Lines Matching full:reciprocal
78 // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax in __divtf3()
79 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This in __divtf3()
85 // Now refine the reciprocal estimate using a Newton-Raphson iteration: in __divtf3()
112 rep_t correction, reciprocal; in __divtf3() local
128 reciprocal = r64cH + (r64cL >> 64); in __divtf3()
131 // 128-bit reciprocal estimate downward to ensure that it is strictly smaller in __divtf3()
132 // than the infinitely precise exact reciprocal. Because the computation in __divtf3()
135 reciprocal -= 2; in __divtf3()
137 // The numerical reciprocal is accurate to within 2^-112, lies in the in __divtf3()
138 // interval [0.5, 1.0), and is strictly smaller than the true reciprocal in __divtf3()
139 // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b in __divtf3()
150 wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); in __divtf3()