer */ in __return_cfs_rq_runtime()
6370 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && in __return_cfs_rq_runtime()
6371 !list_empty(&cfs_b->throttled_cfs_rq)) in __return_cfs_rq_runtime()
6374 raw_spin_unlock(&cfs_b->lock); in __return_cfs_rq_runtime()
6377 cfs_rq->runtime_remaining -= slack_runtime; in __return_cfs_rq_runtime()
6385 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) in return_cfs_rq_runtime()
6393 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6401 raw_spin_lock_irqsave(&cfs_b->lock, flags); in do_sched_cfs_slack_timer()
6402 cfs_b->slack_started = false; in do_sched_cfs_slack_timer()
6405 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); in do_sched_cfs_slack_timer()
6409 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) in do_sched_cfs_slack_timer()
6410 runtime = cfs_b->runtime; in do_sched_cfs_slack_timer()
6412 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); in do_sched_cfs_slack_timer()
6423 * runtime as update_curr() throttling can not trigger until it's on-rq.
6430 /* an active group must be handled by the update_curr()->put() path */ in check_enqueue_throttle()
6431 if (!cfs_rq->runtime_enabled || cfs_rq->curr) in check_enqueue_throttle()
6440 if (cfs_rq->runtime_remaining <= 0) in check_enqueue_throttle()
6451 if (!tg->parent) in sync_throttle()
6454 cfs_rq = tg->cfs_rq[cpu]; in sync_throttle()
6455 pcfs_rq = tg->parent->cfs_rq[cpu]; in sync_throttle()
6457 cfs_rq->throttle_count = pcfs_rq->throttle_count; in sync_throttle()
6458 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); in sync_throttle()
6467 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) in check_cfs_rq_runtime()
6501 raw_spin_lock_irqsave(&cfs_b->lock, flags); in sched_cfs_period_timer()
6503 overrun = hrtimer_forward_now(timer, cfs_b->period); in sched_cfs_period_timer()
6510 u64 new, old = ktime_to_ns(cfs_b->period); in sched_cfs_period_timer()
6519 cfs_b->period = ns_to_ktime(new); in sched_cfs_period_timer()
6520 cfs_b->quota *= 2; in sched_cfs_period_timer()
6521 cfs_b->burst *= 2; in sched_cfs_period_timer()
6527 div_u64(cfs_b->quota, NSEC_PER_USEC)); in sched_cfs_period_timer()
6533 div_u64(cfs_b->quota, NSEC_PER_USEC)); in sched_cfs_period_timer()
6541 cfs_b->period_active = 0; in sched_cfs_period_timer()
6542 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); in sched_cfs_period_timer()
6549 raw_spin_lock_init(&cfs_b->lock); in init_cfs_bandwidth()
6550 cfs_b->runtime = 0; in init_cfs_bandwidth()
6551 cfs_b->quota = RUNTIME_INF; in init_cfs_bandwidth()
6552 cfs_b->period = ns_to_ktime(default_cfs_period()); in init_cfs_bandwidth()
6553 cfs_b->burst = 0; in init_cfs_bandwidth()
6554 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; in init_cfs_bandwidth()
6556 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); in init_cfs_bandwidth()
6557 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); in init_cfs_bandwidth()
6558 cfs_b->period_timer.function = sched_cfs_period_timer; in init_cfs_bandwidth()
6561 hrtimer_set_expires(&cfs_b->period_timer, in init_cfs_bandwidth()
6562 get_random_u32_below(cfs_b->period)); in init_cfs_bandwidth()
6563 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); in init_cfs_bandwidth()
6564 cfs_b->slack_timer.function = sched_cfs_slack_timer; in init_cfs_bandwidth()
6565 cfs_b->slack_started = false; in init_cfs_bandwidth()
6570 cfs_rq->runtime_enabled = 0; in init_cfs_rq_runtime()
6571 INIT_LIST_HEAD(&cfs_rq->throttled_list); in init_cfs_rq_runtime()
6572 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); in init_cfs_rq_runtime()
6577 lockdep_assert_held(&cfs_b->lock); in start_cfs_bandwidth()
6579 if (cfs_b->period_active) in start_cfs_bandwidth()
6582 cfs_b->period_active = 1; in start_cfs_bandwidth()
6583 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); in start_cfs_bandwidth()
6584 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); in start_cfs_bandwidth()
6592 if (!cfs_b->throttled_cfs_rq.next) in destroy_cfs_bandwidth()
6595 hrtimer_cancel(&cfs_b->period_timer); in destroy_cfs_bandwidth()
6596 hrtimer_cancel(&cfs_b->slack_timer); in destroy_cfs_bandwidth()
6613 if (list_empty(&rq->cfsb_csd_list)) in destroy_cfs_bandwidth()
6639 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; in update_runtime_enabled()
6640 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; in update_runtime_enabled()
6642 raw_spin_lock(&cfs_b->lock); in update_runtime_enabled()
6643 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; in update_runtime_enabled()
6644 raw_spin_unlock(&cfs_b->lock); in update_runtime_enabled()
6669 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; in unthrottle_offline_cfs_rqs()
6671 if (!cfs_rq->runtime_enabled) in unthrottle_offline_cfs_rqs()
6678 cfs_rq->runtime_enabled = 0; in unthrottle_offline_cfs_rqs()
6687 cfs_rq->runtime_remaining = 1; in unthrottle_offline_cfs_rqs()
6702 if (cfs_rq->runtime_enabled || in cfs_task_bw_constrained()
6703 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) in cfs_task_bw_constrained()
6721 if (rq->nr_running != 1) in sched_fair_update_stop_tick()
6790 struct sched_entity *se = &p->se; in hrtick_start_fair()
6794 if (rq->cfs.h_nr_queued > 1) { in hrtick_start_fair()
6795 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; in hrtick_start_fair()
6796 u64 slice = se->slice; in hrtick_start_fair()
6797 s64 delta = slice - ran; in hrtick_start_fair()
6815 struct task_struct *donor = rq->donor; in hrtick_update()
6817 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) in hrtick_update()
6853 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); in is_rd_overutilized()
6861 WRITE_ONCE(rd->overutilized, flag); in set_rd_overutilized()
6872 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) in check_update_overutilized_status()
6873 set_rd_overutilized(rq->rd, 1); in check_update_overutilized_status()
6882 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && in sched_idle_rq()
6883 rq->nr_running); in sched_idle_rq()
6899 * se->sched_delayed should imply: se->on_rq == 1. in requeue_delayed_entity()
6903 SCHED_WARN_ON(!se->sched_delayed); in requeue_delayed_entity()
6904 SCHED_WARN_ON(!se->on_rq); in requeue_delayed_entity()
6908 if (se->vlag > 0) { in requeue_delayed_entity()
6909 cfs_rq->nr_queued--; in requeue_delayed_entity()
6910 if (se != cfs_rq->curr) in requeue_delayed_entity()
6912 se->vlag = 0; in requeue_delayed_entity()
6914 if (se != cfs_rq->curr) in requeue_delayed_entity()
6916 cfs_rq->nr_queued++; in requeue_delayed_entity()
6933 struct sched_entity *se = &p->se; in enqueue_task_fair()
6937 int rq_h_nr_queued = rq->cfs.h_nr_queued; in enqueue_task_fair()
6946 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) in enqueue_task_fair()
6947 util_est_enqueue(&rq->cfs, p); in enqueue_task_fair()
6959 if (p->in_iowait) in enqueue_task_fair()
6962 if (task_new && se->sched_delayed) in enqueue_task_fair()
6966 if (se->on_rq) { in enqueue_task_fair()
6967 if (se->sched_delayed) in enqueue_task_fair()
6976 * its entities in the desired time-frame. in enqueue_task_fair()
6979 se->slice = slice; in enqueue_task_fair()
6980 se->custom_slice = 1; in enqueue_task_fair()
6985 cfs_rq->h_nr_runnable += h_nr_runnable; in enqueue_task_fair()
6986 cfs_rq->h_nr_queued++; in enqueue_task_fair()
6987 cfs_rq->h_nr_idle += h_nr_idle; in enqueue_task_fair()
7006 se->slice = slice; in enqueue_task_fair()
7007 if (se != cfs_rq->curr) in enqueue_task_fair()
7008 min_vruntime_cb_propagate(&se->run_node, NULL); in enqueue_task_fair()
7011 cfs_rq->h_nr_runnable += h_nr_runnable; in enqueue_task_fair()
7012 cfs_rq->h_nr_queued++; in enqueue_task_fair()
7013 cfs_rq->h_nr_idle += h_nr_idle; in enqueue_task_fair()
7023 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { in enqueue_task_fair()
7025 if (!rq->nr_running) in enqueue_task_fair()
7026 dl_server_update_idle_time(rq, rq->curr); in enqueue_task_fair()
7027 dl_server_start(&rq->fair_server); in enqueue_task_fair()
7060 * failing half-way through and resume the dequeue later.
