Lines Matching +full:abs +full:- +full:fuzz
1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
72 if (fuzz) {
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
76 if (value > old_val - fuzz && value < old_val + fuzz)
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
99 del_timer(&dev->timer);
108 * This function is called with dev->event_lock held and interrupts disabled.
116 lockdep_assert_held(&dev->event_lock);
119 handle = rcu_dereference(dev->grab);
121 count = handle->handle_events(handle, vals, count);
125 list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
126 if (handle->open) {
127 count = handle->handle_events(handle, vals,
136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
138 if (v->type == EV_KEY && v->value != 2) {
139 if (v->value)
140 input_start_autorepeat(dev, v->code);
158 struct input_mt *mt = dev->mt;
168 if (mt && *pval >= 0 && *pval < mt->num_slots)
169 mt->slot = *pval;
177 pold = &dev->absinfo[code].value;
179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
183 * Bypass filtering for multi-touch events when
191 dev->absinfo[code].fuzz);
200 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
213 /* filter-out events from inhibited devices */
214 if (dev->inhibited)
235 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
237 /* auto-repeat bypasses state updates */
243 if (!!test_bit(code, dev->key) != !!value) {
245 __change_bit(code, dev->key);
252 if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 !!test_bit(code, dev->sw) != !!value) {
255 __change_bit(code, dev->sw);
261 if (is_event_supported(code, dev->absbit, ABS_MAX))
267 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
273 if (is_event_supported(code, dev->mscbit, MSC_MAX))
279 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 !!test_bit(code, dev->led) != !!value) {
282 __change_bit(code, dev->led);
288 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
290 if (!!test_bit(code, dev->snd) != !!value)
291 __change_bit(code, dev->snd);
297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 dev->rep[code] = value;
320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 dev->event(dev, type, code, value);
327 v = &dev->vals[dev->num_vals++];
328 v->type = EV_ABS;
329 v->code = ABS_MT_SLOT;
330 v->value = dev->mt->slot;
333 v = &dev->vals[dev->num_vals++];
334 v->type = type;
335 v->code = code;
336 v->value = value;
340 if (dev->num_vals >= 2)
341 input_pass_values(dev, dev->vals, dev->num_vals);
342 dev->num_vals = 0;
349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 } else if (dev->num_vals >= dev->max_vals - 2) {
351 dev->vals[dev->num_vals++] = input_value_sync;
352 input_pass_values(dev, dev->vals, dev->num_vals);
353 dev->num_vals = 0;
362 lockdep_assert_held(&dev->event_lock);
374 * input_event() - report new input event
393 if (is_event_supported(type, dev->evbit, EV_MAX)) {
394 guard(spinlock_irqsave)(&dev->event_lock);
401 * input_inject_event() - send input event from input handler
414 struct input_dev *dev = handle->dev;
417 if (is_event_supported(type, dev->evbit, EV_MAX)) {
418 guard(spinlock_irqsave)(&dev->event_lock);
421 grab = rcu_dereference(dev->grab);
430 * input_alloc_absinfo - allocates array of input_absinfo structs
438 if (dev->absinfo)
441 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
442 if (!dev->absinfo) {
443 dev_err(dev->dev.parent ?: &dev->dev,
448 * device with ABS bits but without absinfo.
