VERSION 0.1
May 8, 2015

blue

kitcherﬁg

BTstack for
RugGear/MediaTek Chipsets

Getting Started

Dr. sc. Milanka Ringwald
Dr. sc. Matthias Ringwald
contact@bluekitchen-gmbh.com

contact@bluekitchen-gmbh.com

CONTENTS

(1. Hardware Setup|

2. General Tools

[3. Rooting the RugGear Device]

[4. Installing BTstack on RugGear devices with MediaTek Chipsets|
[>. Running the First Example

6. BTstack Java AP]

[6.1. BTstack GAT'T Client for Android example|

(7. BCM20702A0 and RugGear RG500 Reception of Advertisements|
[[2. Procesd

[7.3. Measurements with continuous scanning|
[7.4. Measurements with normal scanning|

N 0O OO UL i W NN DN

2

This documents describes how BTstack]can be installed and used on RugGear
devices with MediaTek chipset. It also presents measurements of the reception
of Advertising reports from a remote devices, e.g. beacons or peripherals, as this
is the crucial step for discovering and connecting to them.

1. HARDWARE SETUP

To install BTstack on a RugGear mobile phone, connect the RugGear device
to a Mac or Linux system using a micro USB cable. The installation might also

work on Windows with |Cygwinf] and/or MSY{] installed. The RugGear device
is connected to an USB port during setup and development.

2. GENERAL ToOOLS

e Cydia Impactorﬁ to get root access.

e Google’s Android Developer Toolf| (ADT) to develop an Android LE
Client.

e The Android Debug Bridgd] (adb) to communicate with a connected
Android device via a command line. It comes as a part of the Android
Developer Tools.

e Apple’s PacketLoggelﬂ (available to the registered developers as part of
the Hardware 10 Tools for Xcode download) or Wiresharkﬂ to look and
analyze Bluetooth packet logs.

e Some LE devices that send Advertising reports to test your LE Client.
Here, we used the mnio Tagﬂ and a BTstack-based LE Peripheral on a
desktop machine using the BCM20702A0 module.

3. RoOTING THE RUGGEAR DEVICE

There are various ways to root an Android device. We recommend the Cydia
Impactor tool. It is available for all major platforms, it works with most Android
devices and it comes from a trustworthy sourceﬂ.

To root the device, start Impactor, and press the ”Start” button as shown in

Fig/]|

'http://bluekitchen-gmbh.com /btstack

https://www.cygwin.com

Swww.mingw.org/wiki/msys

http:/ /www.cydiaimpactor.com

Shttp://developer.android.com/tools/index.html
Shttp://developer.android.com/tools/help/adb.html

7http:/ /adcdownload.apple.com/Developer_Tools/hardware_io_tools_for_xcode__june_2014/hardwareiotools_june_201
8http://www.wireshark.org

Ihttps://www.bluenio.com/products/accessories /niotag

107t was created by Jay Freeman, who has supporting the use iOS devices outside of Apple’s
walled garden since the device came out

http://bluekitchen-gmbh.com/btstack
https://www.cygwin.com
http://www.cydiaimpactor.com
http://developer.android.com/tools/index.html
http://developer.android.com/tools/help/adb.html
http://adcdownload.apple.com/Developer_Tools/hardware_io_tools_for_xcode__june_2014/hardwareiotools_june_2014.dmg
http://www.wireshark.org
https://www.bluenio.com/products/accessories/niotag
http://www.cydiaimpactor.com
http://www.cydiaimpactor.com

.8 .00 Cydia Impactor

“# drop SuperSU su to /system/xbin/su

F1cURE 1. Cydia Impactor running on OS X.

4. INSTALLING BTSsTACK ON RUGGEAR DEVICES WITH MEDIATEK
CHIPSETS

First, extract the provided btstack-android-mtk-VERSION.tar.gz archive.
Please make sure that the path to the extracted archive does not contain spaces
as the installer may fail in this case. Then, start the provided ./installer.sh
in the mtk folder. This should look similar to this listing.

$ mkdir btstack

$ tar —zxvl btstack—android—mtk.tar.gz —C btstack
$ ls btstack

java mtk

$ cd btstack/mtk

$./installer .sh

BTstack Installer for RugGear/Mediatek devices
from:

— /system mounted as read/write

— stopping Bluetooth daemon

— transfer files to device

9192 KB/s (279736 bytes in 0.029s)

2949 KB/s (6188 bytes in 0.002s)

7753 KB/s (62360 bytes in 0.007s)

4184 KB/s (11316 bytes in 0.002s)

3201 KB/s (6592 bytes in 0.002s)

5348 KB/s (11720 bytes in 0.002s)

— put files in place

— start BTstack daemon

DONE

If BTstack was installed properly, we can have a look at its packet log.