7063 * -1 - dequeue delayed
7064 * 0 - dequeue throttled
7065 * 1 - dequeue complete
7070 int rq_h_nr_queued = rq->cfs.h_nr_queued; in dequeue_entities()
7084 if (task_sleep || task_delayed || !se->sched_delayed) in dequeue_entities()
7095 if (p && &p->se == se) in dequeue_entities()
7096 return -1; in dequeue_entities()
7101 cfs_rq->h_nr_runnable -= h_nr_runnable; in dequeue_entities()
7102 cfs_rq->h_nr_queued -= h_nr_queued; in dequeue_entities()
7103 cfs_rq->h_nr_idle -= h_nr_idle; in dequeue_entities()
7113 if (cfs_rq->load.weight) { in dequeue_entities()
7116 /* Avoid re-evaluating load for this entity: */ in dequeue_entities()
7137 se->slice = slice; in dequeue_entities()
7138 if (se != cfs_rq->curr) in dequeue_entities()
7139 min_vruntime_cb_propagate(&se->run_node, NULL); in dequeue_entities()
7142 cfs_rq->h_nr_runnable -= h_nr_runnable; in dequeue_entities()
7143 cfs_rq->h_nr_queued -= h_nr_queued; in dequeue_entities()
7144 cfs_rq->h_nr_idle -= h_nr_idle; in dequeue_entities()
7156 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) in dequeue_entities()
7157 dl_server_stop(&rq->fair_server); in dequeue_entities()
7161 rq->next_balance = jiffies; in dequeue_entities()
7165 SCHED_WARN_ON(p->on_rq != 1); in dequeue_entities()
7167 /* Fix-up what dequeue_task_fair() skipped */ in dequeue_entities()
7171 * Fix-up what block_task() skipped. in dequeue_entities()
7188 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) in dequeue_task_fair()
7189 util_est_dequeue(&rq->cfs, p); in dequeue_task_fair()
7191 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); in dequeue_task_fair()
7192 if (dequeue_entities(rq, &p->se, flags) < 0) in dequeue_task_fair()
7225 return cfs_rq_load_avg(&rq->cfs); in cpu_load()
7229 * cpu_load_without - compute CPU load without any contributions from *p
7247 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) in cpu_load_without()
7250 cfs_rq = &rq->cfs; in cpu_load_without()
7251 load = READ_ONCE(cfs_rq->avg.load_avg); in cpu_load_without()
7261 return cfs_rq_runnable_avg(&rq->cfs); in cpu_runnable()
7270 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) in cpu_runnable_without()
7273 cfs_rq = &rq->cfs; in cpu_runnable_without()
7274 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); in cpu_runnable_without()
7277 lsub_positive(&runnable, p->se.avg.runnable_avg); in cpu_runnable_without()
7284 return cpu_rq(cpu)->cpu_capacity; in capacity_of()
7293 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { in record_wakee()
7294 current->wakee_flips >>= 1; in record_wakee()
7295 current->wakee_flip_decay_ts = jiffies; in record_wakee()
7298 if (current->last_wakee != p) { in record_wakee()
7299 current->last_wakee = p; in record_wakee()
7300 current->wakee_flips++; in record_wakee()
7305 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7315 * non-monogamous, with partner count exceeding socket size.
7323 unsigned int master = current->wakee_flips; in wake_wide()
7324 unsigned int slave = p->wakee_flips; in wake_wide()
7339 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7340 * cache-affine and is (or will be) idle.
7342 * wake_affine_weight() - considers the weight to reflect the average
7364 if (sync && cpu_rq(this_cpu)->nr_running == 1) in wake_affine_idle()
7388 this_eff_load -= current_load; in wake_affine_weight()
7399 prev_eff_load -= task_load; in wake_affine_weight()
7401 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; in wake_affine_weight()
7427 schedstat_inc(p->stats.nr_wakeups_affine_attempts); in wake_affine()
7431 schedstat_inc(sd->ttwu_move_affine); in wake_affine()
7432 schedstat_inc(p->stats.nr_wakeups_affine); in wake_affine()
7440 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7449 int shallowest_idle_cpu = -1; in sched_balance_find_dst_group_cpu()
7453 if (group->group_weight == 1) in sched_balance_find_dst_group_cpu()
7457 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { in sched_balance_find_dst_group_cpu()
7468 if (idle && idle->exit_latency < min_exit_latency) { in sched_balance_find_dst_group_cpu()
7474 min_exit_latency = idle->exit_latency; in sched_balance_find_dst_group_cpu()
7475 latest_idle_timestamp = rq->idle_stamp; in sched_balance_find_dst_group_cpu()
7477 } else if ((!idle || idle->exit_latency == min_exit_latency) && in sched_balance_find_dst_group_cpu()
7478 rq->idle_stamp > latest_idle_timestamp) { in sched_balance_find_dst_group_cpu()
7484 latest_idle_timestamp = rq->idle_stamp; in sched_balance_find_dst_group_cpu()
7487 } else if (shallowest_idle_cpu == -1) { in sched_balance_find_dst_group_cpu()
7496 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; in sched_balance_find_dst_group_cpu()
7504 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) in sched_balance_find_dst_cpu()
7512 sync_entity_load_avg(&p->se); in sched_balance_find_dst_cpu()
7519 if (!(sd->flags & sd_flag)) { in sched_balance_find_dst_cpu()
7520 sd = sd->child; in sched_balance_find_dst_cpu()
7526 sd = sd->child; in sched_balance_find_dst_cpu()
7533 sd = sd->child; in sched_balance_find_dst_cpu()
7539 weight = sd->span_weight; in sched_balance_find_dst_cpu()
7542 if (weight <= tmp->span_weight) in sched_balance_find_dst_cpu()
7544 if (tmp->flags & sd_flag) in sched_balance_find_dst_cpu()
7558 return -1; in __select_idle_cpu()
7571 WRITE_ONCE(sds->has_idle_cores, val); in set_idle_cores()
7580 return READ_ONCE(sds->has_idle_cores); in test_idle_cores()
7587 * information in sd_llc_shared->has_idle_cores.
7617 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7627 if (*idle_cpu == -1) { in select_idle_core()
7636 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) in select_idle_core()
7644 return -1; in select_idle_core()
7654 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { in select_idle_smt()
7667 return -1; in select_idle_smt()
7688 return -1; in select_idle_smt()
7695 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7696 * average idle time for this rq (as found in rq->avg_idle).
7701 int i, cpu, idle_cpu = -1, nr = INT_MAX; in select_idle_cpu()
7704 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); in select_idle_cpu()
7709 /* because !--nr is the condition to stop scan */ in select_idle_cpu()
7710 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; in select_idle_cpu()
7713 return -1; in select_idle_cpu()
7718 struct sched_group *sg = sd->groups; in select_idle_cpu()
7720 if (sg->flags & SD_CLUSTER) { in select_idle_cpu()
7730 if (--nr <= 0) in select_idle_cpu()
7731 return -1; in select_idle_cpu()
7748 if (--nr <= 0) in select_idle_cpu()
7749 return -1; in select_idle_cpu()
7772 int cpu, best_cpu = -1; in select_idle_capacity()
7776 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); in select_idle_capacity()
7801 * First, select CPU which fits better (-1 being better than 0). in select_idle_capacity()
7838 int i, recent_used_cpu, prev_aff = -1; in select_idle_sibling()
7845 sync_entity_load_avg(&p->se); in select_idle_sibling()
7852 * per-cpu select_rq_mask usage in select_idle_sibling()
7875 * Allow a per-cpu kthread to stack with the wakee if the in select_idle_sibling()
7878 * per-cpu kthread that is now complete and the wakeup is in select_idle_sibling()
7885 this_rq()->nr_running <= 1 && in select_idle_sibling()
7891 recent_used_cpu = p->recent_used_cpu; in select_idle_sibling()
7892 p->recent_used_cpu = prev; in select_idle_sibling()
7897 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && in select_idle_sibling()
7905 recent_used_cpu = -1; in select_idle_sibling()
7961 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7964 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7971 * recent utilization of currently non-runnable tasks on that CPU.
7979 * previously-executed tasks, which helps better deduce how busy a CPU will
7980 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7994 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7997 * after task migrations (scheduler-driven DVFS).
8004 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; in cpu_util()
8005 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); in cpu_util()
8009 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); in cpu_util()
8014 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its in cpu_util()
8027 util_est = READ_ONCE(cfs_rq->avg.util_est); in cpu_util()
8030 * During wake-up @p isn't enqueued yet and doesn't contribute in cpu_util()
8031 * to any cpu_rq(cpu)->cfs.avg.util_est. in cpu_util()
8035 * During exec (@dst_cpu = -1) @p is enqueued and does in cpu_util()
8036 * contribute to cpu_rq(cpu)->cfs.util_est. in cpu_util()
8045 * p->on_rq = TASK_ON_RQ_MIGRATING; in cpu_util()
8046 * -------------------------------- A in cpu_util()
8050 * -------------------------------- B in cpu_util()
8068 return cpu_util(cpu, NULL, -1, 0); in cpu_util_cfs()
8073 return cpu_util(cpu, NULL, -1, 1); in cpu_util_cfs_boost()
8092 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) in cpu_util_without()
8095 return cpu_util(cpu, p, -1, 0); in cpu_util_without()
8110 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8111 * which excludes things like IRQ and steal-time. These latter are then accrued
8129 * because of inaccuracies in how we track these -- see in effective_cpu_util()
8144 * - the computed DL bandwidth needed with the IRQ pressure which in effective_cpu_util()
8146 * - The minimum performance requirement for CFS and/or RT. in effective_cpu_util()
8154 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) in effective_cpu_util()
8182 * max - irq in effective_cpu_util()
8183 * U' = irq + --------- * U in effective_cpu_util()
8198 * energy_env - Utilization landscape for energy estimation.
8204 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8230 eenv->task_busy_time = busy_time; in eenv_task_busy_time()
8244 * - A stable PD utilization, no matter which CPU of that PD we want to place
8247 * - A fair comparison between CPUs as the task contribution (task_util())
8252 * exceed @eenv->pd_cap.
8262 unsigned long util = cpu_util(cpu, p, -1, 0); in eenv_pd_busy_time()
8267 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); in eenv_pd_busy_time()
8274 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8275 * exceed @eenv->cpu_cap.
8316 return min(max_util, eenv->cpu_cap); in eenv_pd_max_util()
8329 unsigned long busy_time = eenv->pd_busy_time; in compute_energy()
8333 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); in compute_energy()
8335 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); in compute_energy()
8343 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8347 * out which of the CPU candidates is the most energy-efficient.