455 int min, int max, int fuzz, int flat)
459 __set_bit(EV_ABS, dev->evbit);
460 __set_bit(axis, dev->absbit);
463 if (!dev->absinfo)
466 absinfo = &dev->absinfo[axis];
467 absinfo->minimum = min;
468 absinfo->maximum = max;
469 absinfo->fuzz = fuzz;
470 absinfo->flat = flat;
475 * input_copy_abs - Copy absinfo from one input_dev to another
476 * @dst: Destination input device to copy the abs settings to
478 * @src: Source input device to copy the abs settings from
483 * This is useful to e.g. setup a pen/stylus input-device for combined
491 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
492 test_bit(src_axis, src->absbit))))
500 if (!src->absinfo)
504 if (!dst->absinfo)
507 dst->absinfo[dst_axis] = src->absinfo[src_axis];
512 * input_grab_device - grabs device for exclusive use
521 struct input_dev *dev = handle->dev;
523 scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
524 if (dev->grab)
525 return -EBUSY;
527 rcu_assign_pointer(dev->grab, handle);
536 struct input_dev *dev = handle->dev;
539 grabber = rcu_dereference_protected(dev->grab,
540 lockdep_is_held(&dev->mutex));
542 rcu_assign_pointer(dev->grab, NULL);
546 list_for_each_entry(handle, &dev->h_list, d_node)
547 if (handle->open && handle->handler->start)
548 handle->handler->start(handle);
553 * input_release_device - release previously grabbed device
563 struct input_dev *dev = handle->dev;
565 guard(mutex)(&dev->mutex);
571 * input_open_device - open input device
579 struct input_dev *dev = handle->dev;
582 scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
583 if (dev->going_away)
584 return -ENODEV;
586 handle->open++;
588 if (handle->handler->passive_observer)
591 if (dev->users++ || dev->inhibited) {
599 if (dev->open) {
600 error = dev->open(dev);
602 dev->users--;
603 handle->open--;
613 if (dev->poller)
614 input_dev_poller_start(dev->poller);
623 struct input_dev *dev = handle->dev;
625 scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
626 if (dev->flush)
627 return dev->flush(dev, file);
635 * input_close_device - close input device
643 struct input_dev *dev = handle->dev;
645 guard(mutex)(&dev->mutex);
649 if (!handle->handler->passive_observer) {
650 if (!--dev->users && !dev->inhibited) {
651 if (dev->poller)
652 input_dev_poller_stop(dev->poller);
653 if (dev->close)
654 dev->close(dev);
658 if (!--handle->open) {
671 * The function must be called with dev->event_lock held.
678 lockdep_assert_held(&dev->event_lock);
680 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
681 for_each_set_bit(code, dev->key, KEY_CNT) {
698 * Mark device as going away. Note that we take dev->mutex here
699 * not to protect access to dev->going_away but rather to ensure
702 scoped_guard(mutex, &dev->mutex)
703 dev->going_away = true;
705 guard(spinlock_irq)(&dev->event_lock);
716 list_for_each_entry(handle, &dev->h_list, d_node)
717 handle->open = 0;
721 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
733 switch (ke->len) {
735 *scancode = *((u8 *)ke->scancode);
739 *scancode = *((u16 *)ke->scancode);
743 *scancode = *((u32 *)ke->scancode);
747 return -EINVAL;
762 switch (dev->keycodesize) {
764 return ((u8 *)dev->keycode)[index];
767 return ((u16 *)dev->keycode)[index];
770 return ((u32 *)dev->keycode)[index];
780 if (!dev->keycodesize)
781 return -EINVAL;
783 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
784 index = ke->index;
791 if (index >= dev->keycodemax)
792 return -EINVAL;
794 ke->keycode = input_fetch_keycode(dev, index);
795 ke->index = index;
796 ke->len = sizeof(index);
797 memcpy(ke->scancode, &index, sizeof(index));
810 if (!dev->keycodesize)
811 return -EINVAL;
813 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
814 index = ke->index;
821 if (index >= dev->keycodemax)
822 return -EINVAL;
824 if (dev->keycodesize < sizeof(ke->keycode) &&
825 (ke->keycode >> (dev->keycodesize * 8)))
826 return -EINVAL;
828 switch (dev->keycodesize) {
830 u8 *k = (u8 *)dev->keycode;
832 k[index] = ke->keycode;
836 u16 *k = (u16 *)dev->keycode;
838 k[index] = ke->keycode;
842 u32 *k = (u32 *)dev->keycode;
844 k[index] = ke->keycode;
850 __clear_bit(*old_keycode, dev->keybit);
851 for (i = 0; i < dev->keycodemax; i++) {
853 __set_bit(*old_keycode, dev->keybit);
860 __set_bit(ke->keycode, dev->keybit);
865 * input_get_keycode - retrieve keycode currently mapped to a given scancode