$ make hci_dump

killall PacketLogger

adb shell su root chmod 666 /data/btstack/hci_dump.pklg
adb pull /data/btstack/hci_dump.pklg 2> /dev/null

open hci_dump . pklg

4

The make hci_dump command assumes that the underlying system is OS X
and that PacketLogger is already running. The twoadb commands, shown in the
following Listing, are used to fetch the packet log (hci_dump.pklg) and it can be
run on any platform. Wireshark can then be used to open the packet log.

$ adb shell su root chmod 666 /data/btstack/hci_dump.pklg
$ adb pull /data/btstack/hci_dump.pklg 2> /dev/null

The initial packet log should look like in Figure [2]

8 0o v’ hci_dump.pklg

P A B W

Start Refresh Find Analyze Info Decoders User Decodings Clear

| Flow | Decoded @ Raw | 9 total (0 Err / 1 HCI / 0 ACL / 0 5C0 / 8 Misc)

Time Type Decoded Packet

BTdaemon started

Juli 18
Juli 18
Juli 18

e | e
AP P

Juli 18
Juli 18 11:22:13.074 HNOTE NT_SERVICE RECISTERED status 0x0 psm Oxl
Juli 18 11:22:13.074 HCI EVENT P Undecoded Event Type -

Juli 18 11:22:13.074 OTE

Juli 18 11:22:

Juli 18 11:22:13.074 HNOTE

FIGURE 2. hci_dump.pklg right after BTstack daemon was installed.

5. RUNNING THE FIRST EXAMPLE

As first, make sure that BTstack was installed properly and it is running, i.e.
by checking the packet log as explained in the previous section. Now, let’s do an
LE Scan using a test program written in C against libBTstack.

$ adb shell

$ le_scan

le_scan started

— connecting to BTstack Daemon

— connected

— send power on

— btstack state 1

— btstack state 2

— start LE scan

— ADV: 3E OF 02 01 00 01 F2 01 8F 45 16 66 03 02 01 1A B3

The le_scan just dumps the data of each received advertisement. It uses
the default parameters used by iOS, which are scan window 30 ms, scan interval
300 ms. More on these parameters is in Section [/} The packet log looks like in

Figure

Juli 18 14:00:51.324 |HCI COMMAND ¥ [200B] LE Set Scan Parameters

[200B] LE Set Scan Parameters

Opcode: 0x200B (OGF: Ox08 OCF: O0x0B)
Parameter Length: 7 (0x07)

LE_Scan Type: 01

LE_Scan_Interwal: O01ED

LE_Scan_Window: 0030

Own_hddress_Type: Public Device Address

Scanning_Filter_Policy: 00

Juli 18 14:00:51.324 HCI COMMAND k0B 20 07 01 EO Ol 30 OO0 0O OO

Juli 1B 14:00:51.330 HCI EVENT P [2008) Command Complete - LE Set Scan Parameters

Juli 18 14:00:51.330 NOTE Command complete for expected opcode 200b -> new substate 29
Juli 18 14:00:51.330 NOTE socket ion_send packet_all, connections (0xl5ZadfB
Juli 18 14:00:51.330 NOTE socket n_send packet all: next 0x0

Juli 18 14:00:51.330 HNOTE BTSTACE EVENT STATE 2

Juli 18 14:00:51.331 HCI EVENT P Undecoded Event Type -

Juli 18 14:00:51.331 HOTE New state: 2

Juli 18 14:00:51.331 NOTE Bluetooth status: 2

Juli 18 14:00:51.331 MNOTE soccket connection send_packet all, connections Oxl52a4fB
Juli 18 14:00:51.331 MNOTE socket connection send packet all: next Ox0

Juli 18 14:00:51.331 HCI COMMAND P [F464] Unknown HCI Command [F464]

Juli 18 14:00:51.331 HCI COMMAND ¥ [200B] LE Set Scan Parameters

[200B] LE Set Scan Parameters
Opcode: 0x200B (OGF: OxO08 OCF: 0x0B)
Parameter Length: 7 (0x07)
LE_Scan_Type: 00
LE_Scan_Interval: 0030
LE Scan_Window: 0030
Own_Rddress_Type: Public Device Address
Scanning_Filter_Policy: 00

Juli 18 14:00:51.331 HCI COMMAND » 0B 20 07 00 30 00 30 00 OO OO

Ficure 3. HCI dump of the le_scan program.