8364 * cluster-packing, and spreading inside a cluster. That should at least be
8371 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8375 * to be energy-inefficient in some use-cases. The alternative would be to
8378 * other use-cases too. So, until someone finds a better way to solve this,
8379 * let's keep things simple by re-using the existing slow path.
8387 struct root_domain *rd = this_rq()->rd; in find_energy_efficient_cpu()
8388 int cpu, best_energy_cpu, target = -1; in find_energy_efficient_cpu()
8389 int prev_fits = -1, best_fits = -1; in find_energy_efficient_cpu()
8397 pd = rcu_dereference(rd->pd); in find_energy_efficient_cpu()
8402 * Energy-aware wake-up happens on the lowest sched_domain starting in find_energy_efficient_cpu()
8407 sd = sd->parent; in find_energy_efficient_cpu()
8413 sync_entity_load_avg(&p->se); in find_energy_efficient_cpu()
8419 for (; pd; pd = pd->next) { in find_energy_efficient_cpu()
8422 long prev_spare_cap = -1, max_spare_cap = -1; in find_energy_efficient_cpu()
8425 int max_spare_cap_cpu = -1; in find_energy_efficient_cpu()
8426 int fits, max_fits = -1; in find_energy_efficient_cpu()
8448 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) in find_energy_efficient_cpu()
8467 * max-aggregated uclamp_{min, max}. in find_energy_efficient_cpu()
8504 base_energy = compute_energy(&eenv, pd, cpus, p, -1); in find_energy_efficient_cpu()
8507 if (prev_spare_cap > -1) { in find_energy_efficient_cpu()
8513 prev_delta -= base_energy; in find_energy_efficient_cpu()
8537 cur_delta -= base_energy; in find_energy_efficient_cpu()
8581 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); in select_task_rq_fair()
8590 * required for stable ->cpus_allowed in select_task_rq_fair()
8592 lockdep_assert_held(&p->pi_lock); in select_task_rq_fair()
8597 cpumask_test_cpu(cpu, p->cpus_ptr)) in select_task_rq_fair()
8600 if (!is_rd_overutilized(this_rq()->rd)) { in select_task_rq_fair()
8607 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); in select_task_rq_fair()
8616 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && in select_task_rq_fair()
8630 if (tmp->flags & sd_flag) in select_task_rq_fair()
8651 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8655 struct sched_entity *se = &p->se; in migrate_task_rq_fair()
8664 * leading to an inflation after wake-up on the new rq. in migrate_task_rq_fair()
8674 se->avg.last_update_time = 0; in migrate_task_rq_fair()
8681 struct sched_entity *se = &p->se; in task_dead_fair()
8683 if (se->sched_delayed) { in task_dead_fair()
8688 if (se->sched_delayed) { in task_dead_fair()
8713 if (!cpumask_intersects(p->cpus_ptr, cpumask)) in set_task_max_allowed_capacity()
8716 p->max_allowed_capacity = entry->capacity; in set_task_max_allowed_capacity()
8743 if (SCHED_WARN_ON(!se->on_rq)) in set_next_buddy()
8747 cfs_rq_of(se)->next = se; in set_next_buddy()
8756 struct task_struct *donor = rq->donor; in check_preempt_wakeup_fair()
8757 struct sched_entity *se = &donor->se, *pse = &p->se; in check_preempt_wakeup_fair()
8768 * next-buddy nomination below. in check_preempt_wakeup_fair()
8773 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { in check_preempt_wakeup_fair()
8781 * Note: this also catches the edge-case of curr being in a throttled in check_preempt_wakeup_fair()
8787 if (test_tsk_need_resched(rq->curr)) in check_preempt_wakeup_fair()
8800 * Preempt an idle entity in favor of a non-idle entity (and don't preempt in check_preempt_wakeup_fair()
8805 * When non-idle entity preempt an idle entity, in check_preempt_wakeup_fair()
8818 if (unlikely(!normal_policy(p->policy))) in check_preempt_wakeup_fair()
8851 cfs_rq = &rq->cfs; in pick_task_fair()
8852 if (!cfs_rq->nr_queued) in pick_task_fair()
8857 if (cfs_rq->curr && cfs_rq->curr->on_rq) in pick_task_fair()
8886 se = &p->se; in pick_next_task_fair()
8889 if (prev->sched_class != &fair_sched_class) in pick_next_task_fair()
8906 struct sched_entity *pse = &prev->se; in pick_next_task_fair()
8910 int se_depth = se->depth; in pick_next_task_fair()
8911 int pse_depth = pse->depth; in pick_next_task_fair()
8943 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is in pick_next_task_fair()
8945 * must re-start the pick_next_entity() loop. in pick_next_task_fair()
8969 return !!dl_se->rq->cfs.nr_queued; in fair_server_has_tasks()
8974 return pick_task_fair(dl_se->rq); in fair_server_pick_task()
8979 struct sched_dl_entity *dl_se = &rq->fair_server; in fair_server_init()
8991 struct sched_entity *se = &prev->se; in put_prev_task_fair()
9005 struct task_struct *curr = rq->curr; in yield_task_fair()
9007 struct sched_entity *se = &curr->se; in yield_task_fair()
9012 if (unlikely(rq->nr_running == 1)) in yield_task_fair()
9019 * Update run-time statistics of the 'current'. in yield_task_fair()
9029 se->deadline += calc_delta_fair(se->slice, se); in yield_task_fair()
9034 struct sched_entity *se = &p->se; in yield_to_task_fair()
9037 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) in yield_to_task_fair()
9050 * Fair scheduling class load-balancing methods.
9054 * The purpose of load-balancing is to achieve the same basic fairness the
9055 * per-CPU scheduler provides, namely provide a proportional amount of compute
9060 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9065 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9071 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9080 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9087 * - infeasible weights;
9088 * - local vs global optima in the discrete case. ]
9098 * of load-balance at each level inversely proportional to the number of CPUs in
9104 * \Sum { --- * --- * 2^i } = O(n) (5)
9106 * `- size of each group
9107 * | | `- number of CPUs doing load-balance
9108 * | `- freq
9109 * `- sum over all levels
9151 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9158 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9240 /* The set of CPUs under consideration for load-balancing */
9255 * Is this task likely cache-hot:
9261 lockdep_assert_rq_held(env->src_rq); in task_hot()
9263 if (p->sched_class != &fair_sched_class) in task_hot()
9270 if (env->sd->flags & SD_SHARE_CPUCAPACITY) in task_hot()
9276 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && in task_hot()
9277 (&p->se == cfs_rq_of(&p->se)->next)) in task_hot()
9280 if (sysctl_sched_migration_cost == -1) in task_hot()
9287 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) in task_hot()
9293 delta = rq_clock_task(env->src_rq) - p->se.exec_start; in task_hot()
9306 struct numa_group *numa_group = rcu_dereference(p->numa_group); in migrate_degrades_locality()
9313 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) in migrate_degrades_locality()
9316 src_nid = cpu_to_node(env->src_cpu); in migrate_degrades_locality()
9317 dst_nid = cpu_to_node(env->dst_cpu); in migrate_degrades_locality()
9323 if (src_nid == p->numa_preferred_nid) { in migrate_degrades_locality()
9324 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) in migrate_degrades_locality()
9331 if (dst_nid == p->numa_preferred_nid) in migrate_degrades_locality()
9332 return -1; in migrate_degrades_locality()
9335 if (env->idle == CPU_IDLE) in migrate_degrades_locality()
9347 return src_weight - dst_weight; in migrate_degrades_locality()
9362 * dst_cfs_rq->nr_queued is greater than 1, if the task
9371 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; in task_is_ineligible_on_dst_cpu()
9373 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; in task_is_ineligible_on_dst_cpu()
9375 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && in task_is_ineligible_on_dst_cpu()
9376 !entity_eligible(task_cfs_rq(p), &p->se)) in task_is_ineligible_on_dst_cpu()
9383 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9390 lockdep_assert_rq_held(env->src_rq); in can_migrate_task()
9391 if (p->sched_task_hot) in can_migrate_task()
9392 p->sched_task_hot = 0; in can_migrate_task()
9400 * 5) are cache-hot on their current CPU. in can_migrate_task()
9402 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) in can_migrate_task()
9405 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) in can_migrate_task()
9410 * For ineligible tasks we soft-limit them and only allow in can_migrate_task()
9411 * them to migrate when nr_balance_failed is non-zero to in can_migrate_task()
9412 * avoid load-balancing trying very hard to balance the load. in can_migrate_task()
9414 if (!env->sd->nr_balance_failed && in can_migrate_task()
9415 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) in can_migrate_task()
9422 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { in can_migrate_task()
9425 schedstat_inc(p->stats.nr_failed_migrations_affine); in can_migrate_task()
9427 env->flags |= LBF_SOME_PINNED; in can_migrate_task()
9435 * - for NEWLY_IDLE in can_migrate_task()
9436 * - if we have already computed one in current iteration in can_migrate_task()
9437 * - if it's an active balance in can_migrate_task()
9439 if (env->idle == CPU_NEWLY_IDLE || in can_migrate_task()
9440 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) in can_migrate_task()
9443 /* Prevent to re-select dst_cpu via env's CPUs: */ in can_migrate_task()
9444 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { in can_migrate_task()
9445 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { in can_migrate_task()
9446 env->flags |= LBF_DST_PINNED; in can_migrate_task()
9447 env->new_dst_cpu = cpu; in can_migrate_task()
9456 env->flags &= ~LBF_ALL_PINNED; in can_migrate_task()
