Lines Matching full:tensor2

906   TENSOR tensor2[CNN_MAX_BRANCHES] = { { 0 } };  in av1_cnn_predict_c()  local
920 init_tensor(&tensor2[b]); in av1_cnn_predict_c()
935 // Swap tensor1 and tensor2 in av1_cnn_predict_c()
936 swap_tensor(&tensor1[branch], &tensor2[branch]); in av1_cnn_predict_c()
947 if (!realloc_tensor(&tensor2[branch], layer_config->out_channels, o_width, in av1_cnn_predict_c()
952 free_tensor(&tensor2[branch]); in av1_cnn_predict_c()
953 assign_tensor(&tensor2[branch], output[output_num], in av1_cnn_predict_c()
965 branch, tensor2)) { in av1_cnn_predict_c()
971 assert(tensor2[branch].channels == layer_config->out_channels); in av1_cnn_predict_c()
979 tensor2[branch].buf, tensor2[branch].stride); in av1_cnn_predict_c()
984 tensor2[branch].buf, tensor2[branch].stride, 0, 1); in av1_cnn_predict_c()
990 tensor2[branch].buf, tensor2[branch].stride); in av1_cnn_predict_c()
994 if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, in av1_cnn_predict_c()
995 branch, tensor2)) { in av1_cnn_predict_c()
1004 assert(check_tensor_equal_size(&tensor2[b], &tensor2[branch])); in av1_cnn_predict_c()
1005 av1_cnn_add(tensor2[branch].buf, tensor2[branch].channels, in av1_cnn_predict_c()
1006 tensor2[branch].width, tensor2[branch].height, in av1_cnn_predict_c()
1007 tensor2[branch].stride, (const float **)tensor2[b].buf); in av1_cnn_predict_c()
1013 av1_cnn_activate(tensor2[branch].buf, tensor2[branch].channels, in av1_cnn_predict_c()
1014 tensor2[branch].width, tensor2[branch].height, in av1_cnn_predict_c()
1015 tensor2[branch].stride, layer_config->activation); in av1_cnn_predict_c()
1019 tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width, in av1_cnn_predict_c()
1020 tensor2[branch].height, tensor2[branch].stride, in av1_cnn_predict_c()
1030 assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); in av1_cnn_predict_c()
1031 assert(tensor2[b].channels > 0); in av1_cnn_predict_c()
1032 if (!concat_tensor(&tensor2[b], &tensor2[branch])) goto Error; in av1_cnn_predict_c()
1036 const int existing_channels = tensor2[branch].channels; in av1_cnn_predict_c()
1040 assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); in av1_cnn_predict_c()
1042 num_chs += tensor2[b].channels; in av1_cnn_predict_c()
1045 assign_tensor(&tensor2[branch], output[output_num], num_chs, o_width, in av1_cnn_predict_c()
1051 assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch])); in av1_cnn_predict_c()
1053 copy_tensor(&tensor2[b], tensor2[b].channels, num_chs, in av1_cnn_predict_c()
1054 &tensor2[branch]); in av1_cnn_predict_c()
1055 num_chs += tensor2[b].channels; in av1_cnn_predict_c()
1062 if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config, in av1_cnn_predict_c()
1063 branch, tensor2)) { in av1_cnn_predict_c()
1073 free_tensor(&tensor2[b]); in av1_cnn_predict_c()