// Copyright 2021 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert REQUANTIZATION == "FP32" $assert VARIANT in ["FMAGIC", "IMAGIC", "LRINTF"] $assert DATATYPE in ["QC8", "QS8", "QU8"] #include $if VARIANT == "LRINTF": #include #include #include $if NR % 4 != 0: #include $PARAMS_STRUCT = REQUANTIZATION.lower() + "_scalar" + ("_" + VARIANT.lower() if VARIANT else "") $PARAMS_UNION = "xnn_%s_conv_minmax_params" % DATATYPE.lower() $XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t" $MIN_F32 = "__builtin_wasm_min_f32" if WASM else "math_min_f32" $MAX_F32 = "__builtin_wasm_max_f32" if WASM else "math_max_f32" void xnn_${DATATYPE.lower()}_igemm_minmax_${REQUANTIZATION.lower()}_ukernel_${MR}x${NR}__${"wasm" if WASM else "scalar"}_${VARIANT.lower()}( size_t mr, size_t nc, size_t kc, size_t ks, const ${XINT8_T}**restrict a, const void*restrict w, ${XINT8_T}*restrict c, size_t cm_stride, size_t cn_stride, size_t a_offset, const ${XINT8_T}* zero, const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) { assert(mr != 0); assert(mr <= ${MR}); assert(nc != 0); assert(kc != 0); assert(ks != 0); assert(ks % (${MR} * sizeof(void*)) == 0); assert(a != NULL); assert(w != NULL); assert(c != NULL); ${XINT8_T}* c0 = c; $for M in range(1, MR): ${XINT8_T}* c${M} = (${XINT8_T}*) ((uintptr_t) c${M-1} + cm_stride); $if M % 2 == 0: if XNN_UNPREDICTABLE(mr <= ${M}) { c${M} = c${M-1}; } $elif M + 1 == MR: if XNN_UNPREDICTABLE(mr != ${M+1}) { c${M} = c${M-1}; } $else: if XNN_UNPREDICTABLE(mr < ${M+1}) { c${M} = c${M-1}; } $if DATATYPE == "QU8": const int32_t vb_zero_point = params->${PARAMS_STRUCT}.kernel_zero_point; do { $if NR % 4 != 0: $for N in range(NR): int32_t vacc0x${N} = unaligned_indexed_load_s32(w, ${N}); $else: $for N in range(NR): int32_t vacc0x${N} = ((const int32_t*) w)[${N}]; $for M in range(1, MR): $for N in range(NR): int32_t vacc${M}x${N} = vacc0x${N}; w = (const void*) ((const int32_t*) w + ${NR}); size_t p = ks; do { $for M in range(MR): const ${XINT8_T}* restrict a${M} = a[${M}]; assert(a${M} != NULL); if XNN_UNPREDICTABLE(a${M} != zero) { a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M} + a_offset); } a += ${MR}; size_t k = kc; do { $for M in range(MR): $if DATATYPE == "QU8": const int32_t va${M} = (int32_t) (uint32_t) *a${M}++; $else: const int32_t va${M} = (int32_t) *a${M}++; $for N in range(NR): $if DATATYPE == "QU8": const int32_t vb${N} = (int32_t) (uint32_t) ((const uint8_t*) w)[${N}] - vb_zero_point; $else: const int32_t vb${N} = (int32_t) ((const int8_t*) w)[${N}]; w = (const void*) ((const ${XINT8_T}*) w + ${NR}); $for M in range(MR): $for N in range(NR): vacc${M}x${N} += va${M} * vb${N}; k -= sizeof(${XINT8_T}); } while (k != 0); p -= ${MR} * sizeof(void*); } while (p != 0); $for M in range(MR): $for N in range(NR): float vfpacc${M}x${N} = (float) vacc${M}x${N}; $if DATATYPE == "QC8": $if NR % 4 != 0: $for N in range(NR): const float vscale${N} = unaligned_indexed_load_f32(w, ${N}); $for M in range(MR): vfpacc${M}x${N} *= vscale${N}; $else: $for N in range(NR): const float vscale${N} = ((const float*) w)[${N}]; $for M in range(MR): vfpacc${M}x${N} *= vscale${N}; w = (const