9458 if (task_on_cpu(env->src_rq, p)) { in can_migrate_task()
9459 schedstat_inc(p->stats.nr_failed_migrations_running); in can_migrate_task()
9470 if (env->flags & LBF_ACTIVE_LB) in can_migrate_task()
9479 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { in can_migrate_task()
9481 p->sched_task_hot = 1; in can_migrate_task()
9485 schedstat_inc(p->stats.nr_failed_migrations_hot); in can_migrate_task()
9490 * detach_task() -- detach the task for the migration specified in env
9494 lockdep_assert_rq_held(env->src_rq); in detach_task()
9496 if (p->sched_task_hot) { in detach_task()
9497 p->sched_task_hot = 0; in detach_task()
9498 schedstat_inc(env->sd->lb_hot_gained[env->idle]); in detach_task()
9499 schedstat_inc(p->stats.nr_forced_migrations); in detach_task()
9502 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); in detach_task()
9503 set_task_cpu(p, env->dst_cpu); in detach_task()
9507 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9516 lockdep_assert_rq_held(env->src_rq); in detach_one_task()
9519 &env->src_rq->cfs_tasks, se.group_node) { in detach_one_task()
9527 * lb_gained[env->idle] is updated (other is detach_tasks) in detach_one_task()
9531 schedstat_inc(env->sd->lb_gained[env->idle]); in detach_one_task()
9538 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9545 struct list_head *tasks = &env->src_rq->cfs_tasks; in detach_tasks()
9550 lockdep_assert_rq_held(env->src_rq); in detach_tasks()
9556 if (env->src_rq->nr_running <= 1) { in detach_tasks()
9557 env->flags &= ~LBF_ALL_PINNED; in detach_tasks()
9561 if (env->imbalance <= 0) in detach_tasks()
9569 if (env->idle && env->src_rq->nr_running <= 1) in detach_tasks()
9572 env->loop++; in detach_tasks()
9574 if (env->loop > env->loop_max) in detach_tasks()
9578 if (env->loop > env->loop_break) { in detach_tasks()
9579 env->loop_break += SCHED_NR_MIGRATE_BREAK; in detach_tasks()
9580 env->flags |= LBF_NEED_BREAK; in detach_tasks()
9589 switch (env->migration_type) { in detach_tasks()
9594 * value. Make sure that env->imbalance decreases in detach_tasks()
9601 load < 16 && !env->sd->nr_balance_failed) in detach_tasks()
9610 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) in detach_tasks()
9613 env->imbalance -= load; in detach_tasks()
9619 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) in detach_tasks()
9622 env->imbalance -= util; in detach_tasks()
9626 env->imbalance--; in detach_tasks()
9631 if (task_fits_cpu(p, env->src_cpu)) in detach_tasks()
9634 env->imbalance = 0; in detach_tasks()
9639 list_add(&p->se.group_node, &env->tasks); in detach_tasks()
9649 if (env->idle == CPU_NEWLY_IDLE) in detach_tasks()
9657 if (env->imbalance <= 0) in detach_tasks()
9662 if (p->sched_task_hot) in detach_tasks()
9663 schedstat_inc(p->stats.nr_failed_migrations_hot); in detach_tasks()
9665 list_move(&p->se.group_node, tasks); in detach_tasks()
9673 schedstat_add(env->sd->lb_gained[env->idle], detached); in detach_tasks()
9679 * attach_task() -- attach the task detached by detach_task() to its new rq.
9691 * attach_one_task() -- attaches the task returned from detach_one_task() to
9705 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9710 struct list_head *tasks = &env->tasks; in attach_tasks()
9714 rq_lock(env->dst_rq, &rf); in attach_tasks()
9715 update_rq_clock(env->dst_rq); in attach_tasks()
9719 list_del_init(&p->se.group_node); in attach_tasks()
9721 attach_task(env->dst_rq, p); in attach_tasks()
9724 rq_unlock(env->dst_rq, &rf); in attach_tasks()
9730 if (cfs_rq->avg.load_avg) in cfs_rq_has_blocked()
9733 if (cfs_rq->avg.util_avg) in cfs_rq_has_blocked()
9758 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); in update_blocked_load_tick()
9764 rq->has_blocked_load = 0; in update_blocked_load_status()
9807 if (cfs_rq->nr_queued == 0) in __update_blocked_fair()
9810 if (cfs_rq == &rq->cfs) in __update_blocked_fair()
9815 se = cfs_rq->tg->se[cpu]; in __update_blocked_fair()
9836 * This needs to be done in a top-down fashion because the load of a child
9842 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; in update_cfs_rq_h_load()
9846 if (cfs_rq->last_h_load_update == now) in update_cfs_rq_h_load()
9849 WRITE_ONCE(cfs_rq->h_load_next, NULL); in update_cfs_rq_h_load()
9852 WRITE_ONCE(cfs_rq->h_load_next, se); in update_cfs_rq_h_load()
9853 if (cfs_rq->last_h_load_update == now) in update_cfs_rq_h_load()
9858 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); in update_cfs_rq_h_load()
9859 cfs_rq->last_h_load_update = now; in update_cfs_rq_h_load()
9862 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { in update_cfs_rq_h_load()
9863 load = cfs_rq->h_load; in update_cfs_rq_h_load()
9864 load = div64_ul(load * se->avg.load_avg, in update_cfs_rq_h_load()
9867 cfs_rq->h_load = load; in update_cfs_rq_h_load()
9868 cfs_rq->last_h_load_update = now; in update_cfs_rq_h_load()
9877 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, in task_h_load()
9883 struct cfs_rq *cfs_rq = &rq->cfs; in __update_blocked_fair()
9895 return p->se.avg.load_avg; in task_h_load()
9921 * sg_lb_stats - stats of a sched_group required for load-balancing:
9944 * sd_lb_stats - stats of a sched_domain required for load-balancing:
10001 free = max - used; in scale_rt_capacity()
10009 struct sched_group *sdg = sd->groups; in update_cpu_capacity()
10014 cpu_rq(cpu)->cpu_capacity = capacity; in update_cpu_capacity()
10017 sdg->sgc->capacity = capacity; in update_cpu_capacity()
10018 sdg->sgc->min_capacity = capacity; in update_cpu_capacity()
10019 sdg->sgc->max_capacity = capacity; in update_cpu_capacity()
10024 struct sched_domain *child = sd->child; in update_group_capacity()
10025 struct sched_group *group, *sdg = sd->groups; in update_group_capacity()
10029 interval = msecs_to_jiffies(sd->balance_interval); in update_group_capacity()
10031 sdg->sgc->next_update = jiffies + interval; in update_group_capacity()
10042 if (child->flags & SD_OVERLAP) { in update_group_capacity()
10061 group = child->groups; in update_group_capacity()
10063 struct sched_group_capacity *sgc = group->sgc; in update_group_capacity()
10065 capacity += sgc->capacity; in update_group_capacity()
10066 min_capacity = min(sgc->min_capacity, min_capacity); in update_group_capacity()
10067 max_capacity = max(sgc->max_capacity, max_capacity); in update_group_capacity()
10068 group = group->next; in update_group_capacity()
10069 } while (group != child->groups); in update_group_capacity()
10072 sdg->sgc->capacity = capacity; in update_group_capacity()
10073 sdg->sgc->min_capacity = min_capacity; in update_group_capacity()
10074 sdg->sgc->max_capacity = max_capacity; in update_group_capacity()
10085 return ((rq->cpu_capacity * sd->imbalance_pct) < in check_cpu_capacity()
10092 return rq->misfit_task_load; in check_misfit_status()
10097 * groups is inadequate due to ->cpus_ptr constraints.
10106 * If we were to balance group-wise we'd place two tasks in the first group and
10126 return group->sgc->imbalance; in sg_imbalanced()
10144 if (sgs->sum_nr_running < sgs->group_weight) in group_has_capacity()
10147 if ((sgs->group_capacity * imbalance_pct) < in group_has_capacity()
10148 (sgs->group_runnable * 100)) in group_has_capacity()
10151 if ((sgs->group_capacity * 100) > in group_has_capacity()
10152 (sgs->group_util * imbalance_pct)) in group_has_capacity()
10169 if (sgs->sum_nr_running <= sgs->group_weight) in group_is_overloaded()
10172 if ((sgs->group_capacity * 100) < in group_is_overloaded()
10173 (sgs->group_util * imbalance_pct)) in group_is_overloaded()
10176 if ((sgs->group_capacity * imbalance_pct) < in group_is_overloaded()
10177 (sgs->group_runnable * 100)) in group_is_overloaded()
10194 if (sgs->group_asym_packing) in group_classify()
10197 if (sgs->group_smt_balance) in group_classify()
10200 if (sgs->group_misfit_task_load) in group_classify()
10210 * sched_use_asym_prio - Check whether asym_packing priority must be used
10222 if (!(sd->flags & SD_ASYM_PACKING)) in sched_use_asym_prio()
10228 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); in sched_use_asym_prio()
10242 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10244 * @sgs: Load-balancing statistics of the candidate busiest group
10260 if ((group->flags & SD_SHARE_CPUCAPACITY) && in sched_group_asym()
10261 (sgs->group_weight - sgs->idle_cpus != 1)) in sched_group_asym()
10264 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); in sched_group_asym()
10274 return (sg1->flags & SD_SHARE_CPUCAPACITY) != in smt_vs_nonsmt_groups()
10275 (sg2->flags & SD_SHARE_CPUCAPACITY); in smt_vs_nonsmt_groups()
10281 if (!env->idle) in smt_balance()
10290 if (group->flags & SD_SHARE_CPUCAPACITY && in smt_balance()
10291 sgs->sum_h_nr_running > 1) in smt_balance()
10305 if (!env->idle || !busiest->sum_nr_running) in sibling_imbalance()
10308 ncores_busiest = sds->busiest->cores; in sibling_imbalance()
10309 ncores_local = sds->local->cores; in sibling_imbalance()
10312 imbalance = busiest->sum_nr_running; in sibling_imbalance()
10313 lsub_positive(&imbalance, local->sum_nr_running); in sibling_imbalance()
10318 imbalance = ncores_local * busiest->sum_nr_running; in sibling_imbalance()
10319 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); in sibling_imbalance()
10325 if (imbalance <= 1 && local->sum_nr_running == 0 && in sibling_imbalance()
10326 busiest->sum_nr_running > 1) in sibling_imbalance()
10339 if (rq->cfs.h_nr_runnable != 1) in sched_reduced_capacity()
10346 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10348 * @sds: Load-balancing data with statistics of the local group.
