// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_f32_spmm_minmax_ukernel_${MR}x${NR}__scalar${"_x" + str(UNROLL) if UNROLL > 1 else ""}( size_t mc, size_t nc, const float*restrict input, const float*restrict weights, const int32_t*restrict widx_dmap, const uint32_t*restrict nidx_nnzmap, float*restrict output, size_t output_stride, const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(mc != 0); assert(mc % sizeof(float) == 0); assert(nc != 0); const float vmin = params->scalar.min; const float vmax = params->scalar.max; size_t output_decrement = output_stride * nc - ${MR} * sizeof(float); while (mc >= ${MR} * sizeof(float)) { const float*restrict w = weights; const int32_t* dmap = widx_dmap; const uint32_t* nnzmap = nidx_nnzmap; size_t n = nc; while (n >= ${NR}) { uint32_t nnz = *nnzmap++; $for N in range(0, NR, 1): float vacc0x${N} = *w++; $for M in range(1, MR): float vacc${ABC[M]}x${N} = vacc0x${N}; if XNN_LIKELY(nnz != 0) { do { const intptr_t diff = *dmap++; $for M in range(MR): const float vi${ABC[M]} = input[${M}]; input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); $for N in range(0, NR, 1): const float vw${N} = *w++; $for N in range(0, NR, 1): $for M in range(MR): vacc${ABC[M]}x${N} += vi${ABC[M]} * vw${N}; } while (--nnz != 0); } $for N in range(NR): $for M in range(MR): float vout${ABC[M]}x${N} = math_min_f32(vacc${ABC[M]}x${N}, vmax); $for N in range(NR): $for M in range(MR): vout${ABC[M]}x${N} = math_max_f32(vout${ABC[M]}x${N}, vmin); $for M in range(MR): output[${M}] = vout${ABC[M]}x${N}; $for N in range(NR): $for M in range(MR): output[${M}] = vout${ABC[M]}x${N}; output = (float*restrict) ((uintptr_t) output + output_stride); n -= ${NR}; } if XNN_UNLIKELY(n != 0) { do { uint32_t nnz = *nnzmap++; float vacc0 = *w++; $for M in range(1, MR): float vacc${ABC[M]} = vacc0; if XNN_LIKELY(nnz != 0) { do { const intptr_t diff = *dmap++; $for M in range(MR): const float vi${ABC[M]} = input[${M}]; input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); const float vw = *w++; $for M in range(MR): vacc${ABC[M]} += vi${ABC[M]} * vw; } while (--nnz != 0); } $for M in range(MR): float vout${ABC[M]} = math_min_f32(vacc${ABC[M]}, vmax); $for M in range(MR): vout${ABC[M]} = math_max_f32(vout${ABC[M]}, vmin); $for M in range(MR): output[${M}] = vout${ABC[M]}; output = (float*restrict) ((uintptr_t) output + output_stride); n -= 1; } while (n != 0); } output = (float*restrict) ((uintptr_t) output - output_decrement); input += ${MR}; mc -= ${MR} * sizeof(float); } if XNN_UNLIKELY(mc != 0) { $for LOG2M in reversed(range((MR - 1).bit_length())): $SUBMR = 1 << LOG2M $if SUBMR * 2 >= MR: output_decrement += ${MR - SUBMR} * sizeof(float); $else: output_decrement += ${SUBMR} * sizeof(float); if (mc & (${SUBMR} * sizeof(float))) { const float*restrict w = weights; const int32_t* dmap = widx_dmap; const uint32_t* nnzmap = nidx_nnzmap; size_t n = nc; while (n >= ${NR}) { uint32_t nnz = *nnzmap++; $for N in range(0, NR, 1): float vacc0x${N} = *w++; $for M in range(1, SUBMR): float vacc${ABC[M]}x${N} = vacc0x${N}; if XNN_LIKELY(nnz != 0) { do { const intptr_t diff = *dmap++; $for M in range(SUBMR): const float vi${ABC[M]} = input[${M}]; input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); $for N in range(0, NR, 1): const float vw${N} = *w++; $for N in range(0, NR, 1): $for M in range(SUBMR): vacc${ABC[M]}x${N} += vi${ABC[M]} * vw${N}; } while (--nnz != 0); } $for N in range(0, NR, 1): $for M in range(SUBMR): float vout${ABC[M]}x${N} = math_min_f32(vacc${ABC[M]}x${N}, vmax); $for N in range(0, NR, 1): $for M in range(SUBMR): vout${ABC[M]}x${N} = math_max_f32(vout${ABC[M]}x${N}, vmin); $for N in range(NR): $for M in range(SUBMR): output[${M}] = vout${ABC[M]}x${N}; output = (float*restrict) ((uintptr_t) output + output_stride); n -= ${NR}; } if XNN_UNLIKELY(n != 0) { do { uint32_t nnz = *nnzmap++; float vacc0 = *w++; $for M in range(1, SUBMR): float vacc${ABC[M]} = vacc0; if XNN_LIKELY(nnz != 0) { do { const intptr_t diff = *dmap++; $for M in range(SUBMR): const float vi${ABC[M]} = input[${M}]; input = (const float*restrict) ((uintptr_t) input + (uintptr_t) diff); const float vw = *w++; $for M in range(SUBMR): vacc${ABC[M]} += vi${ABC[M]} * vw; } while (--nnz != 0); } $for M in range(SUBMR): float vout${ABC[M]} = math_min_f32(vacc${ABC[M]}, vmax); $for M in range(SUBMR): vout${ABC[M]} = math_max_f32(vout${ABC[M]}, vmin); $for M in range(SUBMR): output[${M}] = vout${ABC[M]}; output = (float*restrict) ((uintptr_t) output + output_stride); n -= 1; } while (n != 0); } output = (float*restrict) ((uintptr_t) output - output_decrement); input += ${SUBMR}; } } }