Lines Matching +full:non +full:- +full:tunable
7 The SCHED_RT case is covered in Documentation/scheduler/sched-rt-group.rst
14 microseconds of CPU time. That quota is assigned to per-cpu run queues in
22 is transferred to cpu-local "silos" on a demand basis. The amount transferred
23 within each of these updates is tunable and described as the "slice".
26 -------------
30 Traditional (UP-EDF) bandwidth control is something like:
66 https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-[email protected]/
69 ----------
75 :ref:`Documentation/admin-guide/cgroup-v2.rst <cgroup-v2-cpu>`.
77 - cpu.cfs_quota_us: run-time replenished within a period (in microseconds)
78 - cpu.cfs_period_us: the length of a period (in microseconds)
79 - cpu.stat: exports throttling statistics [explained further below]
80 - cpu.cfs_burst_us: the maximum accumulated run-time (in microseconds)
85 cpu.cfs_quota_us=-1
88 A value of -1 for cpu.cfs_quota_us indicates that the group does not have any
90 bandwidth group. This represents the traditional work-conserving behavior for
112 --------------------
113 For efficiency run-time is transferred between the global pool and CPU local
118 This is tunable via procfs::
123 for more fine-grained consumption.
126 ----------
131 - nr_periods: Number of enforcement intervals that have elapsed.
132 - nr_throttled: Number of times the group has been throttled/limited.
133 - throttled_time: The total time duration (in nanoseconds) for which entities
135 - nr_bursts: Number of periods burst occurs.
136 - burst_time: Cumulative wall-time (in nanoseconds) that any CPUs has used
139 This interface is read-only.
142 ---------------------------
144 attainable, that is: max(c_i) <= C. However, over-subscription in the
145 aggregate case is explicitly allowed to enable work-conserving semantics
162 ---------------------------
169 The fact that cpu-local slices do not expire results in some interesting corner
174 quota as well as the entirety of each cpu-local slice in each period. As a
178 For highly-threaded, non-cpu bound applications this non-expiration nuance
192 possibility of wastefully expiring quota on cpu-local silos that don't need a
195 The interaction between cpu-bound and non-cpu-bound-interactive applications
197 gave each of these applications half of a cpu-core and they both got scheduled
198 on the same CPU it is theoretically possible that the non-cpu bound application
200 cpu-bound application from fully using its quota by that same amount. In these
201 instances it will be up to the CFS algorithm (see sched-design-CFS.rst) to
207 --------
216 2. Limit a group to 2 CPUs worth of runtime on a multi-CPU machine