10361 int i, nr_running, local_group, sd_flags = env->sd->flags; in update_sg_lb_stats()
10362 bool balancing_at_rd = !env->sd->parent; in update_sg_lb_stats()
10366 local_group = group == sds->local; in update_sg_lb_stats()
10368 for_each_cpu_and(i, sched_group_span(group), env->cpus) { in update_sg_lb_stats()
10372 sgs->group_load += load; in update_sg_lb_stats()
10373 sgs->group_util += cpu_util_cfs(i); in update_sg_lb_stats()
10374 sgs->group_runnable += cpu_runnable(rq); in update_sg_lb_stats()
10375 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; in update_sg_lb_stats()
10377 nr_running = rq->nr_running; in update_sg_lb_stats()
10378 sgs->sum_nr_running += nr_running; in update_sg_lb_stats()
10387 sgs->idle_cpus++; in update_sg_lb_stats()
10399 sgs->nr_numa_running += rq->nr_numa_running; in update_sg_lb_stats()
10400 sgs->nr_preferred_running += rq->nr_preferred_running; in update_sg_lb_stats()
10408 if (sgs->group_misfit_task_load < rq->misfit_task_load) { in update_sg_lb_stats()
10409 sgs->group_misfit_task_load = rq->misfit_task_load; in update_sg_lb_stats()
10412 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { in update_sg_lb_stats()
10414 if (sgs->group_misfit_task_load < load) in update_sg_lb_stats()
10415 sgs->group_misfit_task_load = load; in update_sg_lb_stats()
10419 sgs->group_capacity = group->sgc->capacity; in update_sg_lb_stats()
10421 sgs->group_weight = group->group_weight; in update_sg_lb_stats()
10424 if (!local_group && env->idle && sgs->sum_h_nr_running && in update_sg_lb_stats()
10426 sgs->group_asym_packing = 1; in update_sg_lb_stats()
10430 sgs->group_smt_balance = 1; in update_sg_lb_stats()
10432 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); in update_sg_lb_stats()
10435 if (sgs->group_type == group_overloaded) in update_sg_lb_stats()
10436 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / in update_sg_lb_stats()
10437 sgs->group_capacity; in update_sg_lb_stats()
10441 * update_sd_pick_busiest - return 1 on busiest group
10458 struct sg_lb_stats *busiest = &sds->busiest_stat; in update_sd_pick_busiest()
10461 if (!sgs->sum_h_nr_running) in update_sd_pick_busiest()
10470 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && in update_sd_pick_busiest()
10471 (sgs->group_type == group_misfit_task) && in update_sd_pick_busiest()
10472 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || in update_sd_pick_busiest()
10473 sds->local_stat.group_type != group_has_spare)) in update_sd_pick_busiest()
10476 if (sgs->group_type > busiest->group_type) in update_sd_pick_busiest()
10479 if (sgs->group_type < busiest->group_type) in update_sd_pick_busiest()
10487 switch (sgs->group_type) { in update_sd_pick_busiest()
10490 return sgs->avg_load > busiest->avg_load; in update_sd_pick_busiest()
10501 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); in update_sd_pick_busiest()
10508 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; in update_sd_pick_busiest()
10515 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) in update_sd_pick_busiest()
10533 if (sgs->avg_load < busiest->avg_load) in update_sd_pick_busiest()
10536 if (sgs->avg_load == busiest->avg_load) { in update_sd_pick_busiest()
10538 * SMT sched groups need more help than non-SMT groups. in update_sd_pick_busiest()
10541 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) in update_sd_pick_busiest()
10553 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { in update_sd_pick_busiest()
10554 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) in update_sd_pick_busiest()
10568 if (sgs->idle_cpus > busiest->idle_cpus) in update_sd_pick_busiest()
10570 else if ((sgs->idle_cpus == busiest->idle_cpus) && in update_sd_pick_busiest()
10571 (sgs->sum_nr_running <= busiest->sum_nr_running)) in update_sd_pick_busiest()
10579 * per-CPU capacity. Migrating tasks to less capable CPUs may harm in update_sd_pick_busiest()
10583 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && in update_sd_pick_busiest()
10584 (sgs->group_type <= group_fully_busy) && in update_sd_pick_busiest()
10585 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) in update_sd_pick_busiest()
10594 if (sgs->sum_h_nr_running > sgs->nr_numa_running) in fbq_classify_group()
10596 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) in fbq_classify_group()
10603 if (rq->nr_running > rq->nr_numa_running) in fbq_classify_rq()
10605 if (rq->nr_running > rq->nr_preferred_running) in fbq_classify_rq()
10625 * task_running_on_cpu - return 1 if @p is running on @cpu.
10631 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) in task_running_on_cpu()
10641 * idle_cpu_without - would a given CPU be idle without p ?
10651 if (rq->curr != rq->idle && rq->curr != p) in idle_cpu_without()
10655 * rq->nr_running can't be used but an updated version without the in idle_cpu_without()
10660 if (rq->ttwu_pending) in idle_cpu_without()
10667 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10683 if (sd->flags & SD_ASYM_CPUCAPACITY) in update_sg_wakeup_stats()
10684 sgs->group_misfit_task_load = 1; in update_sg_wakeup_stats()
10690 sgs->group_load += cpu_load_without(rq, p); in update_sg_wakeup_stats()
10691 sgs->group_util += cpu_util_without(i, p); in update_sg_wakeup_stats()
10692 sgs->group_runnable += cpu_runnable_without(rq, p); in update_sg_wakeup_stats()
10694 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; in update_sg_wakeup_stats()
10696 nr_running = rq->nr_running - local; in update_sg_wakeup_stats()
10697 sgs->sum_nr_running += nr_running; in update_sg_wakeup_stats()
10703 sgs->idle_cpus++; in update_sg_wakeup_stats()
10706 if (sd->flags & SD_ASYM_CPUCAPACITY && in update_sg_wakeup_stats()
10707 sgs->group_misfit_task_load && in update_sg_wakeup_stats()
10709 sgs->group_misfit_task_load = 0; in update_sg_wakeup_stats()
10713 sgs->group_capacity = group->sgc->capacity; in update_sg_wakeup_stats()
10715 sgs->group_weight = group->group_weight; in update_sg_wakeup_stats()
10717 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); in update_sg_wakeup_stats()
10723 if (sgs->group_type == group_fully_busy || in update_sg_wakeup_stats()
10724 sgs->group_type == group_overloaded) in update_sg_wakeup_stats()
10725 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / in update_sg_wakeup_stats()
10726 sgs->group_capacity; in update_sg_wakeup_stats()
10734 if (sgs->group_type < idlest_sgs->group_type) in update_pick_idlest()
10737 if (sgs->group_type > idlest_sgs->group_type) in update_pick_idlest()
10745 switch (sgs->group_type) { in update_pick_idlest()
10749 if (idlest_sgs->avg_load <= sgs->avg_load) in update_pick_idlest()
10761 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) in update_pick_idlest()
10767 if (idlest_sgs->idle_cpus > sgs->idle_cpus) in update_pick_idlest()
10771 if (idlest_sgs->idle_cpus == sgs->idle_cpus && in update_pick_idlest()
10772 idlest_sgs->group_util <= sgs->group_util) in update_pick_idlest()
10790 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; in sched_balance_find_dst_group()
10804 p->cpus_ptr)) in sched_balance_find_dst_group()
10828 } while (group = group->next, group != sd->groups); in sched_balance_find_dst_group()
10859 (sd->imbalance_pct-100) / 100; in sched_balance_find_dst_group()
10866 * cross-domain, add imbalance to the load on the remote node in sched_balance_find_dst_group()
10870 if ((sd->flags & SD_NUMA) && in sched_balance_find_dst_group()
10881 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) in sched_balance_find_dst_group()
10893 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) in sched_balance_find_dst_group()
10899 if (sd->flags & SD_NUMA) { in sched_balance_find_dst_group()
10900 int imb_numa_nr = sd->imb_numa_nr; in sched_balance_find_dst_group()
10907 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) in sched_balance_find_dst_group()
10911 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) in sched_balance_find_dst_group()
10923 if (p->nr_cpus_allowed != NR_CPUS) { in sched_balance_find_dst_group()
10926 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); in sched_balance_find_dst_group()
10927 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); in sched_balance_find_dst_group()
10930 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); in sched_balance_find_dst_group()
10967 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) in update_idle_cpu_scan()
10970 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); in update_idle_cpu_scan()
10971 if (env->sd->span_weight != llc_weight) in update_idle_cpu_scan()
10974 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); in update_idle_cpu_scan()
10984 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] in update_idle_cpu_scan()
11002 * y = SCHED_CAPACITY_SCALE - in update_idle_cpu_scan()
11011 pct = env->sd->imbalance_pct; in update_idle_cpu_scan()
11015 y = SCHED_CAPACITY_SCALE - tmp; in update_idle_cpu_scan()
11020 if ((int)y != sd_share->nr_idle_scan) in update_idle_cpu_scan()
11021 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); in update_idle_cpu_scan()
11025 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11032 struct sched_group *sg = env->sd->groups; in update_sd_lb_stats()