874 guard(spinlock_irqsave)(&dev->event_lock);
876 return dev->getkeycode(dev, ke);
881 * input_set_keycode - attribute a keycode to a given scancode
894 if (ke->keycode > KEY_MAX)
895 return -EINVAL;
897 guard(spinlock_irqsave)(&dev->event_lock);
899 error = dev->setkeycode(dev, ke, &old_keycode);
904 __clear_bit(KEY_RESERVED, dev->keybit);
911 dev_warn(dev->dev.parent ?: &dev->dev,
914 } else if (test_bit(EV_KEY, dev->evbit) &&
915 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
916 __test_and_clear_bit(old_keycode, dev->key)) {
936 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
937 if (id->bustype != dev->id.bustype)
940 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
941 if (id->vendor != dev->id.vendor)
944 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
945 if (id->product != dev->id.product)
948 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
949 if (id->version != dev->id.version)
952 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
953 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
954 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
955 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
956 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
957 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
958 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
959 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
960 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
961 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
974 for (id = handler->id_table; id->flags || id->driver_info; id++) {
976 (!handler->match || handler->match(handler, dev))) {
991 return -ENODEV;
993 error = handler->connect(handler, dev, id);
994 if (error && error != -ENODEV)
996 handler->name, kobject_name(&dev->dev.kobj), error);
1015 len += snprintf(buf + len, max(buf_size - len, 0),
1056 struct seq_file *seq = file->private_data;
1057 struct input_seq_state *state = seq->private;
1060 if (state->input_devices_state != input_devices_state) {
1061 state->input_devices_state = input_devices_state;
1070 struct input_seq_state *state = seq->private;
1075 state->mutex_acquired = false;
1079 state->mutex_acquired = true;
1091 struct input_seq_state *state = seq->private;
1093 if (state->mutex_acquired)
1106 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1126 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1130 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1132 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1133 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1135 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1138 list_for_each_entry(handle, &dev->h_list, d_node)
1139 seq_printf(seq, "%s ", handle->name);
1142 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1144 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1145 if (test_bit(EV_KEY, dev->evbit))
1146 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1147 if (test_bit(EV_REL, dev->evbit))
1148 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1149 if (test_bit(EV_ABS, dev->evbit))
1150 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1151 if (test_bit(EV_MSC, dev->evbit))
1152 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1153 if (test_bit(EV_LED, dev->evbit))
1154 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1155 if (test_bit(EV_SND, dev->evbit))
1156 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1157 if (test_bit(EV_FF, dev->evbit))
1158 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1159 if (test_bit(EV_SW, dev->evbit))
1160 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1191 struct input_seq_state *state = seq->private;
1196 state->mutex_acquired = false;
1200 state->mutex_acquired = true;
1201 state->pos = *pos;
1208 struct input_seq_state *state = seq->private;
1210 state->pos = *pos + 1;
1217 struct input_seq_state *state = seq->private;
1219 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1220 if (handler->filter)
1222 if (handler->legacy_minors)
1223 seq_printf(seq, " Minor=%d", handler->minor);
1255 return -ENOMEM;
1271 return -ENOMEM;
1295 input_dev->name ? input_dev->name : ""); \
1312 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1322 "input:b%04Xv%04Xp%04Xe%04X-",
1323 id->id.bustype, id->id.vendor,
