// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $assert NR % 8 == 0 $assert 8 <= NR <= 32 $assert REQUANTIZATION in ["FP32", "RNDNU"] #include #include #include $if REQUANTIZATION == "FP32": #include #include $PARAMS_STRUCT = "fp32_neonv8" if REQUANTIZATION == "FP32" else REQUANTIZATION.lower() + "_neon" void xnn_qu8_igemm_minmax_${REQUANTIZATION.lower()}_ukernel_${MR}x${NR}c4__neondot( size_t mr, size_t nc, size_t kc, size_t ks, const uint8_t** restrict a, const void* restrict w, uint8_t* restrict c, size_t cm_stride, size_t cn_stride, size_t a_offset, const uint8_t* zero, const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(mr != 0); assert(mr <= ${MR}); assert(nc != 0); assert(kc != 0); assert(ks != 0); assert(ks % (${MR} * sizeof(void*)) == 0); assert(a_offset % sizeof(uint8_t) == 0); assert(a != NULL); assert(w != NULL); assert(c != NULL); kc = round_up_po2(kc, 4 * sizeof(uint8_t)); uint8_t* c0 = c; $for M in range(1, MR): uint8_t* c${M} = (uint8_t*) ((uintptr_t) c${M-1} + cm_stride); $if M % 2 == 0: if XNN_UNPREDICTABLE(mr <= ${M}) { c${M} = c${M-1}; } $elif M + 1 == MR: if XNN_UNPREDICTABLE(mr != ${M+1}) { c${M} = c${M-1}; } $else: if XNN_UNPREDICTABLE(mr < ${M+1}) { c${M} = c${M-1}; } const uint8x8_t va_zero_point = vld1_dup_u8(¶ms->${PARAMS_STRUCT}.kernel_zero_point[0]); do { // Initialize accumulators with bias. ${NR} bias values are loaded from the // weight matrix, at the start of the group of ${NR} columns. $for N in range(0, NR, 4): uint32x4_t vpacc0x${ABC[N:N+4]} = vld1q_u32(w); w = (const void*) ((const uint32_t*) w + 4); $for M in range(1, MR): $for N in range(0, NR, 4): uint32x4_t vpacc${M}x${ABC[N:N+4]} = vpacc0x${ABC[N:N+4]}; $for M in range(0, MR): uint32x2_t vnacc${M} = vmov_n_u32(0); size_t p = ks; do { $for M in range(MR): const uint8_t* restrict a${M} = a[${M}]; if XNN_UNPREDICTABLE(a${M} != zero) { a${M} = (const uint8_t*) ((uintptr_t) a${M} + a_offset); } a += ${MR}; // Inner accumulation loop along the ${NR} columns. size_t k = kc; // 2x partial unrolled loop to load 8 bytes at a time. while (k >= 8 * sizeof(uint8_t)) { // Load a ${MR}x8 block of activations. $for M in range(MR): const uint8x8_t va${M}x01234567 = vld1_u8(a${M}); a${M} += 8; // Load a 8x${NR} block of weights. $for K in range(0, 8, 4): $for N in range(0, NR, 4): const uint8x16_t vb${ABC[K:K+4]}x${ABC[N:N+4]} = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); // Multiply-accumulate: ${MR}x8 * 8x${NR} --> ${MR}x${NR}. $for M in range(MR): vnacc${M} = vdot_u32(vnacc${M}, va_zero_point, va${M}x01234567); $for K in range(0, 8, 4): $for N in range(0, NR, 4): vpacc${M}x${ABC[N:N+4]} = vdotq_lane_u32(vpacc${M}x${ABC[N:N+4]}, vb${ABC[K:K+4]}x${ABC[N:N+4]}, va${M}x01234567, ${K//4}); k -= 8 * sizeof(uint8_t); } // Handle up to 4 final positions of `k` if XNN_UNLIKELY(k != 0) { // Load a ${MR}x4 block of activations. $for M in range(MR): const uint8x8_t va${M}x01234567 = vreinterpret_u8_u32(vld1_lane_u32((const void*) a${M}, vmov_n_u32(0), 0)); a${M} += 4; // Load a 4x${NR} block of weights. $for N in range(0, NR, 4): const uint8x16_t vb0123x${ABC[N:N+4]} = vld1q_u8(w); w = (const void*) ((const uint8_t*) w + 16); // Multiply-accumulate: ${MR}x4 * 4x${NR} --> ${MR}x${NR}. $for M in range(MR): vnacc${M} = vdot_u32(vnacc${M}, va_zero_point, va${M}x01234567); $for N in range(0, NR, 4): vpacc${M}x${ABC[N:N+4]} = vdotq_lane_u32(vpacc${M}x${ABC[N:N+4]}, vb0123x${ABC[N:N+4]}, va${M}x01234567, 0); } p -= ${MR} * sizeof(void*); } while (p != 0); // Subtract zero point from accumulators. $for M in range(0, MR): vnacc${M} = vpadd_u32(vnacc${M}, vnacc${M}); const uint32x4_t vnacc${M}x0123 = vcombine_u32(vnacc${M}, vnacc${M}); $for N in range(0, NR, 4): int32x4_t vacc${M}x${ABC[N:N+4]} = vreinterpretq_s32_u32(vsubq_u32(vpacc${M}x${ABC[N:N+4]}, vnacc${M}x0123)); $if REQUANTIZATION == "RNDNU": const int32x4_t vright_pre_shift = vld1q_dup_s32(¶ms->${PARAMS_STRUCT}.right_pre_shift); const int32x4_t vmultiplier = vld1q_dup_s32(¶ms->${PARAMS_STRUCT}.multiplier); const int32x4_t vright_post_shift = vld1q_dup_s32(¶ms->${PARAMS_STRUCT}.right_post_shift); $for M in range(MR): $for N in range(0, NR, 4): vacc${M}x${ABC[N:N+4]} = vshlq_s32(vacc${M}x${ABC[N:N+4]}, vright_pre_shift); $for M in range(MR): $for N in range(0, NR, 4): vacc${M}x${ABC[N:N+4]} = vqdmulhq_s32(vacc${M}x${ABC[N:N+4]}, vmultiplier); $for M in range(MR): $for N in range(0, NR, 4): vacc${M}x${ABC[N:N+4]} = vrshlq_s32(vacc${M}x${ABC[N:N+4]}, vright_post_shift); $elif REQUANTIZATION == "FP32": $for M in range(MR): $for N in range(0, NR, 4): float32x4_t vfpacc${M}x${ABC[N:N+4]} = vcvtq_f32_s32(vacc${M}x${ABC[N:N+4]}); const float32x4_t vscale = vld1q_dup_f32(¶ms->${PARAMS_STRUCT}.scale); $for M in range(MR): $for N in range(0, NR, 4): vfpacc${M}x${ABC[N:N+4]} = vmulq_f32(vfpacc${M}x${ABC[N:N+4]}, vscale); $for M in range(MR): $for N in range(0, NR, 4): vacc${M}x${ABC[N:N+4]} = vcvtnq_s32_f32(vfpacc${M}x${ABC[N:N+4]}); const int16x8_t voutput_zero_point = vld1q_dup_s16(¶ms->${PARAMS_STRUCT}.output_zero_point); #if XNN_ARCH_ARM64 $for M in range(MR): $for N in range(0, NR, 8): const int16x8_t vacc${M}x${ABC[N:N+8]} = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc${M}x${ABC[N:N+4]}), vacc${M}x${ABC[N+4:N+8]}), voutput_zero_point); $for M in range(MR): $for N in range(0, NR, 16): $if N + 8 < NR: uint8x16_t vout${M}x${ABC[N:N+16]} = vqmovun_high_s16(vqmovun_s16(vacc${M}x${ABC[N:N+8]}), vacc${M}x${ABC[N+8:N+16]}); $elif