
Simpleperf Introduction

Yabin Cui
android-llvm-dev

Outline

● What is simpleperf
● How simpleperf works
● Simpleperf commands

What is simpleperf

● A replacement for linux/tools/perf in Android
● A cpu-profiler using linux kernel support and PMU (performance monitor unit)

hardware support
● Source code is in

https://android.googlesource.com/platform/system/extras/+/master/simpleperf/
● Doc is in

https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/
● Prebuilt is release in

https://android.googlesource.com/platform/prebuilts/simpleperf/

https://github.com/torvalds/linux/tree/master/tools/perf
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/
https://android.googlesource.com/platform/prebuilts/simpleperf/

How simpleperf works

simpleperf stat cmd

simpleperf record cmd

profile data file

simpleperf report cmd
and other report
methods

perf
event
driver

cpu pmu driver

software pmu driver

tracepoint pmu
driver

device specific pmu
drivers

ARM PMU

Userspace Kernel Hardware

ARM PMU

● Described in ARM manual, D7 The Performance Monitors Extension
● PMU counter: Each cpu core has several PMU counters. Each counter is 32-bit, can monitor one

PMU event. When the monitored event happens, the counter value increases by one. When a
counter overflows, it can trigger an interrupt.

● PMU event: like CPU_CYCLES, BR_PRED (predictable branch), L1D_CACHE (Level 1 data cache
access). ARM lists common events and how to interpret them. And the events can be used together
to get indirect information, like cache miss rate = cache refill count / cache_access_count.

● The PMU events are growing in newer architectures.

https://developer.arm.com/documentation/ddi0487/latest

How simpleperf works

simpleperf stat cmd

simpleperf record cmd

profile data file

simpleperf report cmd
and other report
methods

perf
event
driver

cpu pmu driver

software pmu driver

tracepoint pmu
driver

device specific pmu
drivers

ARM PMU

Userspace Kernel Hardware

Kernel support

● perf event driver
○ a bridge between userspace and pmu drivers. It lives in kernel/events
○ maps pmu events to perf event types, described in include/uapi/linux/perf_event.h
○ provides a sysfs interface to show supported perf events, in /sys/bus/event_source
○ provides perf_event_open system call to monitor performance of selected threads

int perf_event_open(struct perf_event_attr *attr, pid_t pid, int cpu, int group_fd, unsigned
long flags)

 attr - config which perf event to use

 pid - config which thread to monitor, all threads if -1

 cpu - config which cpu to monitor, all cpu is -1

 group_fd, flags - usually not used

 returns a file descriptor, which can be used to read counter values and records

https://github.com/torvalds/linux/tree/master/kernel/events
https://github.com/torvalds/linux/blob/master/include/uapi/linux/perf_event.h
https://man7.org/linux/man-pages/man2/perf_event_open.2.html

Kernel support

● pmu drivers
○ register to perf event driver via perf_pmu_register().
○ cpu pmu driver, which operates ARM PMU, lives in drivers/perf.
○ software pmu driver, events like cpu-clock, page-faults, full list is in perf_sw_ids.
○ tracepoint pmu driver, events like sched:sched_switch, full list is in /sys/kernel/tracing/events.
○ device specific pmu drivers.

https://github.com/torvalds/linux/tree/master/drivers/perf
https://github.com/torvalds/linux/blob/master/include/uapi/linux/perf_event.h#L118

How simpleperf works

simpleperf stat cmd

simpleperf record cmd

profile data file

simpleperf report cmd
and other report
methods

perf
event
driver

cpu pmu driver

software pmu driver

tracepoint pmu
driver

device specific pmu
drivers

ARM PMU

Userspace Kernel Hardware

simpleperf commands

● simpleperf is an executable running on device, shipped in /system/bin.
● simpleperf divides its functions into subcommands.