1324 id->id.product, id->id.version);
1326 len += input_print_modalias_bits(buf + len, size - len,
1327 'e', id->evbit, 0, EV_MAX);
1333 space = max(size - (len + 1), 0);
1335 klen = input_print_modalias_bits(buf + len, size - len,
1336 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1349 remainder = full_len - len;
1354 if (remainder <= space - 3) {
1360 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1370 len += input_print_modalias_bits(buf + len, size - len,
1371 'r', id->relbit, 0, REL_MAX);
1372 len += input_print_modalias_bits(buf + len, size - len,
1373 'a', id->absbit, 0, ABS_MAX);
1374 len += input_print_modalias_bits(buf + len, size - len,
1375 'm', id->mscbit, 0, MSC_MAX);
1376 len += input_print_modalias_bits(buf + len, size - len,
1377 'l', id->ledbit, 0, LED_MAX);
1378 len += input_print_modalias_bits(buf + len, size - len,
1379 's', id->sndbit, 0, SND_MAX);
1380 len += input_print_modalias_bits(buf + len, size - len,
1381 'f', id->ffbit, 0, FF_MAX);
1382 len += input_print_modalias_bits(buf + len, size - len,
1383 'w', id->swbit, 0, SW_MAX);
1412 if (len < PAGE_SIZE - 2)
1413 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1427 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1442 return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1454 return -EINVAL;
1489 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \
1518 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1519 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1524 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1535 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1547 input_dev->bm##bit, ev##_MAX, \
1556 INPUT_DEV_CAP_ATTR(ABS, abs);
1595 kfree(dev->poller);
1596 kfree(dev->absinfo);
1597 kfree(dev->vals);
1604 * Input uevent interface - loading event handlers based on
1613 return -ENOMEM;
1615 len = input_print_bitmap(&env->buf[env->buflen - 1],
1616 sizeof(env->buf) - env->buflen,
1618 if (len >= (sizeof(env->buf) - env->buflen))
1619 return -ENOMEM;
1621 env->buflen += len;
1629 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1634 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1638 * 68 bytes total. Allow extra buffer - 96 bytes
1648 return -ENOMEM;
1650 len = input_print_modalias(&env->buf[env->buflen - 1],
1651 (int)sizeof(env->buf) - env->buflen -
1654 if (len >= ((int)sizeof(env->buf) - env->buflen -
1656 return -ENOMEM;
1658 env->buflen += len;
1688 dev->id.bustype, dev->id.vendor,
1689 dev->id.product, dev->id.version);
1690 if (dev->name)
1691 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1692 if (dev->phys)
1693 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1694 if (dev->uniq)
1695 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1697 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1699 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1700 if (test_bit(EV_KEY, dev->evbit))
1701 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1702 if (test_bit(EV_REL, dev->evbit))
1703 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1704 if (test_bit(EV_ABS, dev->evbit))
1705 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1706 if (test_bit(EV_MSC, dev->evbit))
1707 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1708 if (test_bit(EV_LED, dev->evbit))
1709 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1710 if (test_bit(EV_SND, dev->evbit))
1711 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1712 if (test_bit(EV_FF, dev->evbit))
1713 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1714 if (test_bit(EV_SW, dev->evbit))
1715 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1727 if (!test_bit(EV_##type, dev->evbit)) \
1730 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1731 active = test_bit(i, dev->bits); \
1735 dev->event(dev, EV_##type, i, on ? active : 0); \
1741 if (!dev->event)
1747 if (activate && test_bit(EV_REP, dev->evbit)) {
1748 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1749 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1754 * input_reset_device() - reset/restore the state of input device
1763 guard(mutex)(&dev->mutex);
1764 guard(spinlock_irqsave)(&dev->event_lock);
1774 guard(mutex)(&dev->mutex);
1776 if (dev->inhibited)
1779 if (dev->users) {
1780 if (dev->close)
1781 dev->close(dev);
1782 if (dev->poller)