M % 2 == 1: uint8x16_t vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vqmovun_high_s16(vqmovun_s16(vacc${M-1}x${ABC[N:N+8]}), vacc${M}x${ABC[N:N+8]}); $elif M + 1 == MR: uint8x8_t vout${M}x${ABC[N:N+8]} = vqmovun_s16(vacc${M}x${ABC[N:N+8]}); #else $for M in range(MR): $for N in range(0, NR, 8): const int16x8_t vacc${M}x${ABC[N:N+8]} = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc${M}x${ABC[N:N+4]}), vqmovn_s32(vacc${M}x${ABC[N+4:N+8]})), voutput_zero_point); $for M in range(MR): $for N in range(0, NR, 16): $if N + 8 < NR: uint8x16_t vout${M}x${ABC[N:N+16]} = vcombine_u8(vqmovun_s16(vacc${M}x${ABC[N:N+8]}), vqmovun_s16(vacc${M}x${ABC[N+8:N+16]})); $elif M % 2 == 1: uint8x16_t vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vcombine_u8(vqmovun_s16(vacc${M-1}x${ABC[N:N+8]}), vqmovun_s16(vacc${M}x${ABC[N:N+8]})); $elif M + 1 == MR: uint8x8_t vout${M}x${ABC[N:N+8]} = vqmovun_s16(vacc${M}x${ABC[N:N+8]}); #endif $if NR == 8 and MR == 1: const uint8x8_t voutput_min = vld1_dup_u8(¶ms->${PARAMS_STRUCT}.output_min); const uint8x8_t voutput_max = vld1_dup_u8(¶ms->${PARAMS_STRUCT}.output_max); $else: const uint8x16_t voutput_min = vld1q_dup_u8(¶ms->${PARAMS_STRUCT}.output_min); const uint8x16_t voutput_max = vld1q_dup_u8(¶ms->${PARAMS_STRUCT}.output_max); $for M in range(MR): $for N in range(0, NR, 16): $if N + 8 < NR: vout${M}x${ABC[N:N+16]} = vmaxq_u8(vout${M}x${ABC[N:N+16]}, voutput_min); $elif M % 2 == 1: vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vmaxq_u8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]}, voutput_min); $elif M + 1 == MR: $if NR == 8 and MR == 1: vout${M}x${ABC[N:N+8]} = vmax_u8(vout${M}x${ABC[N:N+8]}, voutput_min); $else: vout${M}x${ABC[N:N+8]} = vmax_u8(vout${M}x${ABC[N:N+8]}, vget_low_u8(voutput_min)); $for M in range(MR): $for N in range(0, NR, 16): $if N + 8 < NR: vout${M}x${ABC[N:N+16]} = vminq_u8(vout${M}x${ABC[N:N+16]}, voutput_max); $elif M % 2 == 1: vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]} = vminq_u8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]}, voutput_max); $elif M + 1 == MR: $if NR == 8 and MR == 1: vout${M}x${ABC[N:N+8]} = vmin_u8(vout${M}x${ABC[N:N+8]}, voutput_max); $else: vout${M}x${ABC[N:N+8]} = vmin_u8(vout${M}x${ABC[N:N+8]}, vget_low_u8(voutput_max)); if (nc >= ${NR}) { $for M in reversed(range(MR)): $for N in range(0, NR, 16): $if N + 8 < NR: vst1q_u8(c${M} + ${N}, vout${M}x${ABC[N:N+16]}); $elif M % 2 == 1: vst1_u8(c${M} + ${N}, vget_high_u8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]})); vst1_u8(c${M-1} + ${N}, vget_low_u8(vout${M-1}x${ABC[N:N+8]}_${M}x${ABC[N:N+8]})); $elif M + 1 == MR: vst1_u8(c${M} + ${N}, vout${M}x${ABC[N:N+8]}); $for M in