6. BTstack Java API

BTstack on RugGear/MediaTek provides its own Bluetooth stack and its own
interface for using it. While BTstack has been certified for Classic SPP and LE
Peripheral, it does not provide a complete Java API for this. At the moment, the
functionality to turn Bluetooth on/off, scan for LE devices, connect, and make
use of Services and Characteristics is provided. This covers the use of BTstack
as LE Central. Please note that the Security Manager is not implemented yet.
Use of the Security Manager is necessary when devices require explicit pairing
before some services can be used.

The Java classes that make up the BTstack API are split into three folders.
Please add all of them to your Android Java project:

(1) java/src - main code for BTstack client, i.e., socket communication with
BTstack server that runs as a daemon.

(2) java/android - Android specific Client/Server communication.

(3) java/gen - code for available commands and events, auto-generated from
the BTstack C source.

6.1. BTstack GATT Client for Android example. More documentation
on the Java API is needed. For now, please have a look at the Anrdoid exam-
ple in java/example/com/bluekitchen/GATTClientTest. java. It connects to
BTstack Server and turns Bluetooth on. On success, it starts an LE Scan for

6

devices. When it finds a device, it connects to it and queries the available Ser-
vices. Then, it requests the list of Characteristics for the first service. Finally, it
performs some read/write operations on the found Characteristics.

BTstack server runs as a daemon. In the event of a crash, the Java client
will get notified and can restart the daemon, to provide a continuous use of the
Bluetooth services.

7. BCM20702A0 AND RucGEAR RG500 RECEPTION OF
ADVERTISEMENTS

During the first tests of BTstack on RugGear/MediaTek, we have seen that it
receives less Advertisements than other devices.
Advertisements serve three main purposes:

(1) They provide information that a particular device is in range and turned
on.

(2) They can provide some information without connecting to a particular
device (e.g. its name, provided services, or even manufacturer specific
data).

(3) They allow to connect to a particular device, i.e., an LE device listens
for incoming connection requests only a short moment after sending an
Advertisement (to save energy).

A setup with one device that sends Advertisements and one device that receives
them, can be completely described by three parameters:

(1) the Advertisement Interval - the period between two consecutive Adver-
tisements being sent.

(2) the Scan Interval - it determines how frequent the receiving device listens
for Advertisements.

(3) the Scan Window - the time window in which the receiving device listens
for Advertisements.

7.1. Setup. To evaluate the MediaTek Bluetooth chipsets used in the RugGear
RG500, we compared them to a common Bluetooth USB Dual-Mode Dongle that
uses the Broadcom BCM20702A0. We used two LE Peripherals. As the first LE
Peripheral, we setup another device with the BCM20702A0 and configured it to
advertise every 30 ms. This is very often, but it helps to establish how good
Advertisements are received, if they occur frequently. As a second more real-
world example, we used the nio Tag without further configuration. Based on the
measured results, the nio Tag advertises roughly every second.
We measured two cases:

(1) continuous scanning (Scan Window 30ms, Scan Interval 30ms),
(2) intermittent scanning (Scan Window 30ms, Scan Interval 300ms) as per-

formed by iOS.

7.2. Process. For the continuous and intermittent scanning measurements on
the RugGear, we used the le_scan test. We let it run for 15 minutes in con-
tinuous, and then 15 min in intermittent scanning setup. For each of the two
measurement, we retrieved the packet logs from the device. We processed it
an analyzed it using two Python scripts process_scan.py and plot_scan.py.

7

The measurements with the BCM module have been carried out with the GATT
Browser example of BTstack on OS. Hence, we have up to four experiments for
each setup:

e BCM/BCM - BCM20702A0 receives Advertisements from second BCM
20702A0 module

e BCM/nio - BCM20702A0 receives Advertisements from nio tag

e RugGear/BCM - RugGear RG500 receives Advertisements from BCM
20702A0 module

e RugGear/nio - RugGear RG500 receives Advertisements from nio tag

7.3. Measurements with continuous scanning. For this experiment with
set the Scan Interval to 30 ms and the Scan Windows to 30 ms, which translates
to continuous scanning.

The plot in Figure 4] shows how many Advertisements have been received for
both receivers from the two senders. In the BCM/BCM combination, 27 out of
max 33 (1s /30 ms) Advertisements have been received. On the RugGear device,
only about 1 in 15 Advertisements have been received.