1783 input_dev_poller_stop(dev->poller);
1786 scoped_guard(spinlock_irq, &dev->event_lock) {
1793 dev->inhibited = true;
1802 guard(mutex)(&dev->mutex);
1804 if (!dev->inhibited)
1807 if (dev->users) {
1808 if (dev->open) {
1809 error = dev->open(dev);
1813 if (dev->poller)
1814 input_dev_poller_start(dev->poller);
1817 dev->inhibited = false;
1819 scoped_guard(spinlock_irq, &dev->event_lock)
1829 guard(spinlock_irq)(&input_dev->event_lock);
1848 guard(spinlock_irq)(&input_dev->event_lock);
1860 guard(spinlock_irq)(&input_dev->event_lock);
1876 guard(spinlock_irq)(&input_dev->event_lock);
1911 * input_allocate_device - allocate memory for new input device
1921 static atomic_t input_no = ATOMIC_INIT(-1);
1933 dev->max_vals = 10;
1934 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1935 if (!dev->vals) {
1940 mutex_init(&dev->mutex);
1941 spin_lock_init(&dev->event_lock);
1942 timer_setup(&dev->timer, NULL, 0);
1943 INIT_LIST_HEAD(&dev->h_list);
1944 INIT_LIST_HEAD(&dev->node);
1946 dev->dev.type = &input_dev_type;
1947 dev->dev.class = &input_class;
1948 device_initialize(&dev->dev);
1955 dev_set_name(&dev->dev, "input%lu",
1972 return devres->input == data;
1978 struct input_dev *input = devres->input;
1981 __func__, dev_name(&input->dev));
1986 * devm_input_allocate_device - allocate managed input device
2019 input->dev.parent = dev;
2020 input->devres_managed = true;
2022 devres->input = input;
2030 * input_free_device - free memory occupied by input_dev structure
2046 if (dev->devres_managed)
2047 WARN_ON(devres_destroy(dev->dev.parent,
2057 * input_set_timestamp - set timestamp for input events
2072 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2073 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2074 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2080 * input_get_timestamp - get timestamp for input events
2083 * A valid timestamp is a timestamp of non-zero value.
2089 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2092 return dev->timestamp;
2097 * input_set_capability - mark device as capable of a certain event
2103 * bitmap the function also adjusts dev->evbit.
2117 __set_bit(code, dev->keybit);
2121 __set_bit(code, dev->relbit);
2126 __set_bit(code, dev->absbit);
2130 __set_bit(code, dev->mscbit);
2134 __set_bit(code, dev->swbit);
2138 __set_bit(code, dev->ledbit);
2142 __set_bit(code, dev->sndbit);
2146 __set_bit(code, dev->ffbit);
2159 __set_bit(type, dev->evbit);
2169 if (dev->mt) {
2170 mt_slots = dev->mt->num_slots;
2171 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2172 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2173 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2175 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2183 if (test_bit(EV_ABS, dev->evbit))
2184 for_each_set_bit(i, dev->absbit, ABS_CNT)
2187 if (test_bit(EV_REL, dev->evbit))
2188 events += bitmap_weight(dev->relbit, REL_CNT);
2198 if (!test_bit(EV_##type, dev->evbit)) \
2199 memset(dev->bits##bit, 0, \
2200 sizeof(dev->bits##bit)); \
2207 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2222 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2223 handle->handler->disconnect(handle);
2224 WARN_ON(!list_empty(&dev->h_list));
2226 del_timer_sync(&dev->timer);
2227 list_del_init(&dev->node);
2232 device_del(&dev->dev);
2238 struct input_dev *input = devres->input;
2241 __func__, dev_name(&input->dev));
2247 * dev->event_lock here to avoid racing with input_event
2254 guard(spinlock_irqsave)(&dev->event_lock);
2256 if (!dev->inhibited &&
2257 test_bit(dev->repeat_key, dev->key) &&
2258 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2261 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2264 if (dev->rep[REP_PERIOD])
2265 mod_timer(&dev->timer, jiffies +
2266 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2271 * input_enable_softrepeat - enable software autorepeat
2280 dev->timer.function = input_repeat_key;
2281 dev->rep[REP_DELAY] = delay;
2282 dev->rep[REP_PERIOD] = period;
2288 lockdep_assert_held(&dev->mutex);
2290 return !dev->inhibited && dev->users > 0;
2301 if (dev->hint_events_per_packet < packet_size)
2302 dev->hint_events_per_packet = packet_size;
2304 max_vals = dev->hint_events_per_packet + 2;
2305 if (dev->max_vals >= max_vals)
2310 return -ENOMEM;
2312 scoped_guard(spinlock_irq, &dev->event_lock) {