11033 struct sg_lb_stats *local = &sds->local_stat; in update_sd_lb_stats()
11042 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); in update_sd_lb_stats()
11044 sds->local = sg; in update_sd_lb_stats()
11047 if (env->idle != CPU_NEWLY_IDLE || in update_sd_lb_stats()
11048 time_after_eq(jiffies, sg->sgc->next_update)) in update_sd_lb_stats()
11049 update_group_capacity(env->sd, env->dst_cpu); in update_sd_lb_stats()
11055 sds->busiest = sg; in update_sd_lb_stats()
11056 sds->busiest_stat = *sgs; in update_sd_lb_stats()
11060 sds->total_load += sgs->group_load; in update_sd_lb_stats()
11061 sds->total_capacity += sgs->group_capacity; in update_sd_lb_stats()
11063 sum_util += sgs->group_util; in update_sd_lb_stats()
11064 sg = sg->next; in update_sd_lb_stats()
11065 } while (sg != env->sd->groups); in update_sd_lb_stats()
11072 if (sds->busiest) in update_sd_lb_stats()
11073 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); in update_sd_lb_stats()
11076 if (env->sd->flags & SD_NUMA) in update_sd_lb_stats()
11077 env->fbq_type = fbq_classify_group(&sds->busiest_stat); in update_sd_lb_stats()
11079 if (!env->sd->parent) { in update_sd_lb_stats()
11081 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); in update_sd_lb_stats()
11083 /* Update over-utilization (tipping point, U >= 0) indicator */ in update_sd_lb_stats()
11084 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); in update_sd_lb_stats()
11086 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); in update_sd_lb_stats()
11093 * calculate_imbalance - Calculate the amount of imbalance present within the
11102 local = &sds->local_stat; in calculate_imbalance()
11103 busiest = &sds->busiest_stat; in calculate_imbalance()
11105 if (busiest->group_type == group_misfit_task) { in calculate_imbalance()
11106 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { in calculate_imbalance()
11108 env->migration_type = migrate_misfit; in calculate_imbalance()
11109 env->imbalance = 1; in calculate_imbalance()
11115 env->migration_type = migrate_load; in calculate_imbalance()
11116 env->imbalance = busiest->group_misfit_task_load; in calculate_imbalance()
11121 if (busiest->group_type == group_asym_packing) { in calculate_imbalance()
11126 env->migration_type = migrate_task; in calculate_imbalance()
11127 env->imbalance = busiest->sum_h_nr_running; in calculate_imbalance()
11131 if (busiest->group_type == group_smt_balance) { in calculate_imbalance()
11133 env->migration_type = migrate_task; in calculate_imbalance()
11134 env->imbalance = 1; in calculate_imbalance()
11138 if (busiest->group_type == group_imbalanced) { in calculate_imbalance()
11140 * In the group_imb case we cannot rely on group-wide averages in calculate_imbalance()
11141 * to ensure CPU-load equilibrium, try to move any task to fix in calculate_imbalance()
11145 env->migration_type = migrate_task; in calculate_imbalance()
11146 env->imbalance = 1; in calculate_imbalance()
11154 if (local->group_type == group_has_spare) { in calculate_imbalance()
11155 if ((busiest->group_type > group_fully_busy) && in calculate_imbalance()
11156 !(env->sd->flags & SD_SHARE_LLC)) { in calculate_imbalance()
11165 env->migration_type = migrate_util; in calculate_imbalance()
11166 env->imbalance = max(local->group_capacity, local->group_util) - in calculate_imbalance()
11167 local->group_util; in calculate_imbalance()
11176 if (env->idle && env->imbalance == 0) { in calculate_imbalance()
11177 env->migration_type = migrate_task; in calculate_imbalance()
11178 env->imbalance = 1; in calculate_imbalance()
11184 if (busiest->group_weight == 1 || sds->prefer_sibling) { in calculate_imbalance()
11189 env->migration_type = migrate_task; in calculate_imbalance()
11190 env->imbalance = sibling_imbalance(env, sds, busiest, local); in calculate_imbalance()
11197 env->migration_type = migrate_task; in calculate_imbalance()
11198 env->imbalance = max_t(long, 0, in calculate_imbalance()
11199 (local->idle_cpus - busiest->idle_cpus)); in calculate_imbalance()
11204 if (env->sd->flags & SD_NUMA) { in calculate_imbalance()
11205 env->imbalance = adjust_numa_imbalance(env->imbalance, in calculate_imbalance()
11206 local->sum_nr_running + 1, in calculate_imbalance()
11207 env->sd->imb_numa_nr); in calculate_imbalance()
11212 env->imbalance >>= 1; in calculate_imbalance()
11221 if (local->group_type < group_overloaded) { in calculate_imbalance()
11227 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / in calculate_imbalance()
11228 local->group_capacity; in calculate_imbalance()
11234 if (local->avg_load >= busiest->avg_load) { in calculate_imbalance()
11235 env->imbalance = 0; in calculate_imbalance()
11239 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / in calculate_imbalance()
11240 sds->total_capacity; in calculate_imbalance()
11246 if (local->avg_load >= sds->avg_load) { in calculate_imbalance()
11247 env->imbalance = 0; in calculate_imbalance()
11261 env->migration_type = migrate_load; in calculate_imbalance()
11262 env->imbalance = min( in calculate_imbalance()
11263 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, in calculate_imbalance()
11264 (sds->avg_load - local->avg_load) * local->group_capacity in calculate_imbalance()
11291 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11298 * Return: - The busiest group if imbalance exists.
11320 if (busiest->group_type == group_misfit_task) in sched_balance_find_src_group()
11323 if (!is_rd_overutilized(env->dst_rq->rd) && in sched_balance_find_src_group()
11324 rcu_dereference(env->dst_rq->rd->pd)) in sched_balance_find_src_group()
11328 if (busiest->group_type == group_asym_packing) in sched_balance_find_src_group()
11336 if (busiest->group_type == group_imbalanced) in sched_balance_find_src_group()
11344 if (local->group_type > busiest->group_type) in sched_balance_find_src_group()
11351 if (local->group_type == group_overloaded) { in sched_balance_find_src_group()
11356 if (local->avg_load >= busiest->avg_load) in sched_balance_find_src_group()
11367 if (local->avg_load >= sds.avg_load) in sched_balance_find_src_group()
11374 if (100 * busiest->avg_load <= in sched_balance_find_src_group()
11375 env->sd->imbalance_pct * local->avg_load) in sched_balance_find_src_group()
11383 if (sds.prefer_sibling && local->group_type == group_has_spare && in sched_balance_find_src_group()
11387 if (busiest->group_type != group_overloaded) { in sched_balance_find_src_group()
11388 if (!env->idle) { in sched_balance_find_src_group()
11397 if (busiest->group_type == group_smt_balance && in sched_balance_find_src_group()
11403 if (busiest->group_weight > 1 && in sched_balance_find_src_group()
11404 local->idle_cpus <= (busiest->idle_cpus + 1)) { in sched_balance_find_src_group()
11417 if (busiest->sum_h_nr_running == 1) { in sched_balance_find_src_group()
11428 return env->imbalance ? sds.busiest : NULL; in sched_balance_find_src_group()
11431 env->imbalance = 0; in sched_balance_find_src_group()
11436 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11446 for_each_cpu_and(i, sched_group_span(group), env->cpus) { in sched_balance_find_src_rq()
11456 * - regular: there are !numa tasks in sched_balance_find_src_rq()
11457 * - remote: there are numa tasks that run on the 'wrong' node in sched_balance_find_src_rq()
11458 * - all: there is no distinction in sched_balance_find_src_rq()
11473 if (rt > env->fbq_type) in sched_balance_find_src_rq()
11476 nr_running = rq->cfs.h_nr_runnable; in sched_balance_find_src_rq()
11484 * eventually lead to active_balancing high->low capacity. in sched_balance_find_src_rq()
11485 * Higher per-CPU capacity is considered better than balancing in sched_balance_find_src_rq()
11488 if (env->sd->flags & SD_ASYM_CPUCAPACITY && in sched_balance_find_src_rq()
11489 !capacity_greater(capacity_of(env->dst_cpu), capacity) && in sched_balance_find_src_rq()
11500 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) in sched_balance_find_src_rq()
11503 switch (env->migration_type) { in sched_balance_find_src_rq()
11511 if (nr_running == 1 && load > env->imbalance && in sched_balance_find_src_rq()
11512 !check_cpu_capacity(rq, env->sd)) in sched_balance_find_src_rq()
11564 if (rq->misfit_task_load > busiest_load) { in sched_balance_find_src_rq()
11565 busiest_load = rq->misfit_task_load; in sched_balance_find_src_rq()
11596 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && in asym_active_balance()
11597 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || in asym_active_balance()
11598 !sched_use_asym_prio(env->sd, env->src_cpu)); in asym_active_balance()
11604 struct sched_domain *sd = env->sd; in imbalanced_active_balance()
11611 if ((env->migration_type == migrate_task) && in imbalanced_active_balance()
11612 (sd->nr_balance_failed > sd->cache_nice_tries+2)) in imbalanced_active_balance()
11620 struct sched_domain *sd = env->sd; in need_active_balance()
11634 if (env->idle && in need_active_balance()
11635 (env->src_rq->cfs.h_nr_runnable == 1)) { in need_active_balance()
11636 if ((check_cpu_capacity(env->src_rq, sd)) && in need_active_balance()
11637 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) in need_active_balance()
