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Theorem 1. Given
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where G is the greatest common divisor function.
Proof.

Let ¢ = G (m,r)
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by the definition of modular congruence:

dreZ:a=mx+r
JyeZ:b=ny+s

1
multiplying 4 and distributing —:
q q

mx T
BNV

by the definition of ¢ in (1):
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partially distributing (14):
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factoring z from (16):
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by the definition of modulus:
ab=rs (mod gpz)
by the definitions of ¢, p, and z in (1), (2), and (3):
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