2313 dev->max_vals = max_vals;
2314 swap(dev->vals, vals);
2324 * input_register_device - register device with input core
2339 * that tear down of managed input devices is internally a 2-step process:
2353 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2354 dev_err(&dev->dev,
2355 "Absolute device without dev->absinfo, refusing to register\n");
2356 return -EINVAL;
2359 if (dev->devres_managed) {
2363 return -ENOMEM;
2365 devres->input = dev;
2369 __set_bit(EV_SYN, dev->evbit);
2372 __clear_bit(KEY_RESERVED, dev->keybit);
2374 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2382 * If delay and period are pre-set by the driver, then autorepeating
2385 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2388 if (!dev->getkeycode)
2389 dev->getkeycode = input_default_getkeycode;
2391 if (!dev->setkeycode)
2392 dev->setkeycode = input_default_setkeycode;
2394 if (dev->poller)
2395 input_dev_poller_finalize(dev->poller);
2397 error = device_add(&dev->dev);
2401 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2403 dev->name ? dev->name : "Unspecified device",
2407 error = -EINTR;
2409 list_add_tail(&dev->node, &input_dev_list);
2417 if (dev->devres_managed) {
2418 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2419 __func__, dev_name(&dev->dev));
2420 devres_add(dev->dev.parent, devres);
2425 device_del(&dev->dev);
2433 * input_unregister_device - unregister previously registered device
2441 if (dev->devres_managed) {
2442 WARN_ON(devres_destroy(dev->dev.parent,
2462 if (handler->filter)
2464 if (handler->events)
2466 if (handler->event)
2471 __func__, handler->name);
2472 return -EINVAL;
2479 * input_register_handler - register a new input handler
2495 scoped_cond_guard(mutex_intr, return -EINTR, &input_mutex) {
2496 INIT_LIST_HEAD(&handler->h_list);
2498 list_add_tail(&handler->node, &input_handler_list);
2511 * input_unregister_handler - unregisters an input handler
2523 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2524 handler->disconnect(handle);
2525 WARN_ON(!list_empty(&handler->h_list));
2527 list_del_init(&handler->node);
2534 * input_handler_for_each_handle - handle iterator
2540 * it @data and stop when @fn returns a non-zero value. The function is
2553 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2565 * invokes handler->event() method for each event one by one.
2571 struct input_handler *handler = handle->handler;
2575 handler->event(handle, v->type, v->code, v->value);
2582 * handler->filter() method for each event one by one and removes events
2589 struct input_handler *handler = handle->handler;
2594 if (handler->filter(handle, v->type, v->code, v->value))
2601 return end - vals;
2615 * Sets up appropriate handle->event_handler based on the input_handler
2620 struct input_handler *handler = handle->handler;
2622 if (handler->filter)
2623 handle->handle_events = input_handle_events_filter;
2624 else if (handler->event)
2625 handle->handle_events = input_handle_events_default;
2626 else if (handler->events)
2627 handle->handle_events = handler->events;
2629 handle->handle_events = input_handle_events_null;
2633 * input_register_handle - register a new input handle
2645 struct input_handler *handler = handle->handler;
2646 struct input_dev *dev = handle->dev;
2650 * We take dev->mutex here to prevent race with
2653 scoped_cond_guard(mutex_intr, return -EINTR, &dev->mutex) {
2658 if (handler->filter)
2659 list_add_rcu(&handle->d_node, &dev->h_list);
2661 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2665 * Since we are supposed to be called from ->connect()
2666 * which is mutually exclusive with ->disconnect()
2670 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2672 if (handler->start)
2673 handler->start(handle);
2680 * input_unregister_handle - unregister an input handle
2691 struct input_dev *dev = handle->dev;
2693 list_del_rcu(&handle->h_node);
2696 * Take dev->mutex to prevent race with input_release_device().
2698 scoped_guard(mutex, &dev->mutex)
2699 list_del_rcu(&handle->d_node);
2706 * input_get_new_minor - allocates a new input minor number
2720 * This function should be called from input handler's ->connect()
2726 legacy_base + legacy_num - 1,
2733 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2738 * input_free_minor - release previously allocated minor