Lines Matching full:j

372  * return array index next to j when does in-order traverse
375 static unsigned int inorder_next(unsigned int j, unsigned int size) in inorder_next() argument
377 if (j * 2 + 1 < size) { in inorder_next()
378 j = j * 2 + 1; in inorder_next()
380 while (j * 2 < size) in inorder_next()
381 j *= 2; in inorder_next()
383 j >>= ffz(j) + 1; in inorder_next()
385 return j; in inorder_next()
389 * return array index previous to j when does in-order traverse
392 static unsigned int inorder_prev(unsigned int j, unsigned int size) in inorder_prev() argument
394 if (j * 2 < size) { in inorder_prev()
395 j = j * 2; in inorder_prev()
397 while (j * 2 + 1 < size) in inorder_prev()
398 j = j * 2 + 1; in inorder_prev()
400 j >>= ffs(j); in inorder_prev()
402 return j; in inorder_prev()
413 * Also tested for every j, size up to size somewhere around 6 million.
419 static unsigned int __to_inorder(unsigned int j, in __to_inorder() argument
423 unsigned int b = fls(j); in __to_inorder()
426 j ^= 1U << (b - 1); in __to_inorder()
427 j <<= 1; in __to_inorder()
428 j |= 1; in __to_inorder()
429 j <<= shift; in __to_inorder()
431 if (j > extra) in __to_inorder()
432 j -= (j - extra) >> 1; in __to_inorder()
434 return j; in __to_inorder()
438 * Return the cacheline index in bset_tree->data, where j is index
441 static unsigned int to_inorder(unsigned int j, struct bset_tree *t) in to_inorder() argument
443 return __to_inorder(j, t->size, t->extra); in to_inorder()
446 static unsigned int __inorder_to_tree(unsigned int j, in __inorder_to_tree() argument
452 if (j > extra) in __inorder_to_tree()
453 j += j - extra; in __inorder_to_tree()
455 shift = ffs(j); in __inorder_to_tree()
457 j >>= shift; in __inorder_to_tree()
458 j |= roundup_pow_of_two(size) >> shift; in __inorder_to_tree()
460 return j; in __inorder_to_tree()
465 * tree, j is the cacheline index of t->data.
467 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t) in inorder_to_tree() argument
469 return __inorder_to_tree(j, t->size, t->extra); in inorder_to_tree()
483 unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
490 if (__inorder_to_tree(i, size, extra) != j)
491 panic("size %10u j %10u i %10u", size, j, i);
493 if (__to_inorder(j, size, extra) != i)
494 panic("size %10u j %10u i %10u", size, j, i);
496 if (j == rounddown_pow_of_two(size) - 1)
499 BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
501 j = inorder_next(j, size);
525 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
526 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
548 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j) in tree_to_bkey() argument
550 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); in tree_to_bkey()
553 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j) in tree_to_prev_bkey() argument
555 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); in tree_to_prev_bkey()
596 static void make_bfloat(struct bset_tree *t, unsigned int j) in make_bfloat() argument
598 struct bkey_float *f = &t->tree[j]; in make_bfloat()
599 struct bkey *m = tree_to_bkey(t, j); in make_bfloat()
600 struct bkey *p = tree_to_prev_bkey(t, j); in make_bfloat()
602 struct bkey *l = is_power_of_2(j) in make_bfloat()
604 : tree_to_prev_bkey(t, j >> ffs(j)); in make_bfloat()
606 struct bkey *r = is_power_of_2(j + 1) in make_bfloat()
608 : tree_to_bkey(t, j >> (ffz(j) + 1)); in make_bfloat()
644 unsigned int j = roundup(t[-1].size, in bset_alloc_tree() local
647 t->tree = t[-1].tree + j; in bset_alloc_tree()
648 t->prev = t[-1].prev + j; in bset_alloc_tree()
698 unsigned int j, cacheline = 1; in bch_bset_build_written_tree() local
716 for (j = inorder_next(0, t->size); in bch_bset_build_written_tree()
717 j; in bch_bset_build_written_tree()
718 j = inorder_next(j, t->size)) { in bch_bset_build_written_tree()
724 t->prev[j] = bkey_u64s(prev); in bch_bset_build_written_tree()
725 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); in bch_bset_build_written_tree()
734 for (j = inorder_next(0, t->size); in bch_bset_build_written_tree()
735 j; in bch_bset_build_written_tree()
736 j = inorder_next(j, t->size)) in bch_bset_build_written_tree()
737 make_bfloat(t, j); in bch_bset_build_written_tree()
745 unsigned int inorder, j = 1; in bch_bset_fix_invalidated_key() local
766 j = inorder_to_tree(inorder, t); in bch_bset_fix_invalidated_key()
768 if (j && in bch_bset_fix_invalidated_key()
769 j < t->size && in bch_bset_fix_invalidated_key()
770 k == tree_to_bkey(t, j)) in bch_bset_fix_invalidated_key()
772 make_bfloat(t, j); in bch_bset_fix_invalidated_key()
773 j = j * 2; in bch_bset_fix_invalidated_key()
774 } while (j < t->size); in bch_bset_fix_invalidated_key()
776 j = inorder_to_tree(inorder + 1, t); in bch_bset_fix_invalidated_key()
778 if (j && in bch_bset_fix_invalidated_key()
779 j < t->size && in bch_bset_fix_invalidated_key()
780 k == tree_to_prev_bkey(t, j)) in bch_bset_fix_invalidated_key()
782 make_bfloat(t, j); in bch_bset_fix_invalidated_key()
783 j = j * 2 + 1; in bch_bset_fix_invalidated_key()
784 } while (j < t->size); in bch_bset_fix_invalidated_key()
792 unsigned int j = bkey_to_cacheline(t, k); in bch_bset_fix_lookup_table() local
803 while (j < t->size && in bch_bset_fix_lookup_table()
804 table_to_bkey(t, j) <= k) in bch_bset_fix_lookup_table()
805 j++; in bch_bset_fix_lookup_table()
811 for (; j < t->size; j++) { in bch_bset_fix_lookup_table()
812 t->prev[j] += shift; in bch_bset_fix_lookup_table()
814 if (t->prev[j] > 7) { in bch_bset_fix_lookup_table()
815 k = table_to_bkey(t, j - 1); in bch_bset_fix_lookup_table()
817 while (k < cacheline_to_bkey(t, j, 0)) in bch_bset_fix_lookup_table()
820 t->prev[j] = bkey_to_cacheline_offset(t, j, k); in bch_bset_fix_lookup_table()
970 unsigned int inorder, j, n = 1; in bset_search_tree() local
978 j = n; in bset_search_tree()
979 f = &t->tree[j]; in bset_search_tree()
983 n = j * 2; in bset_search_tree()
985 n = j * 2 + 1; in bset_search_tree()
987 if (bkey_cmp(tree_to_bkey(t, j), search) > 0) in bset_search_tree()
988 n = j * 2; in bset_search_tree()
990 n = j * 2 + 1; in bset_search_tree()
994 inorder = to_inorder(j, t); in bset_search_tree()
1004 f = &t->tree[inorder_next(j, t->size)]; in bset_search_tree()
1012 f = &t->tree[inorder_prev(j, t->size)]; in bset_search_tree()
1400 size_t j; in bch_btree_keys_stats() local
1408 for (j = 1; j < t->size; j++) in bch_btree_keys_stats()
1409 if (t->tree[j].exponent == 127) in bch_btree_keys_stats()