Lines Matching full:eigenvalues
23 * \brief Computes eigenvalues and eigenvectors of general matrices
29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the
46 * Call the function compute() to compute the eigenvalues and eigenvectors of
49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and
62 * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
92 /** \brief Type for vector of eigenvalues as returned by eigenvalues().
135 * eigenvalues are computed; if false, only the eigenvalues are
138 * This constructor calls compute() to compute the eigenvalues
169 * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
177 * \sa eigenvalues(), pseudoEigenvectors()
202 …sert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); in pseudoEigenvectors()
222 * \sa pseudoEigenvectors() for an example, eigenvalues()
226 /** \brief Returns the eigenvalues of given matrix.
228 * \returns A const reference to the column vector containing the eigenvalues.
234 * The eigenvalues are repeated according to their algebraic multiplicity,
235 * so there are as many eigenvalues as rows in the matrix. The eigenvalues
242 * MatrixBase::eigenvalues()
244 const EigenvalueType& eigenvalues() const in eigenvalues() function
254 * eigenvalues are computed; if false, only the eigenvalues are
258 * This function computes the eigenvalues of the real matrix \p matrix.
259 * The eigenvalues() function can be used to retrieve them. If
264 * class. The Schur decomposition is then used to compute the eigenvalues
348 …sert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); in eigenvectors()
399 // Compute eigenvalues from matT in compute()
603 // We handled a pair of complex conjugate eigenvalues, so need to skip them both in doComputeEigenvectors()