Lines Matching +full:38 +full:- +full:bloom

9 --------
30 <img src="data-flow.png" alt="Diagram of RAPPOR Data Flow" />
35 2. Obscure each value with the RAPPOR privacy-preserving reporting mechanism.
39 1. Aggregate the reports by summing bits (i.e. make a counting Bloom filter)
49 -----------------------------
53 <!-- TODO: a realistic data set would be nice? How could we generate one? -->
88 -------------------
111 2, 38, 0010001111001010
120 We also get a one-row CSV file that contains the RAPPOR parameters:
133 - `exp_hist.csv`: The true histogram of input values. This is used only for
135 - `exp_true_inputs.txt`: A list of the unique values reported, e.g. `v1` ..
140 ---------------------
152 values expected. <!-- TODO: more detail -->
154 There are 17 columns. The left-most column is the total number of reports in
156 Bloom filter. Each column contains the number of reports with that bit set
162 --------------------
165 the candidate strings. This is done in the `more-candidates` /
166 `print-candidates` functions in `demo.sh`.
169 editing the invocation of `print-candidates` in `run-dist`:
174 print-candidates $dist 'v1|v2' > _tmp/${dist}_candidates.txt
176 In general, coming up with candidates is an application- or metric-specific
192 columns: for `m = 64` cohorts times `k = 2` hash functions in the Bloom filter.
194 <!-- TODO: more detail about setting params? Examples of coming up with
195 candidate strings? -->
198 ------------------
216 <!-- TODO:
217 - how to change flags
218 - more detail on what the various parameters do
219 - association analysis
220 - basic RAPPOR
221 - longitudinal privacy
222 -->
225 ----------
233 [rappor-[email protected]](https://groups.google.com/forum/#!forum/rappor-discuss).