reversed(range(MR)): c${M} = (uint8_t*) ((uintptr_t) c${M} + cn_stride); a = (const uint8_t**restrict) ((uintptr_t) a - ks); nc -= ${NR}; } else { $if NR == 32: if (nc & 16) { $for M in reversed(range(MR)): vst1q_u8(c${M}, vout${M}x${ABC[0:16]}); c${M} += 16; $for M in reversed(range(MR)): vout${M}x${ABC[0:16]} = vout${M}x${ABC[16:32]}; } $if NR >= 16: $for M in reversed(range(MR)): $if M % 2 == 1: uint8x16_t vout${M-1}x01234567_${M}x01234567 = vcombine_u8(vget_low_u8(vout${M-1}x0123456789ABCDEF), vget_low_u8(vout${M}x0123456789ABCDEF)); $elif M + 1 == MR: uint8x8_t vout${M}x01234567 = vget_low_u8(vout${M}x0123456789ABCDEF); if (nc & 8) { $for M in reversed(range(MR)): $if M % 2 == 1: vst1_u8(c${M}, vget_high_u8(vout${M-1}x01234567_${M}x01234567)); c${M} += 8; vst1_u8(c${M-1}, vget_low_u8(vout${M-1}x01234567_${M}x01234567)); c${M-1} += 8; $elif M + 1 == MR: vst1_u8(c${M}, vout${M}x01234567); c${M} += 8; // This line $for M in reversed(range(MR)): $if M % 2 == 1: vout${M-1}x01234567_${M}x01234567 = vcombine_u8(vget_high_u8(vout${M-1}x0123456789ABCDEF), vget_high_u8(vout${M}x0123456789ABCDEF)); $elif M + 1 == MR: vout${M}x01234567 = vget_high_u8(vout${M}x0123456789ABCDEF); } if (nc & 4) { $for M in reversed(range(MR)): $if M % 2 == 1: vst1q_lane_u32((void*) c${M}, vreinterpretq_u32_u8(vout${M-1}x01234567_${M}x01234567), 2); c${M} += 4; vst1q_lane_u32((void*) c${M-1}, vreinterpretq_u32_u8(vout${M-1}x01234567_${M}x01234567), 0); c${M-1} += 4; $elif M + 1 == MR: vst1_lane_u32((void*) c${M}, vreinterpret_u32_u8(vout${M}x01234567), 0); c${M} += 4; $for M in reversed(range(MR)): $if M % 2 == 1: vout${M-1}x01234567_${M}x01234567 = vextq_u8(vout${M-1}x01234567_${M}x01234567, vout${M-1}x01234567_${M}x01234567, 4); $elif M + 1 == MR: vout${M}x01234567 = vext_u8(vout${M}x01234567, vout${M}x01234567, 4); } if (nc & 2) { $for M in reversed(range(MR)): $if M % 2 == 1: vst1q_lane_u16((void*) c${M}, vreinterpretq_u16_u8(vout${M-1}x01234567_${M}x01234567), 4); c${M} += 2; vst1q_lane_u16((void*) c${M-1}, vreinterpretq_u16_u8(vout${M-1}x01234567_${M}x01234567), 0); c${M-1} += 2; $elif M + 1 == MR: vst1_lane_u16((void*) c${M}, vreinterpret_u16_u8(vout${M}x01234567), 0); c${M} += 2; $for M in reversed(range(MR)): $if M % 2 == 1: vout${M-1}x01234567_${M}x01234567 = vextq_u8(vout${M-1}x01234567_${M}x01234567, vout${M-1}x01234567_${M}x01234567, 2); $elif M + 1 == MR: vout${M}x01234567 = vext_u8(vout${M}x01234567, vout${M}x01234567, 2); } if (nc & 1) { $for M in reversed(range(MR)): $if M % 2 == 1: vst1q_lane_u8(c${M}, vout${M-1}x01234567_${M}x01234567, 8); vst1q_lane_u8(c${M-1}, vout${M-1}x01234567_${M}x01234567, 0); $elif M + 1 == MR: vst1_lane_u8(c${M}, vout${M}x01234567, 0); } nc = 0; } } while (nc != 0); }