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What is UBLK
● High performance generic userspace block device

● Goals:

- High performance

- Expose generic block device, and support all kinds of

block/queue settings/parameters

- Move all block IO logic in userspace

- Implement userspace target/backend easily
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What can UBLK help
● simplify driver development by moving logic to userspace
- application: more program languages, more libs, more debug tools, 

        more developers, …

● performance evaluate

● simulate block device quickly
- generic interface for setting block parameters/settings
- such, easy to simulate one zoned, compressed, encrypted device,...
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Background
● NBD, merged to linux kernel 2.1.15 in 1997

- expose nbd device node, socket communication 

● VDUSE, merged to linux kernel 5.5 in 2021

- expose as virtio_blk, io command via traditional read/write on char device

● UBLK, merged to linux kernel 6.0 in 2022, io command via io_uring pt cmd

● BDUS: 2021 https://dl.acm.org/doi/10.1145/3456727.3463768

● BUSE: 2021 https://github.com/acozzette/BUSE

● DM-USER: 2020 https://lwn.net/Articles/838986/

● More...

https://dl.acm.org/doi/10.1145/3456727.3463768
https://github.com/acozzette/BUSE
https://lwn.net/Articles/838986/
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UBLK framework
● ublk drv

- merged linux kernel v6.0
- IO command communication & pages copy(ublk block request and ublksrv)
- admin task(add/del/list/recovery device)

● ublk server: ublksrv  (userspace)
- https://github.com/ming1/ubdsrv
- libublksrv
- ublksrv generic target/backend
- ublksrv target/backend
- preferred io handling: io_uring, but support other kind of aio handling too
- so far supported targets(null, loop, qcow2, nbdublk, …)

https://github.com/ming1/ubdsrv
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IO command communication
● IO descriptor

- each IO has unique per-queue tag

- IO descriptor is written to shared/mmapped area which can be indexed by io tag,
         read-only for ublk server, and write-only for ublk drv

● UBLK_IO_FETCH_REQ(io_uring pt cmd)
- sent once from ublk server for setting up IO communication

● UBLK_IO_COMMIT_AND_FETCH_REQ (io_uring pt cmd)
- When ublk IO req comes, the issued *_FETCH_REQ is completed

- After the IO is handled by ublk server,  this command is issued to ublk drv for both
committing previous IO result and start to fetch new request
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IO command communication

userspace

Kernel

ublk server and 
backend

ublk drv

/dev/ublkb0 (block device) /dev/ublkc0
(char device)

applications

Send 
UBLK_IO_COMMIT_AND_FETCH_REQ
OR UBLK_IO_FETCH_REQ (for 1st time)

1

1
Queued 
UBLK_IO_COMMIT_AND_FETCH_REQ
OR UBLK_IO_FETCH_REQ (for 1st time)

2
Submit one IO REQ

2

ublk blk-mq drv gets 
IO REQ

3
Complete 
UBLK_IO_COMMIT_AND_FETCH_REQ

3 5

5
6

6

Complete IO REQ

Backend handles IO 
request, io_uring is 
preferred

4

pair
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ublk-qcow2
● Basic functions
- so far only support read/write, not hard to support compression
- some work is needed for snapshot

● Design
- OOP, implemented by C++, need c++20 for coroutine support, basically rely

        on libstdc++ only
- each IO is handled in one standalone stackless coroutine context, and io tag is

        coroutine context id too
- meta data loading is done as foreground IO in current IO handling co context
- meta data flushing is in way of soft update as background IO, need extra tags

        (extra coroutine context)
- both data and meta IOs are handled  by io_uring



UBLK9

UBLK performance
● ublk-null:

- single queue, single job, bs: 4k, dio, libaio/io_uring, IOPS can reach 1.2M 
IOPS

- create /dev/ublkb0:  ./ublk add -t null -n 0
- switch elevator to null: echo none > /sys/block/ublkb0/queue/scheduler  
- pull fio: https://github.com/axboe/fio.git && configure && make
- t/io_uring -p 0 -B 1 -F 1 -T 1 -X 1 /dev/ublkb0
- reach ~1.2M IOPS on VM created in my laptop(T590),  related with memory

        bandwidth in the machine
● ublk-loop: IOPS is basically same level with kernel loop with –directio=on
      - https://lwn.net/Articles/903855/
     - https://lore.kernel.org/all/20220713140711.97356-1-ming.lei@redhat.com/

https://github.com/axboe/fio.git
https://lwn.net/Articles/903855/
https://lore.kernel.org/all/20220713140711.97356-1-ming.lei@redhat.com/
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UBLK performance
● ublk vs. qemu-nbd, by comparing qcow2 target

- > ~3X IOPS in random IO test

- >  30% improvenet in sequential big chunk IO

       -  https://lore.kernel.org/lkml/Yza1u1KfKa7ycQm0@T590/

● ublk vs. vduse:
 - 1job 1 io depth: ½ latency of vduse over null_blk

- 4job 128 io depth:  ~3X IOPS of vduse    

- https://lore.kernel.org/lkml/50827796-af93-4af5-4121-dc13c31a67fc@linux.alibaba.com/

https://lore.kernel.org/lkml/Yza1u1KfKa7ycQm0@T590/
https://lore.kernel.org/lkml/50827796-af93-4af5-4121-dc13c31a67fc@linux.alibaba.com/
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Why does UBLK perform so well
● High performance io uring passthrough command

- io_uring pt cmd is proved as efficient, even more than io_uring over block IO

- IO command is submitted beforehand, minimize io command forward latency

- IO command multiplexing: one command covers both result committing and fetching new req 

● target/backend IO handling by io_uring too
 - share same io_uring context, maximize io batching in single syscall 

● IO handle efficiently
- each IO has its unique tag, submit io command/allocate resource beforehand
- work together with per-IO stackless coroutine, minimize context switch and maximize IO 
parallelization
- meantime simplify IO handling development
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Future development
● Container-ware ublk
 - to be unprivileged, actually both io command submission & completion & handling are done in user task 

● Zero copy for big chunk IO
- is it possible to avoid the single pages copy for big chunk IO?

● All kinds of performance improvement
- sequential big chunk IO has improvement space, get user pages latency
- batching io handling for /dev/ublkb*

● Cross platform
- io_uring is supported by windows 11

● More targets/backends 
- nbd, zoned, compressed, rbd, iscsi, nvme-tcp, …
- make full use of io_uring’s high performance advantage
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