11641 if (env->migration_type == migrate_misfit) in need_active_balance()
11652 struct sched_group *sg = env->sd->groups; in should_we_balance()
11653 int cpu, idle_smt = -1; in should_we_balance()
11659 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) in should_we_balance()
11669 if (env->idle == CPU_NEWLY_IDLE) { in should_we_balance()
11670 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) in should_we_balance()
11677 for_each_cpu_and(cpu, swb_cpus, env->cpus) { in should_we_balance()
11686 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { in should_we_balance()
11687 if (idle_smt == -1) in should_we_balance()
11701 * Are we the first idle core in a non-SMT domain or higher, in should_we_balance()
11704 return cpu == env->dst_cpu; in should_we_balance()
11708 if (idle_smt != -1) in should_we_balance()
11709 return idle_smt == env->dst_cpu; in should_we_balance()
11712 return group_balance_cpu(sg) == env->dst_cpu; in should_we_balance()
11721 switch (env->migration_type) { in update_lb_imbalance_stat()
11723 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); in update_lb_imbalance_stat()
11726 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); in update_lb_imbalance_stat()
11729 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); in update_lb_imbalance_stat()
11732 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); in update_lb_imbalance_stat()
11746 struct sched_domain *sd_parent = sd->parent; in sched_balance_rq()
11755 .dst_grpmask = group_balance_mask(sd->groups), in sched_balance_rq()
11765 schedstat_inc(sd->lb_count[idle]); in sched_balance_rq()
11775 schedstat_inc(sd->lb_nobusyg[idle]); in sched_balance_rq()
11781 schedstat_inc(sd->lb_nobusyq[idle]); in sched_balance_rq()
11789 env.src_cpu = busiest->cpu; in sched_balance_rq()
11795 if (busiest->nr_running > 1) { in sched_balance_rq()
11798 * an imbalance but busiest->nr_running <= 1, the group is in sched_balance_rq()
11802 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); in sched_balance_rq()
11809 * cur_ld_moved - load moved in current iteration in sched_balance_rq()
11810 * ld_moved - cumulative load moved across iterations in sched_balance_rq()
11817 * unlock busiest->lock, and we are able to be sure in sched_balance_rq()
11846 * nohz-idle), we now have balance_cpu in a position to move in sched_balance_rq()
11857 /* Prevent to re-select dst_cpu via env's CPUs */ in sched_balance_rq()
11877 int *group_imbalance = &sd_parent->groups->sgc->imbalance; in sched_balance_rq()
11904 schedstat_inc(sd->lb_failed[idle]); in sched_balance_rq()
11916 sd->nr_balance_failed++; in sched_balance_rq()
11928 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { in sched_balance_rq()
11937 * ->active_balance synchronizes accesses to in sched_balance_rq()
11938 * ->active_balance_work. Once set, it's cleared in sched_balance_rq()
11941 if (!busiest->active_balance) { in sched_balance_rq()
11942 busiest->active_balance = 1; in sched_balance_rq()
11943 busiest->push_cpu = this_cpu; in sched_balance_rq()
11952 &busiest->active_balance_work); in sched_balance_rq()
11957 sd->nr_balance_failed = 0; in sched_balance_rq()
11962 sd->balance_interval = sd->min_interval; in sched_balance_rq()
11974 int *group_imbalance = &sd_parent->groups->sgc->imbalance; in sched_balance_rq()
11986 schedstat_inc(sd->lb_balanced[idle]); in sched_balance_rq()
11988 sd->nr_balance_failed = 0; in sched_balance_rq()
12009 sd->balance_interval < MAX_PINNED_INTERVAL) || in sched_balance_rq()
12010 sd->balance_interval < sd->max_interval) in sched_balance_rq()
12011 sd->balance_interval *= 2; in sched_balance_rq()
12019 unsigned long interval = sd->balance_interval; in get_sd_balance_interval()
12022 interval *= sd->busy_factor; in get_sd_balance_interval()
12033 interval -= 1; in get_sd_balance_interval()
12047 next = sd->last_balance + interval; in update_next_balance()
12063 int target_cpu = busiest_rq->push_cpu; in active_load_balance_cpu_stop()
12071 * Between queueing the stop-work and running it is a hole in which in active_load_balance_cpu_stop()
12080 !busiest_rq->active_balance)) in active_load_balance_cpu_stop()
12084 if (busiest_rq->nr_running <= 1) in active_load_balance_cpu_stop()
12090 * Bjorn Helgaas on a 128-CPU setup. in active_load_balance_cpu_stop()
12106 .src_cpu = busiest_rq->cpu, in active_load_balance_cpu_stop()
12112 schedstat_inc(sd->alb_count); in active_load_balance_cpu_stop()
12117 schedstat_inc(sd->alb_pushed); in active_load_balance_cpu_stop()
12119 sd->nr_balance_failed = 0; in active_load_balance_cpu_stop()
12121 schedstat_inc(sd->alb_failed); in active_load_balance_cpu_stop()
12126 busiest_rq->active_balance = 0; in active_load_balance_cpu_stop()
12138 * This flag serializes load-balancing passes over large domains
12139 * (above the NODE topology level) - only one load-balancing instance
12143 * - Note that load-balancing passes triggered while another one
12144 * is executing are skipped and not re-tried.
12146 * - Also note that this does not serialize rebalance_domains()
12147 * execution, as non-SD_SERIALIZE domains will still be
12148 * load-balanced in parallel.
12154 * This trades load-balance latency on larger machines for less cross talk.
12163 if (cost > sd->max_newidle_lb_cost) { in update_newidle_cost()
12168 sd->max_newidle_lb_cost = cost; in update_newidle_cost()
12169 sd->last_decay_max_lb_cost = jiffies; in update_newidle_cost()
12170 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { in update_newidle_cost()
12176 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; in update_newidle_cost()
12177 sd->last_decay_max_lb_cost = jiffies; in update_newidle_cost()
12194 int cpu = rq->cpu; in sched_balance_domains()
12211 max_cost += sd->max_newidle_lb_cost; in sched_balance_domains()
12226 need_serialize = sd->flags & SD_SERIALIZE; in sched_balance_domains()
12232 if (time_after_eq(jiffies, sd->last_balance + interval)) { in sched_balance_domains()
12236 * env->dst_cpu, so we can't know our idle in sched_balance_domains()
12242 sd->last_balance = jiffies; in sched_balance_domains()
12248 if (time_after(next_balance, sd->last_balance + interval)) { in sched_balance_domains()
12249 next_balance = sd->last_balance + interval; in sched_balance_domains()
12255 * Ensure the rq-wide value also decays but keep it at a in sched_balance_domains()
12256 * reasonable floor to avoid funnies with rq->avg_idle. in sched_balance_domains()
12258 rq->max_idle_balance_cost = in sched_balance_domains()
12269 rq->next_balance = next_balance; in sched_balance_domains()
12275 return unlikely(!rcu_dereference_sched(rq->sd)); in on_null_domain()
12282 * - When one of the busy CPUs notices that there may be an idle rebalancing
12302 return -1; in find_new_ilb()
12306 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12347 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); in kick_ilb()
12359 int nr_busy, i, cpu = rq->cpu; in nohz_balancer_kick()
12362 if (unlikely(rq->idle_balance)) in nohz_balancer_kick()
12385 if (rq->nr_running >= 2) { in nohz_balancer_kick()
12392 sd = rcu_dereference(rq->sd); in nohz_balancer_kick()
12398 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { in nohz_balancer_kick()
12447 * increase the overall cache utilization), we need a less-loaded LLC in nohz_balancer_kick()
12451 * the others are - so just get a NOHZ balance going if it looks in nohz_balancer_kick()
12454 nr_busy = atomic_read(&sds->nr_busy_cpus); in nohz_balancer_kick()
12477 if (!sd || !sd->nohz_idle) in set_cpu_sd_state_busy()
12479 sd->nohz_idle = 0; in set_cpu_sd_state_busy()
12481 atomic_inc(&sd->shared->nr_busy_cpus); in set_cpu_sd_state_busy()
12490 if (likely(!rq->nohz_tick_stopped)) in nohz_balance_exit_idle()
12493 rq->nohz_tick_stopped = 0; in nohz_balance_exit_idle()
12494 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); in nohz_balance_exit_idle()
12497 set_cpu_sd_state_busy(rq->cpu); in nohz_balance_exit_idle()
12507 if (!sd || sd->nohz_idle) in set_cpu_sd_state_idle()
12509 sd->nohz_idle = 1; in set_cpu_sd_state_idle()
12511 atomic_dec(&sd->shared->nr_busy_cpus); in set_cpu_sd_state_idle()
12531 * Can be set safely without rq->lock held in nohz_balance_enter_idle()
12533 * rq->lock is held during the check and the clear in nohz_balance_enter_idle()
12535 rq->has_blocked_load = 1; in nohz_balance_enter_idle()
12543 if (rq->nohz_tick_stopped) in nohz_balance_enter_idle()
12550 rq->nohz_tick_stopped = 1; in nohz_balance_enter_idle()
12575 unsigned int cpu = rq->cpu; in update_nohz_stats()
12577 if (!rq->has_blocked_load) in update_nohz_stats()
12583 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) in update_nohz_stats()
12588 return rq->has_blocked_load; in update_nohz_stats()
12603 int this_cpu = this_rq->cpu; in _nohz_idle_balance()
12660 if (time_after_eq(jiffies, rq->next_balance)) { in _nohz_idle_balance()
12671 if (time_after(next_balance, rq->next_balance)) { in _nohz_idle_balance()
12672 next_balance = rq->next_balance; in _nohz_idle_balance()
12701 unsigned int flags = this_rq->nohz_idle_balance; in nohz_idle_balance()
12706 this_rq->nohz_idle_balance = 0; in nohz_idle_balance()
12747 int this_cpu = this_rq->cpu; in nohz_newidle_balance()