○ list command: list available perf events on device
○ stat command: monitor threads, and print perf event counter values
○ record command: monitor threads, and generate profile data with samples
○ report command: report profile data generated by record command

● simpleperf also provides python scripts running on host
○ to help recording
○ to help reporting

https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/executable_commands_reference.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/scripts_reference.md

list cmd: list available events

$ simpleperf list

List of hardware events:
 branch-misses
 bus-cycles
 cache-misses
 cache-references
 cpu-cycles
 instructions
 stalled-cycles-backend
 stalled-cycles-frontend

List of software events:
 alignment-faults
 context-switches
 cpu-clock
…

stat cmd: get perf event counter values

Call perf_event_open() for selected
threads, cpus, with selected perf events

Wait until stat time ends

Use read() to read counter values from
perf event file descriptors

Simpleperf Kernel

Start pmu counters to
count values of the
selected perf events

stat cmd: options
$ simpleperf stat -h

Usage: simpleperf stat [options] [command [command-args]]
 Gather performance counter information of running [command].

Options:
-p pid1,pid2,... Stat events on existing processes.
-t tid1,tid2,... Stat events on existing threads.
-a Collect system-wide information.
--cpu cpu_item1,cpu_item2,... Collect information only on the selected cpus.
-e event1[:modifier1],event2[:modifier2],... Select a list of events to count.
--duration time_in_sec Monitor for time_in_sec seconds.

stat cmd: example
$ simpleperf stat -e cache-references,cache-misses -a --duration 1

Performance counter statistics:

count event_name # count / runtime, runtime / enabled_time
 774,728,087 cache-references # 96.513 M/sec (100%)
 31,985,983 cache-misses # 4.128672% miss rate (100%)

Total test time: 1.001893 seconds.

record cmd: generate profile data with samples

Call perf_event_open() for selected
threads, cpus, with selected perf events

Use mmap() on perf event fds to create
shared circular buffer between kernel
and simpleperf

Simpleperf Kernel

Start pmu counter to
count values of the
selected pmu event

In record read
thread, receive
records from
circular buffer,
and pass
records to the
main thread.

Each time the counter
overflows (depending on
the frequency we set by
-f), create a sample
record, and put it to the
circular buffer

In the main
thread, process
records, collect
auxiliary
information and
store them in
recording file

record cmd: options
$ simpleperf record -h

Usage: simpleperf record [options] [--] [command [command-args]]
 Gather sampling information of running [command].

Options:
-p pid1,pid2,... Record events on existing processes.
-t tid1,tid2,... Record events on existing threads.
-a System-wide collection.
--cpu cpu_item1,cpu_item2,... Collect information only on the selected cpus.
-e event1[:modifier1],event2[:modifier2],... Select a list of events to count.
-f freq Set event sample frequency. It means recording at
 most [freq] samples every second.
--duration time_in_sec Monitor for time_in_sec seconds
-o record_file_name Set record file name, default is perf.data.
--call-graph fp | dwarf[,<dump_stack_size>] Enable call graph recording.
-g Same as '--call-graph dwarf'.

record cmd: example
$ simpleperf record -g sleep 1

simpleperf I cmd_record.cpp:696] Recorded for 1.01908 seconds. Start post processing.
simpleperf I cmd_record.cpp:771] Samples recorded: 56. Samples lost: 0.

record cmd: sample format

The profile data contains a list of samples.

Each sample can contain below information (full list is here):

time - timestamp in CLOCK_MONOTONIC

pid, tid - process id, thread id

cpu - cpu

period - how many events have happened since last sample

ips[] - callstack (frame-pointer based call stack)

regs[] - userspace register values

stack[] - user stack data up to 64k
dwarf based call stack generated
by stack unwinding

https://github.com/torvalds/linux/blob/master/include/uapi/linux/perf_event.h#L893

report cmd: report profile data
$ simpleperf report

Cmdline: /system/bin/simpleperf record -g sleep 1
Arch: arm64
Event: cpu-cycles (type 0, config 0)
Samples: 56
Event count: 13885436

Overhead Command Pid Tid Shared Object Symbol
9.61% sleep 14852 14852 [kernel.kallsyms] vma_link
8.97% sleep 14852 14852 linker64 soinfo_do_lookup_impl
6.42% sleep 14852 14852 linker64 BionicAllocator::alloc_impl
6.11% sleep 14852 14852 [kernel.kallsyms] __follow_mount_rcu
5.83% sleep 14852 14852 [kernel.kallsyms] clear_page
…

report profile data on host

Pull record file on host and use multiple report methods (scripts are listed here).

https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/scripts_reference.md

Q&A