void*) ((const float*) w + ${NR}); $else: const float vscale = params->${PARAMS_STRUCT}.scale; $for M in range(MR): $for N in range(NR): vfpacc${M}x${N} *= vscale; $if VARIANT == "FMAGIC": const float voutput_min_less_zero_point = params->${PARAMS_STRUCT}.output_min_less_zero_point; $for M in range(MR): $for N in range(NR): vfpacc${M}x${N} = ${MAX_F32}(vfpacc${M}x${N}, voutput_min_less_zero_point); const float voutput_max_less_zero_point = params->${PARAMS_STRUCT}.output_max_less_zero_point; $for M in range(MR): $for N in range(NR): vfpacc${M}x${N} = ${MIN_F32}(vfpacc${M}x${N}, voutput_max_less_zero_point); const float vmagic_bias = params->${PARAMS_STRUCT}.magic_bias; $for M in range(MR): $for N in range(NR): vfpacc${M}x${N} += vmagic_bias; const int32_t vmagic_bias_less_output_zero_point = params->${PARAMS_STRUCT}.magic_bias_less_output_zero_point; $for M in range(MR): $for N in range(NR): int32_t vout${M}x${N} = (int32_t) float_as_uint32(vfpacc${M}x${N}) - vmagic_bias_less_output_zero_point; $elif VARIANT == "IMAGIC": const float vmagic_bias = params->${PARAMS_STRUCT}.magic_bias; $for M in range(MR): $for N in range(NR): vfpacc${M}x${N} += vmagic_bias; $for M in range(MR): $for N in range(NR): int32_t vout${M}x${N} = (int32_t) float_as_uint32(vfpacc${M}x${N}); const int32_t vmagic_min = params->${PARAMS_STRUCT}.magic_min; $for M in range(MR): $for N in range(NR): vout${M}x${N} = math_max_s32(vout${M}x${N}, vmagic_min); const int32_t vmagic_max = params->${PARAMS_STRUCT}.magic_max; $for M in range(MR): $for N in range(NR): vout${M}x${N} = math_min_s32(vout${M}x${N}, vmagic_max); const int32_t vmagic_bias_less_zero_point = params->${PARAMS_STRUCT}.magic_bias_less_zero_point; $for M in range(MR): $for N in range(NR): vout${M}x${N} -= vmagic_bias_less_zero_point; $elif VARIANT == "LRINTF": const float voutput_min_less_zero_point = params->${PARAMS_STRUCT}.output_min_less_zero_point; $for M in range(MR): $for N in range(NR): vfpacc${M}x${N} = ${MAX_F32}(vfpacc${M}x${N}, voutput_min_less_zero_point); const float voutput_max_less_zero_point = params->${PARAMS_STRUCT}.output_max_less_zero_point; $for M in range(MR): $for N in range(NR): vfpacc${M}x${N} = ${MIN_F32}(vfpacc${M}x${N}, voutput_max_less_zero_point); $for M in range(MR): $for N in range(NR): const int32_t vrndacc${M}x${N} = (int32_t) lrintf(vfpacc${M}x${N}); const int32_t voutput_zero_point = params->${PARAMS_STRUCT}.output_zero_point; $for M in range(MR): $for N in range(NR): int32_t vout${M}x${N} = vrndacc${M}x${N} + voutput_zero_point; if XNN_LIKELY(nc >= ${NR}) { $for M in reversed(range(MR)): $for N in range(NR): c${M}[${N}] = (${XINT8_T}) vout${M}x${N}; $for M in reversed(range(MR)): c${M} = (${XINT8_T}*) ((uintptr_t) c${M} + cn_stride); a = (const ${XINT8_T}**restrict) ((uintptr_t) a - ks); nc -= ${NR}; } else { $for LOG2N in reversed(range(NR.bit_length() - 1)): if (nc & ${1 << LOG2N}) { $for M in reversed(range(MR)): $for N in range(1 << LOG2N): c${M}[${N}] = (${XINT8_T}) vout${M}x${N}; $if LOG2N != 0: $for N in range(1 << (LOG2N - 1)): vout${M}x${N} = vout${M}x${N + (1 << LOG2N)}; c${M} += ${1 << LOG2N}; } nc = 0; } } while (nc != 0); }