12750 if (this_rq->avg_idle < sysctl_sched_migration_cost) in nohz_newidle_balance()
12781 * < 0 - we released the lock and there are !fair tasks present
12782 * 0 - failed, no new tasks
12783 * > 0 - success, new (fair) tasks present
12788 int this_cpu = this_rq->cpu; in sched_balance_newidle()
12800 if (this_rq->ttwu_pending) in sched_balance_newidle()
12808 this_rq->idle_stamp = rq_clock(this_rq); in sched_balance_newidle()
12818 * for load-balance and preemption/IRQs are still disabled avoiding in sched_balance_newidle()
12820 * re-start the picking loop. in sched_balance_newidle()
12825 sd = rcu_dereference_check_sched_domain(this_rq->sd); in sched_balance_newidle()
12827 if (!get_rd_overloaded(this_rq->rd) || in sched_balance_newidle()
12828 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { in sched_balance_newidle()
12849 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) in sched_balance_newidle()
12852 if (sd->flags & SD_BALANCE_NEWIDLE) { in sched_balance_newidle()
12859 domain_cost = t1 - t0; in sched_balance_newidle()
12877 if (curr_cost > this_rq->max_idle_balance_cost) in sched_balance_newidle()
12878 this_rq->max_idle_balance_cost = curr_cost; in sched_balance_newidle()
12885 if (this_rq->cfs.h_nr_queued && !pulled_task) in sched_balance_newidle()
12889 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) in sched_balance_newidle()
12890 pulled_task = -1; in sched_balance_newidle()
12894 if (time_after(this_rq->next_balance, next_balance)) in sched_balance_newidle()
12895 this_rq->next_balance = next_balance; in sched_balance_newidle()
12898 this_rq->idle_stamp = 0; in sched_balance_newidle()
12910 * - directly from the local sched_tick() for periodic load balancing
12912 * - indirectly from a remote sched_tick() for NOHZ idle balancing
12913 * through the SMP cross-call nohz_csd_func()
12918 enum cpu_idle_type idle = this_rq->idle_balance; in sched_balance_softirq()
12931 sched_balance_update_blocked_averages(this_rq->cpu); in sched_balance_softirq()
12947 if (time_after_eq(jiffies, rq->next_balance)) in sched_balance_trigger()
12977 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; in __entity_slice_used()
12978 u64 slice = se->slice; in __entity_slice_used()
13000 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check in task_tick_core()
13003 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && in task_tick_core()
13004 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) in task_tick_core()
13009 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13018 if (cfs_rq->forceidle_seq == fi_seq) in se_fi_update()
13020 cfs_rq->forceidle_seq = fi_seq; in se_fi_update()
13023 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; in se_fi_update()
13029 struct sched_entity *se = &p->se; in task_vruntime_update()
13031 if (p->sched_class != &fair_sched_class) in task_vruntime_update()
13034 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); in task_vruntime_update()
13041 const struct sched_entity *sea = &a->se; in cfs_prio_less()
13042 const struct sched_entity *seb = &b->se; in cfs_prio_less()
13047 SCHED_WARN_ON(task_rq(b)->core != rq->core); in cfs_prio_less()
13054 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { in cfs_prio_less()
13055 int sea_depth = sea->depth; in cfs_prio_less()
13056 int seb_depth = seb->depth; in cfs_prio_less()
13064 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); in cfs_prio_less()
13065 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); in cfs_prio_less()
13067 cfs_rqa = sea->cfs_rq; in cfs_prio_less()
13068 cfs_rqb = seb->cfs_rq; in cfs_prio_less()
13070 cfs_rqa = &task_rq(a)->cfs; in cfs_prio_less()
13071 cfs_rqb = &task_rq(b)->cfs; in cfs_prio_less()
13079 delta = (s64)(sea->vruntime - seb->vruntime) + in cfs_prio_less()
13080 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); in cfs_prio_less()
13090 cfs_rq = task_group(p)->cfs_rq[cpu]; in task_is_throttled_fair()
13092 cfs_rq = &cpu_rq(cpu)->cfs; in task_is_throttled_fair()
13111 struct sched_entity *se = &curr->se; in task_tick_fair()
13129 * - child not yet on the tasklist
13130 * - preemption disabled
13147 if (rq->cfs.nr_queued == 1) in prio_changed_fair()
13156 if (p->prio > oldprio) in prio_changed_fair()
13178 se = se->parent; in propagate_entity_cfs_rq()
13203 * - A forked task which hasn't been woken up by wake_up_new_task(). in detach_entity_cfs_rq()
13204 * - A task which has been woken up by try_to_wake_up() but is in detach_entity_cfs_rq()
13207 if (!se->avg.last_update_time) in detach_entity_cfs_rq()
13231 struct sched_entity *se = &p->se; in detach_task_cfs_rq()
13238 struct sched_entity *se = &p->se; in attach_task_cfs_rq()
13250 SCHED_WARN_ON(p->se.sched_delayed); in switched_to_fair()
13271 struct sched_entity *se = &p->se; in __set_next_task_fair()
13279 list_move(&se->group_node, &rq->cfs_tasks); in __set_next_task_fair()
13285 SCHED_WARN_ON(se->sched_delayed); in __set_next_task_fair()
13297 * This routine is mostly called to set cfs_rq->curr field when a task
13302 struct sched_entity *se = &p->se; in set_next_task_fair()
13317 cfs_rq->tasks_timeline = RB_ROOT_CACHED; in init_cfs_rq()
13318 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); in init_cfs_rq()
13320 raw_spin_lock_init(&cfs_rq->removed.lock); in init_cfs_rq()
13331 if (READ_ONCE(p->__state) == TASK_NEW) in task_change_group_fair()
13337 /* Tell se's cfs_rq has been changed -- migrated */ in task_change_group_fair()
13338 p->se.avg.last_update_time = 0; in task_change_group_fair()
13349 if (tg->cfs_rq) in free_fair_sched_group()
13350 kfree(tg->cfs_rq[i]); in free_fair_sched_group()
13351 if (tg->se) in free_fair_sched_group()
13352 kfree(tg->se[i]); in free_fair_sched_group()
13355 kfree(tg->cfs_rq); in free_fair_sched_group()
13356 kfree(tg->se); in free_fair_sched_group()
13365 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); in alloc_fair_sched_group()
13366 if (!tg->cfs_rq) in alloc_fair_sched_group()
13368 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); in alloc_fair_sched_group()
13369 if (!tg->se) in alloc_fair_sched_group()
13372 tg->shares = NICE_0_LOAD; in alloc_fair_sched_group()
13388 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); in alloc_fair_sched_group()
13409 se = tg->se[i]; in online_fair_sched_group()
13425 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; in unregister_fair_sched_group()
13426 struct sched_entity *se = tg->se[cpu]; in unregister_fair_sched_group()
13430 if (se->sched_delayed) { in unregister_fair_sched_group()
13432 if (se->sched_delayed) { in unregister_fair_sched_group()
13443 * check on_list without danger of it being re-added. in unregister_fair_sched_group()
13445 if (cfs_rq->on_list) { in unregister_fair_sched_group()
13458 cfs_rq->tg = tg; in init_tg_cfs_entry()
13459 cfs_rq->rq = rq; in init_tg_cfs_entry()
13462 tg->cfs_rq[cpu] = cfs_rq; in init_tg_cfs_entry()
13463 tg->se[cpu] = se; in init_tg_cfs_entry()
13470 se->cfs_rq = &rq->cfs; in init_tg_cfs_entry()
13471 se->depth = 0; in init_tg_cfs_entry()
13473 se->cfs_rq = parent->my_q; in init_tg_cfs_entry()
13474 se->depth = parent->depth + 1; in init_tg_cfs_entry()
13477 se->my_q = cfs_rq; in init_tg_cfs_entry()
13479 update_load_set(&se->load, NICE_0_LOAD); in init_tg_cfs_entry()
13480 se->parent = parent; in init_tg_cfs_entry()
13494 if (!tg->se[0]) in __sched_group_set_shares()
13495 return -EINVAL; in __sched_group_set_shares()
13499 if (tg->shares == shares) in __sched_group_set_shares()
13502 tg->shares = shares; in __sched_group_set_shares()
13505 struct sched_entity *se = tg->se[i]; in __sched_group_set_shares()
13527 ret = -EINVAL; in sched_group_set_shares()
13540 return -EINVAL; in sched_group_set_idle()
13543 return -EINVAL; in sched_group_set_idle()
13547 if (tg->idle == idle) { in sched_group_set_idle()
13552 tg->idle = idle; in sched_group_set_idle()
13556 struct sched_entity *se = tg->se[i]; in sched_group_set_idle()
13557 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; in sched_group_set_idle()
13564 grp_cfs_rq->idle = idle; in sched_group_set_idle()
13568 idle_task_delta = grp_cfs_rq->h_nr_queued - in sched_group_set_idle()
13569 grp_cfs_rq->h_nr_idle; in sched_group_set_idle()
13571 idle_task_delta *= -1; in sched_group_set_idle()
13576 if (!se->on_rq) in sched_group_set_idle()
13579 cfs_rq->h_nr_idle += idle_task_delta; in sched_group_set_idle()
13605 struct sched_entity *se = &task->se; in get_rr_interval_fair()
13612 if (rq->cfs.load.weight) in get_rr_interval_fair()
13613 rr_interval = NS_TO_JIFFIES(se->slice); in get_rr_interval_fair()
13691 ng = rcu_dereference(p->numa_group); in show_numa_stats()
13693 if (p->numa_faults) { in show_numa_stats()
13694 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; in show_numa_stats()
13695 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; in show_numa_stats()
13698 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], in show_numa_stats()
13699 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; in show_numa_stats()
13720 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); in init_sched_fair_class()
13721 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); in init_sched_fair_class()