Figure [5| shows the distribution of the time between two received Advertise-
ments over the full range.

All setups but the RugGear vs. nio Tag, received an Advertisement every
second, which is sufficient for most interactive applications. We further analyzed
the RugGear vs. nio Tag setup in more detail. For this setup, we calculated the
expected delay between the start of a scan and the first received Advertisement
based on the previous measurements as shown in Figure [7] An alternative and
easier to read representation of the same is given in Figure [§ From this Figure
we can, for example, see that we have 20 percent probability of receiving an
Advertisement with less then 1 second.

7.4. Measurements with normal scanning. For this experiment with set the
Scan Interval to 300 ms and the Scan Windows to 30 ms, which translates to
scanning for 1/10 of the time. As the scanning time is reduced by a factor of 10,
we also expect the number of received Advertisements to be lower by 1/10. We
didn’t had the nio Tag around this time.

The plot in Figure [9]shows the number of Advertisements received for both re-
ceivers. The BCM/BCM received 2.9 Advertisements per second (adv/s) which
is roughly 1/10 of the 27 adv/s received in the continuous scanning experiment.
For the RugGear/BCM combination, we received 0.6 adv/s, which is roughly
1/3 of the 1.8 adv/s received in the continuous scanning experiment and is un-
expected.

We conclude from this data, that the MediaTek chipset didn’t do continuous
scanning in the first experiment. Instead, it looks like it was scanning for only
1/3 of the time, potentially due to internal resource limitations or scheduling
problems. In the intermittent scanning setup, the RugGear device received 1/5
of the Advertisements received by the BCM chipset.

Continuous scanning over time

25000
—— Scan. BCM, Adv. BCM, 27.2685 adv/s, total nr. 24678
— Scan. BCM, Adv. Nio, 1.0254 adv/s, total nr. 927
— Scan. RugGear, Adv. BCM, 1.8486 adv/s, total nr. 1673
20000 b
— Scan. RugGear, Adv. Nio, 0.0635 adv/s, total nr. 55
[%]
2
c
9]
IS
& 15000} i
f=
]
>
°
©
—
[S)
] 10000} b
Q
IS
S
=2
5000} | scan window 30ms, scan interval 30ms
0 ————

0 200 40 600 800 1000
Time [s]

FIGURE 4. Advertising reports accumulated over time, continuous scanning.

Continuous scanning - interval distribution

70
I Sscan. BCM, Adv. BCM
60 Bl scan. BCM, Adv. Nio
I scan. RugGear, Adv. BCM i
I scan. RugGear, Adv. Nio
250 i
c
9]
IS
)
%]
B 40 E
)
>
he)
©
s 30 .
@
Q
£
= 20 i
10 ‘ R
0 L | I 1 I I 1 I A I 1 1 A 1 A
0 10 20 30 40 50 60 70

Time interval between two advertisements [s]

FiGURE 5. Time delay histogram, continuous scanning.

Continuous scanning - expected waiting time

250

B scan. RugGear, Adv. Nio

Number of advertisements

20 30 40 50 70
Expected waiting time until first scan [s]

FIGURE 6. Expected time until first Advertisement, continuous scanning.

Continuous scanning - expected waiting time probability distribution

1.0

o
©

o
o

©
IS

Advertisement probability

o
[N)

[scan. RugGear, Adv. Nio

| | | | |
0 10 20 30 40 50 60 70
Time until first scan [s]

0.0

FiGure 7. Cumulative distribution of expected time until first
Advertisement, continuous scanning.

3000

2500

N
o
o
o

1500

Number of advertisements
=
o
o
o

500

F1GURE 8. Advertising reports accumulated over time, normal scanning.

Normal scanning over time

Scan. BCM, Adv. BCM, 2.9193 adv/s, total nr. 2642
Scan. RugGear, Adv. BCM, 0.6073 adv/s, total nr. 549

200 400 600
Time [s]

800

1000

10

	1. Hardware Setup
	2. General Tools
	3. Rooting the RugGear Device
	4. Installing BTstack on RugGear devices with MediaTek Chipsets
	5. Running the First Example
	6. BTstack Java API
	6.1. BTstack GATT Client for Android example

	7. BCM20702A0 and RugGear RG500 Reception of Advertisements
	7.1. Setup
	7.2. Process
	7.3. Measurements with continuous scanning
	7.4. Measurements with normal scanning

